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ON SUMS OF HANKEL OPERATORS!

PAUL A. FUHRMANN

ABSTRACT. Necessary and sufficient conditions are derived for the
sum of two Hankel operators of closed range to have closed range. As a

corollary we determine when two left invariant subspaces of H? have pos-

itive angle.

In this note we investigate the range of the sum of two Hankel operators.
Let us denote by T the unit circle {A: |A] = 1} and by D the open unit disc
A A <1b H? will denote the usual scalar Hardy space [5] identified also
as the subspace of LAT) of functions having vanishing negative Fourier
coefficients. We denote by PH2 the orthogonal projection of L%T) onto
H?. Let ] be the unitary map in LAT) defined i)y (]/)(eit) = /(e"it). Let
¢ € H”; the Hankel operator Hqs corresponding to ¢ is the bounded oper-
ator in H? defined by

(1) H¢/=PHZ¢]/ for all € H2.

It is clear from the definition that (Range qu)_ is a left invariant sub-
space of HZ%. In [3] the following theorem of D. N. Clark has been proved.

Theorem A. The Hankel operator H has closed range if and only if ¢
has a representation ¢ = qg with q an inner function and g € 17%", i.e. g is
bounded conjugate analytic vanishing at o, and such that there exists a
6> 0 for which

(2) |G(=)| + |}J(Z)] >8 forall z €D,

where §(2) = (q(2))~ and G(e™) = e~g(e™™).
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It follows in this case that Range Hqs = {qHZ}J‘.
In particular if Hqs has closed range then ¢ is noncyclic for the back-
ward (left) shift [1].
Let us consider now two functions ¢, € H® which are noncyclic for the
backward shift. Then (Range H, )~ are proper left invariant subspaces and
b P
hence there exist inner functions q; for which {Range qu,}l = qz.Hz.
1
- - 2L
Theorem B. (a) (Range H¢1+¢2) = (Range (H<;l>1 + H¢2)) = {qlqu }
if and only if q,, q, have no common nontrivial inner factor.
21 _ 2L
(b) Suppose Range H‘;bi = {g,H°}", then Range H¢1+¢2 =1q,9,HY if
and only if for some 8> 0 and all z € D we have |q,(2)| + |q,(2)| > 3.

Proof. (a) (Range H,)~ = {gH?}* implies, since ¢ € {gH?}", that ¢ =
g ) q
gg with g € HY. Let 7.: LAT) — LT) be the unitary map given by
0 q y

(,q/)(eiz) _ e_it’él(eiz)/(e-iz)

then d{gH?}') = {7H?}* [2]. In particular (Range H¢)" = {qH%™* if and
only if rp is a cyclic vector for the restricted right shift in {gH%L and
this occurs if and only if 7, }J have no common nontrivial inner factor [4].
But

(r) (e)) = e=Ttgleit)g(e="0g(e="1) =G(et?).

So (Range qu)_ = {gH%}" is equivalent to ¢ = gg with G, § having no
common nontrivial inner factor.

Assume now ¢,, ¢, to have no common nontrivial inner factor. Then

¢, +b,=4q,8,+ 9,8, and on applying r

we get
a14?2 &

G= Tq1q2(¢1 + ) =4,6, + 4,6,

and
- ~-_ 2L
(Range (Hy +Hy N = (Range Hy o )7=1q,9,H?!
if and only if G, ?1?2 have no common nontrivial inner factor. Suppose
they have a common nontrivial inner factor . Then ¥|G and (/l@lquvz With-
out loss of generality we may assume glllgl But then (/llrr}'ZGl and since ¢
and G, have no common inner factor by the assumption (Range Hqs)" =

{quz}J', then g//]félz contrary to the assumption that ¢,, g, have no common
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inner factor. Thus (Range H¢1+¢2)' = {q1q2H2}¢
Conversely assume (Range H¢1+¢2)‘ = {qlquZ}l; then ¢, + ¢, =
q9,9,8 for some g € ITI? and G, ’q\'l'c;'z have no common inner factor. Suppose
9,» 49, have a common inner factor . Then ¢I|?1Jl Hence l/f|(ré'261 + rc}'le)

~

that is 1|G. But this contradicts the assumption that (Range H¢1+¢2)
{qlquZH.

(b) Let us assume not that range H¢ = {quziJ‘, i=1, 2; then there
exists a 8> 0 such that |G(2)| + |¢(2)| > & for all z € D. Assume that

for some 8, >0 we have |q,(2)| + |¢,(2)] > &, for all z € D. We will show
that Range H¢1+¢2 = {qlquZH. For this it suffices that |G(2)] +
};lgz(zﬂ >0,>0 for all z in D. If this condition is not satisfied there
exists a sequence {z } in D for which G(z ) — 0 and r(}'l(zn)rc}'z(zn) — 0.
By passing to a subsequence we may assume without loss of generality that
rc}'l(zn) — 0. Since G(z2) = ;IGZ + 'L}JZGI,
Now Gl(zn) — 0 is ruled out by ]Gl(z)l + ]ff}ll(z)l > & whereas rc}'z(zn) — 0

it follows that rqu(zn)Gl(zn) — 0.

is ruled out by lql(z)l + }qz(z)| > 0,. Soindeed Range H¢1+¢2 = {qlquz}J'.

Conversely assume Range H¢1+¢2 = {q1q2H2§J‘. Then G =q,G, +
;261 and |G(2)| + |;1rq\'2(z)| > 8; i.e.

17,(2)G (2) + 7,(:)G ()] + |7, 7,(x)| 25> 0

for all z in D. But since G, € H™, this implies |q,(2)| + |¢,(2)| >&,>0
for all z in D.

Given any proper left invariant subspace K of H? then K is the range
of a Hankel operator in HZ. In fact by Beurling’s theorem, K = {gH%}* for
some inner function g. Let ¢(z) = (g(2) - ¢(0))/z; then ¢ € H™ N K and it
is simple to check that, by Theorem A, Range qu = {gH%" . It is trivial
that {quZ}J‘ N {quz}l = {0} if and only if ¢, ¢, have no common nontriv-

ial inner factor.

Corollary 1. Let q, g, be inner functions; then {quz}‘L + {qZHZ}l =
{qlquZ}l if and only if there exists a 8> 0 -such that |q,(2)| + |q,(2)] > &
forall z € D.

Now it is well known [6, p. 243] that the sum of two subspaces M, M,
of any Banach space, which satisfy M; N M, = {0}, is a closed subspace if
and only if for some d> 0, infif|x, - x,[|: x, € M, [|x || = 1} > 4. In a Hil-

bert space this condition is equivalent to sup{|(x}, x))|: x, € M, x|l = 1} <1
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which can be interpreted geometrically as M, M, having a positive angle.

Thus we get the following corollary.

Corollary 2. The angle between {quz}L and {qZHz}J‘ is positive if
and only if for some §> 0, |q,(2)| + |q,(2)| > & for all z € D.
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