INVARIANT CURVES FOR ENDOMORPHISMS OF $\mathbb{P}^1 \times \mathbb{P}^1$

F. PAKOVICH

Abstract. Let A_1, A_2 be rational functions of degree at least two that are neither Lattès maps nor conjugate to $z^\pm n$ or $\pm T_n$. We describe invariant, periodic, and preperiodic algebraic curves for endomorphisms of $(\mathbb{P}^1)^2$ given by the formula $(z_1, z_2) \mapsto (A_1(z_1), A_2(z_2))$. Among other things, we prove that for any pair of positive integers (d_1, d_2) there exist at most finitely many (A_1, A_2)-invariant curves of bi-degree (d_1, d_2).

1. Introduction

Let A be a rational function of one complex variable. We say that A is special if it is either a Lattès map, or it is conjugate to $z^\pm n$ or $\pm T_n$. In this paper, we describe invariant and, more generally, periodic and preperiodic algebraic curves for endomorphisms $(A_1, A_2) : (\mathbb{P}^1)^2 \to (\mathbb{P}^1)^2$ given by the formula

$$(z_1, z_2) \mapsto (A_1(z_1), A_2(z_2)),$$

where A_1 and A_2 are non-special rational functions of degree at least two. Note that describing invariant varieties for more general endomorphisms

$$(z_1, z_2, \ldots, z_n) \mapsto (A_1(z_1), A_2(z_2), \ldots, A_n(z_n)), \quad n \geq 2,$$

reduces to describing invariant curves for endomorphisms (1) (see [9], [10]). On the other hand, an arbitrary dominant endomorphism G of $(\mathbb{P}^1)^n$ has the form

$$(z_1, z_2, \ldots, z_n) \mapsto (A_1(z_{\sigma(1)}), A_2(z_{\sigma(2)}), \ldots, A_n(z_{\sigma(n)}))$$

for some permutation $\sigma \in S_n$, implying that some iterate of G has form (2).

Invariant curves for endomorphisms (1) with polynomial A_1, A_2 were studied in the paper of Medvedev and Scanlon [10]. In particular, it was shown in [10] that if A_1 and A_2 are not conjugate to powers z^n or Chebyshev polynomials $\pm T_n$, then any irreducible algebraic (A_1, A_2)-invariant curve has genus zero and can be parametrized by polynomials X_1, X_2 satisfying the system of functional equations

$$(3) \quad A_1 \circ X_1 = X_1 \circ B, \quad A_2 \circ X_2 = X_2 \circ B$$

for some polynomial B. Using the theory of functional decompositions of polynomials developed by Ritt ([24]), Medvedev and Scanlon investigated system (3) in detail and obtained a description of (A_1, A_2)-invariant curves. Specifically, for $A_1 = A_2$ the main result of [10] about invariant curves can be formulated as follows: if a polynomial A is not conjugate to z^n or $\pm T_n$, then any irreducible (A, A)-invariant curve is a graph $z_2 = X(z_1)$ or $z_1 = X(z_2)$, where X is a polynomial commuting with A. The classification of invariant curves obtained by Medvedev and Scanlon has numerous applications in arithmetic dynamics (see e. g. [1], [14], [4], [5], [6], [8]).

This research was supported by ISF Grant No. 1432/18.
[7], [3]), and the goal of this paper is to obtain a generalization of this classification to arbitrary non-special rational functions A_1 and A_2.

It is not hard to show that for non-special rational functions A_1 and A_2, any (A_1, A_2)-invariant curve still has genus zero and can be parametrized by rational functions X_1, X_2 satisfying (3) for some rational function B. In particular, the existence of invariant curves implies the equality $\text{deg } A_1 = \text{deg } A_2$. However, the Ritt theory of polynomial decompositions used in [10] for the analysis of (3) does not extend to rational functions. Furthermore, one of the key ingredients of the method of [10], the so-called “first Ritt theorem”, is known not to be true in the rational case (see e. g. [11]). Note that results of [10] about invariant curves can be proved by a different method, which does not rely on the first Ritt theorem (see [16]). Nevertheless, the method of [16] is also restricted to the polynomial case.

Since invariant curves for endomorphisms (1) satisfy system (3), the problem of describing invariant curves is closely related to the problem of describing semiconjugate rational functions, i.e., rational solutions of the functional equation

$$A \circ X = X \circ B.$$

A comprehensive description of solutions of (4) was obtained in the series of papers [15], [17], [23], [21], [20], and in this paper we apply the main results of [15] and [21] to system (3).

To formulate our results explicitly we recall several definitions. An orbifold O on \mathbb{CP}^1 is a ramification function $\nu : \mathbb{CP}^1 \to \mathbb{N}$ which takes the value $\nu(z) = 1$ except at a finite set of points. If f is a rational function and O_1, O_2 are orbifolds with ramification functions ν_1 and ν_2, then we say that $f : O_1 \to O_2$ is a covering map between orbifolds if for any $z \in \mathbb{CP}^1$ the equality

$$\nu_2(f(z)) = \nu_1(z) \text{deg } z f$$

holds. In case the weaker condition

$$\nu_2(f(z)) = \nu_1(z) \text{GCD}(\text{deg } z f, \nu_2(f(z)))$$

is satisfied, we say that $f : O_1 \to O_2$ is a minimal holomorphic map between orbifolds. In these terms, a Lattès map can be defined as a rational function A such that $A : O \to O$ is a covering self-map for some orbifold O (see [13]). Following [21], we say that A is a generalized Lattès map if there exists an orbifold O distinct from the non-ramified sphere such that $A : O \to O$ is a minimal holomorphic map. Note that similar to ordinary Lattès maps, generalized Lattès maps can be described in terms of semiconjugacies and group actions (see [21]).

Let A_1, A_2, X_1, X_2, B be rational functions such that the diagram

$$\begin{array}{ccc}
(\mathbb{CP}^1)^2 & \xrightarrow{(B,B)} & (\mathbb{CP}^1)^2 \\
\downarrow{(X_1,X_2)} & & \downarrow{(X_1,X_2)} \\
(\mathbb{CP}^1)^2 & \xrightarrow{(A_1,A_2)} & (\mathbb{CP}^1)^2
\end{array}$$

(5)

commutes. Then the image of \mathbb{CP}^1 in $(\mathbb{CP}^1)^2$ under the map

$$t \to (X_1(t), X_2(t))$$

(6)

is an (A_1, A_2)-invariant curve C, since the diagonal Δ in $(\mathbb{CP}^1)^2$ is (B, B)-invariant and $C = (X_1, X_2)(\Delta)$. For brevity, we say that the map (6) is a parametrization.
of the curve C. We emphasize however that such a parametrization is not necessarily generically one-to-one, that is we do not assume that X_1 and X_2 satisfy the condition $C(X_1, X_2) = C(z)$. In like manner, if A_1, A_2, Y_1, Y_2, B are rational functions such that the diagram

(7) \[
\begin{array}{ccc}
(CP^1)^2 & \overset{(A_1, A_2)}{\rightarrow} & (CP^1)^2 \\
(Y_1, Y_2) & \downarrow & (Y_1, Y_2) \\
(CP^1)^2 & \overset{(B, B)}{\rightarrow} & (CP^1)^2
\end{array}
\]

commutes, then the algebraic curve $\mathcal{E} = (Y_1, Y_2)^{-1}(\Delta)$, defined by the equation $Y_1(x) - Y_2(y) = 0$, satisfies $(A_1, A_2)(\mathcal{E}) \subseteq \mathcal{E}$. Therefore, each component of \mathcal{E} is (A_1, A_2)-preperiodic and at least one of these components is (A_1, A_2)-periodic.

Our first result provides a description of (A_1, A_2)-invariant curves in case that A_1 and A_2 are not generalized Lattès maps through a system of functional equations involving functional decompositions of iterates of A_1, A_2 and diagrams (5), (7).

Theorem 1.1. Let A_1, A_2 be rational functions of degree at least two that are not generalized Lattès maps, and C an irreducible algebraic curve in $(CP^1)^2$ that is not a vertical or horizontal line. Then C is (A_1, A_2)-invariant if and only if there exist rational functions X_1, X_2, Y_1, Y_2, B such that:

1. The diagram

(8) \[
\begin{array}{ccc}
(CP^1)^2 & \overset{(B, B)}{\rightarrow} & (CP^1)^2 \\
(X_1, X_2) & \downarrow & (X_1, X_2) \\
(CP^1)^2 & \overset{(A_1, A_2)}{\rightarrow} & (CP^1)^2 \\
(Y_1, Y_2) & \downarrow & (Y_1, Y_2) \\
(CP^1)^2 & \overset{(B, B)}{\rightarrow} & (CP^1)^2
\end{array}
\]

commutes,

2. The equalities

(9) \[X_1 \circ Y_1 = A_1^{od}, \quad X_2 \circ Y_2 = A_2^{od}, \]

(10) \[Y_1 \circ X_1 = Y_2 \circ X_2 = B^{od} \]

hold for some $d \geq 1$,

3. The map $t \to (X_1(t), X_2(t))$ is a parametrization of C.

Note that (10) implies that C is a component of the “separate variable” curve

(11) \[\mathcal{E} : Y_1(x) - Y_2(y) = 0. \]

Thus, Theorem 1.1 provides us both with the parametrization of C and with the equation of a curve having C as a component. Moreover, both these characterizations of invariant curves are obtained from decompositions of iterates (9) subject to special restrictions. Note also that condition (9) yields that

\[(A_1, A_2)^{od}(\mathcal{E}) = C, \]

that is all components of curve (11) are eventually mapped to the curve C.

In applications, it is often desirable to know a description of \((A_1, A_2)\)-periodic and preperiodic curves rather than invariant ones. In fact, the description of such curves is somewhat easier. Specifically, the following statement holds.

Theorem 1.2. Let \(A_1, A_2\) be rational functions of degree at least two that are not generalized Lattès maps, and \(C\) an irreducible algebraic curve in \((\mathbb{CP}^1)^2\) that is not a vertical or horizontal line. Then \(C\) is \((A_1, A_2)\)-periodic if and only if there exist rational functions \(X_1, X_2, Y_1, Y_2\) such that the equalities

\[
X_1 \circ Y_1 = A_1^{n_1}, \quad X_2 \circ Y_2 = A_2^{n_2},
\]

\[
Y_1 \circ X_1 = Y_2 \circ X_2
\]

hold for some \(n_1 \geq 1\), and the map \(t \to (X_1(t), X_2(t))\) is a parametrization of \(C\). On the other hand, \(C\) is \((A_1, A_2)\)-preperiodic if and only if there exist rational functions as above such that \(C\) is a component of the curve \(Y_1(x) - Y_2(y) = 0\).

Finally, describing \((A_1, A_2)\)-periodic and preperiodic curves for arbitrary non-special maps \(A_1\) and \(A_2\) reduces to the case where \(A_1\) and \(A_2\) are not generalized Lattès maps by the following theorem.

Theorem 1.3. Let \(A_1, A_2\) be non-special rational functions of degree at least two. Then there exist rational functions \(X_1, X_2, B_1, B_2\) such that \(X_1, X_2\) are Galois coverings of \(\mathbb{CP}^1\) by \(\mathbb{CP}^1, B_1, B_2\) are not generalized Lattès maps, the diagram

\[
\begin{array}{ccc}
(\mathbb{CP}^1)^2 & \xrightarrow{(B_1, B_2)} & (\mathbb{CP}^1)^2 \\
(X_1, X_2) \downarrow & & \downarrow (X_1, X_2) \\
(\mathbb{CP}^1)^2 & \xrightarrow{(A_1, A_2)} & (\mathbb{CP}^1)^2
\end{array}
\]

commutes, and every irreducible \((A_1, A_1)\)-periodic (resp. preperiodic) curve is the \((X_1, X_2)\)-image of some irreducible \((B_1, B_2)\)-periodic (resp. preperiodic) curve.

Note that the functions \(X_1, X_2, B_1, B_2\) in Theorem 1.3 are defined in a unique way, up to some natural transformations, via some “maximal” orbifolds \(O_1\) and \(O_2\) for which \(A_1 : O_1 \to O_1\) and \(A_2 : O_2 \to O_2\) are minimal holomorphic maps.

Since for any rational function \(A\) and \(l \geq 1\) the curve \(x - A^l(y) = 0\) is obviously \((A, A)\)-invariant, one cannot expect to bound the total number of \((A_1, A_2)\)-invariant curves. Nevertheless, the following statement is true.

Theorem 1.4. Let \(A_1, A_2\) be rational functions of degree \(m \geq 2\). Then for any pair of positive integers \((d_1, d_2)\) there exist at most finitely many \((A_1, A_2)\)-invariant curves of bi-degree \((d_1, d_2)\). Moreover, there exists a function \(\gamma : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{R}\) such that the number of these curves does not exceed \(\gamma(m, d_1, d_2)\).

Theorem 1.4 is obtained from the above results combined with the quantitative analysis of solutions of equation (4). As a by-product of this analysis, we obtain the following statement of independent interest, which states roughly speaking that if a rational function \(X\) is “a compositional left factor” of some iterate of a rational function \(A\), then \(X\) is already a factor of \(A^{oN}\), where \(N\) is bounded in terms of degrees of \(A\) and \(X\).
Theorem 1.5. There exists a function $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ with the following property. For any rational functions A and X such that the equality

$$A^{od} = X \circ R$$

holds for some rational function R and $d \geq 1$, there exists $N \leq \varphi(\deg A, \deg X)$ and a rational function R' such that

$$A^{N} = X \circ R'$$

and $R = R' \circ A^{\varphi(d-N)}$, if $d > N$. In particular, for every positive integer n, up to the change $X \to X \circ \mu$, where μ is a Möbius transformation, there exist at most finitely many rational functions X of degree n such that (14) holds for some rational function R and $d \geq 1$.

The paper is organized as follows. In the second section, we recall basic definitions and results related to orbifolds on Riemann surfaces. In the third section, we review some of results of the papers [15] and [21] describing the structure of solutions of functional equation (4) in rational functions.

In the fourth section, we prove Theorems 1.1 - 1.3 and some other related results. In particular, we provide an alternative description of (A_1, A_2)-invariant curves in the special case $A_1 = A_2 = A$ in terms of functions commuting with A. Similarly, we describe (A, A)-periodic and preperiodic curves in terms of functions commuting with some iterate of A.

Finally, in the fifth section, we obtain quantitative versions of some recent results of the paper [22], concerning pairs of rational functions A and X such that for every $l \geq 1$ the algebraic curve

$$A^{al}(x) - X(y) = 0$$

has a factor of genus zero or one, and prove Theorem 1.4 and Theorem 1.5.

2. Orbifolds and generalized Lattès maps

2.1. Riemann surface orbifolds. A Riemann surface orbifold is a pair $\mathcal{O} = (R, \nu)$ consisting of a Riemann surface R and a ramification function $\nu : R \to \mathbb{N}$, which takes the value $\nu(z) = 1$ except at isolated points. For an orbifold $\mathcal{O} = (R, \nu)$, the Euler characteristic of \mathcal{O} is the number

$$\chi(\mathcal{O}) = \chi(R) + \sum_{z \in \mathcal{O}} \left(\frac{1}{\nu(z)} - 1 \right),$$

the set of singular points of \mathcal{O} is the set

$$c(\mathcal{O}) = \{z_1, z_2, \ldots, z_s, \ldots\} = \{z \in R \mid \nu(z) > 1\},$$

and the signature of \mathcal{O} is the set

$$\nu(c) = \{\nu(z_1), \nu(z_2), \ldots, \nu(z_s), \ldots\}.$$
holds, where $\deg z f$ is the local degree of f at the point z. If for any $z \in R_1$, the weaker condition
\begin{equation}
\nu_2(f(z)) \mid \nu_1(z) \deg z f
\end{equation}
is satisfied instead of (15), we say that $f : O_1 \to O_2$ is a holomorphic map between orbifolds.

A universal covering of an orbifold O is a covering map between orbifolds $\theta_O : \tilde{O} \to O$ such that \tilde{R} is simply connected and \tilde{O} is non-ramified, that is, $\tilde{\nu}(z) \equiv 1$. If θ_O is such a map, then there exists a group Γ_O of conformal automorphisms of \tilde{R} such that the equality $\theta_O(z_1) = \theta_O(z_2)$ holds for $z_1, z_2 \in \tilde{R}$ if and only if $z_1 = \sigma(z_2)$ for some $\sigma \in \Gamma_O$. A universal covering exists and is unique up to a conformal isomorphism of \tilde{R} whenever O is good, that is, distinct from the Riemann sphere with one ramified point or with two ramified points z_1, z_2 such that $\nu(z_1) \neq \nu(z_2)$. Furthermore, \tilde{R} is the unit disk \mathbb{D} if and only if $\chi(O) < 0$, \tilde{R} is the complex plane \mathbb{C} if and only if $\chi(O) = 0$, and \tilde{R} is the Riemann sphere $\mathbb{C}P^1$ if and only if $\chi(O) > 0$ (see e.g. [2], Section IV.9.12). Below we always assume that considered orbifolds are good. Abusing notation, we use the symbol \tilde{O} both for the orbifold and for the Riemann surface \tilde{R}.

Covering maps between orbifolds lift to isomorphisms between their universal coverings. More generally, for any holomorphic map between orbifolds $f : O_1 \to O_2$ there exist a holomorphic map $F : \tilde{O}_1 \to \tilde{O}_2$ and a homomorphism $\varphi : \Gamma_{O_1} \to \Gamma_{O_2}$ such that the diagram
\begin{equation}
\begin{array}{ccc}
\tilde{O}_1 & \xrightarrow{F} & \tilde{O}_2 \\
\downarrow{\theta_{O_1}} & & \downarrow{\theta_{O_2}} \\
O_1 & \xrightarrow{f} & O_2
\end{array}
\end{equation}
commutes and for any $\sigma \in \Gamma_{O_1}$ the equality
\begin{equation}
F \circ \sigma = \varphi(\sigma) \circ F
\end{equation}
holds. The holomorphic map F is an isomorphism if and only if f is a covering map between orbifolds (see [15], Proposition 3.1).

If $f : O_1 \to O_2$ is a covering map between orbifolds with compact supports, then the Riemann-Hurwitz formula implies that
\begin{equation}
\chi(O_1) = d\chi(O_2),
\end{equation}
where $d = \deg f$. More generally, if $f : O_1 \to O_2$ is a holomorphic map, then
\begin{equation}
\chi(O_1) \leq \chi(O_2) \deg f,
\end{equation}
and the equality is attained if and only if $f : O_1 \to O_2$ is a covering map between orbifolds (see [15], Proposition 3.2).

Let R_1, R_2 be Riemann surfaces and $f : R_1 \to R_2$ a holomorphic branched covering map. Assume that R_2 is provided with a ramification function ν_2. In order to define a ramification function ν_1 on R_1 so that f would be a holomorphic map between orbifolds $O_1 = (R_1, \nu_1)$ and $O_2 = (R_2, \nu_2)$ we must satisfy condition (16), and it is easy to see that for any $z \in R_1$ a minimal possible value for $\nu_1(z)$ is defined by the equality
\begin{equation}
\nu_2(f(z)) = \nu_1(z) \text{GCD}(\deg z f, \nu_2(f(z))).
\end{equation}
In case if (21) is satisfied for any \(z \in R_1 \) we say that \(f \) is a minimal holomorphic map between orbifolds \(O_1 = (R_1, \nu_1) \) and \(O_2 = (R_2, \nu_2) \). It follows from the definition that for any orbifold \(O = (R, \nu) \) and a holomorphic branched covering map \(f : R' \to R \) there exists a unique orbifold structure \(O' = (R', \nu') \) such that \(f : O' \to O \) is a minimal holomorphic map between orbifolds. We will denote the corresponding orbifold by \(f^*O \). Notice that any covering map between orbifolds \(f : O_1 \to O_2 \) is a minimal holomorphic map.

Minimal holomorphic maps between orbifolds possess the following fundamental property with respect to the operation of composition (see [15], Theorem 4.1).

Theorem 2.1. Let \(f : R'' \to R' \) and \(g : R' \to R \) be holomorphic branched covering maps, and \(O = (R, \nu) \) an orbifold. Then

\[
(g \circ f)^* O = f^*(g^* O). \tag{23}
\]

Theorem 2.1 implies in particular the following corollaries (see [15], Corollary 4.1 and Corollary 4.2).

Corollary 2.2. Let \(f : O_1 \to O' \) and \(g : O' \to O_2 \) be minimal holomorphic maps (resp. covering maps) between orbifolds. Then \(g \circ f : O_1 \to O_2 \) is a minimal holomorphic map (resp. covering map). \(\Box \)

Corollary 2.3. Let \(f : R_1 \to R' \) and \(g : R' \to R_2 \) be holomorphic branched covering maps, and \(O_1 = (R_1, \nu_1) \) and \(O_2 = (R_2, \nu_2) \) orbifolds. Assume that \(g \circ f : O_1 \to O_2 \) is a minimal holomorphic map (resp. a covering map). Then \(g : g^*O_2 \to O_2 \) and \(f : O_1 \to g^*O_2 \) are minimal holomorphic maps (resp. covering maps). \(\Box \)

Most of orbifolds considered in this paper are defined on \(\mathbb{CP}^1 \). For such orbifolds, we omit the Riemann surface \(R \) in the definition of \(O = (R, \nu) \), meaning that \(R = \mathbb{CP}^1 \). Signatures of orbifolds on \(\mathbb{CP}^1 \) with non-negative Euler characteristics and corresponding \(\Gamma_O \) and \(\theta_O \) can be described explicitly as follows. If \(O \) is an orbifold distinct from the non-ramified sphere, then \(\chi(O) = 0 \) if and only if the signature of \(O \) belongs to the list

\[
\{2, 2, 2\}, \{3, 3, 3\}, \{2, 4, 4\}, \{2, 3, 6\}, \tag{22}
\]

and \(\chi(O) > 0 \) if and only if the signature of \(O \) belongs to the list

\[
\{n, n\}, \ n \geq 2, \{2, 2, n\}, \ n \geq 2, \{2, 3, 3\}, \{2, 3, 4\}, \{2, 3, 5\}. \tag{23}
\]

Groups \(\Gamma_O \subset Aut(\mathbb{C}) \) corresponding to orbifolds \(O \) with signatures (22) are generated by translations of \(\mathbb{C} \) by elements of some lattice \(L \subset \mathbb{C} \) of rank two and the rotation \(z \to \varepsilon z \), where \(\varepsilon \) is an \(n \)-th root of unity with \(n \) equal to 2, 3, 4, or 6, such that \(\varepsilon L = L \) (see [13], or [2], Section IV.9.5). Accordingly, the functions \(\theta_O \) may be written in terms of the corresponding Weierstrass functions as \(\wp(z), \wp'(z), \wp^2(z), \) and \(\wp'^2(z) \). Groups \(\Gamma_O \subset Aut(\mathbb{CP}^1) \) corresponding to orbifolds \(O \) with signatures (23) are the well-known finite subgroups \(C_n, D_{2n}, A_4, S_4, A_5 \) of \(Aut(\mathbb{CP}^1) \), and the functions \(\theta_O \) are Galois coverings of \(\mathbb{CP}^1 \) by \(\mathbb{CP}^1 \) of degrees \(n, 2n, 12, 24, 60, \) calculated for the first time by Klein in [8].
2.2. Functional equations and orbifolds. With each holomorphic map $f : R_1 \to R_2$ between compact Riemann surfaces, one can associate two orbifolds $O^f_1 = (R_1, \nu^1_f)$ and $O^f_2 = (R_2, \nu^2_f)$, setting $\nu^2_f(z)$ equal to the least common multiple of local degrees of f at the points of the preimage $f^{-1}\{z\}$, and

$$\nu^1_f(z) = \frac{\nu^2_f(f(z))}{\deg_z f}.$$

By construction, $f : O^f_1 \to O^f_2$ is a covering map between orbifolds. It is easy to see that the covering map $f : O^f_1 \to O^f_2$ is minimal in the following sense. For any covering map between orbifolds $f : O_1 \to O_2$ we have:

$$O^f_1 \preceq O_1, \quad O^f_2 \preceq O_2.$$

The orbifolds defined above are useful for the study of the functional equation

$$f \circ p = g \circ q,$$

where $p : R \to C_1$, $f : C_1 \to \mathbb{C}P^1$, $q : R \to C_2$, $g : C_2 \to \mathbb{C}P^1$ are holomorphic maps between compact Riemann surfaces. We say that a solution f, p, g, q of (25) is good if the fiber product of f and g has a unique component, and $p : R \to C_1$ and $q : R \to C_2$ have no non-trivial common compositional right factor in the following sense: the equalities

$$p = \tilde{p} \circ w, \quad q = \tilde{q} \circ w,$$

where $w : R \to \tilde{R}$, $\tilde{p} : \tilde{R} \to C_1$, $\tilde{q} : \tilde{R} \to C_2$ are holomorphic maps between compact Riemann surfaces, imply that $\deg w = 1$. In this notation, the following statement holds (see [15], Theorem 4.2).

Theorem 2.4. Let f, p, g, q be a good solution of (25). Then the commutative diagram

$$\begin{array}{ccc}
O^f_1 & \xrightarrow{p} & O^f_2 \\
\downarrow{q} & & \downarrow{f} \\
O^g_2 & \xrightarrow{g} & O^f_2
\end{array}$$

consists of minimal holomorphic maps between orbifolds. \qed

Good solutions admit the following characterization (see [15], Lemma 2.1).

Lemma 2.5. A solution f, p, g, q of (25) is good whenever any two of the following three conditions are satisfied:

- the fiber product of f and g has a unique component,
- p and q have no non-trivial common compositional right factor,
- $\deg f = \deg g$, $\deg g = \deg p$. \qed

Note that if f and g are rational functions, then the fiber product of f and g has a unique component if and only if the algebraic curve $f(x) - g(y) = 0$ is irreducible.
Finally, the following result (see [22], Corollary 2.9 or [23], Theorem 2.18) states that “gluing together” two commutative diagrams corresponding to good solutions of (25) we obtain again a good solution of (25) (see the diagram below).

\[
\begin{array}{ccc}
\mathbb{C}P^1 & \xrightarrow{B} & \mathbb{C}P^1 \\
\downarrow C & & \downarrow D \\
\mathbb{C}P^1 & \xrightarrow{A} & \mathbb{C}P^1
\end{array}
\]

\[
\begin{array}{ccc}
\mathbb{C}P^1 & \xrightarrow{W} & \mathbb{C}P^1 \\
\downarrow V & & \downarrow E \\
\mathbb{C}P^1 & \xrightarrow{U} & \mathbb{C}P^1
\end{array}
\]

Theorem 2.6. Assume that the quadruples of rational functions \(A, C, D, B\) and \(U, D, V, W\) are good solutions of (25). Then the quadruple \(U \circ A, C, V, W \circ B\) is also a good solution of (25). \(\square\)

2.3. **Generalized Lattès maps.** We recall that a Lattès map is a rational function \(A\) such that there exist a lattice \(\Lambda\) of rank two in \(\mathbb{C}\), an affine map \(at + b\) from \(\mathbb{C}/\Lambda\) to \(\mathbb{C}/\Lambda\), and a holomorphic function \(\Theta : \mathbb{C}/\Lambda \to \mathbb{C}P^1\), which make the diagram

\[
\begin{array}{ccc}
\mathbb{C}/\Lambda & \xrightarrow{at+b} & \mathbb{C}/\Lambda \\
\downarrow \Theta & & \downarrow \Theta \\
\mathbb{C}P^1 & \xrightarrow{A} & \mathbb{C}P^1
\end{array}
\]

commutative. Equivalently, a Lattès map can be defined as a rational function \(A\) such that \(A : \mathcal{O} \to \mathcal{O}\) is a covering self-map for some orbifold \(\mathcal{O}\) (see [13]). Thus, \(A\) is a Lattès map if there exists an orbifold \(\mathcal{O}\) such that for any \(z \in \mathbb{C}P^1\) the equality

\[
\nu(A(z)) = \nu(z)\text{deg}_A
\]

holds. By formula (19), such \(\mathcal{O}\) necessarily satisfies \(\chi(\mathcal{O}) = 0\). Furthermore, for a given function \(A\) there might be at most one orbifold such that (27) holds (see [13] and [21], Theorem 6.1).

Following [21], we say that a rational function \(A\) of degree at least two is a generalized Lattès map if there exists an orbifold \(\mathcal{O}\), distinct from the non-ramified sphere, such that \(A : \mathcal{O} \to \mathcal{O}\) is a minimal holomorphic self-map between orbifolds; that is, for any \(z \in \mathbb{C}P^1\), the equality

\[
\nu(A(z)) = \nu(z)\text{GCD}(\text{deg}_A,\nu(A(z)))
\]

holds. By inequality (20), such \(\mathcal{O}\) satisfies \(\chi(\mathcal{O}) \geq 0\). Since (27) implies (28), any ordinary Lattès map is a generalized Lattès map. Note that if \(\mathcal{O}\) is the non-ramified sphere, then condition (28) trivially holds for any rational function \(A\).

In general, for a given function \(A\) there might be several orbifolds \(\mathcal{O}\) satisfying (28), and even infinitely many such orbifolds. For example, it is easy to see that \(z^{\pm n} : \mathcal{O} \to \mathcal{O}\) is a minimal holomorphic map for any \(\mathcal{O}\) defined by

\[
\nu(0) = m, \quad \nu(\infty) = m, \quad \text{GCD}(n, m) = 1,
\]

while \(\pm T_n : \mathcal{O} \to \mathcal{O}\) is a minimal holomorphic map for any \(\mathcal{O}\) defined by the conditions

\[
\nu(-1) = \nu(1) = 2, \quad \nu(\infty) = m, \quad \text{GCD}(n, m) = 1.
\]

Nevertheless, the following statement holds (see [21], Theorem 1.2).
Theorem 2.7. Let A be a rational function of degree at least two not conjugate to z^d or $\pm T_d$. Then there exists an orbifold O^A_0 such that $A : O^A_0 \to O^A_0$ is a minimal holomorphic map between orbifolds, and for any orbifold O such that $A : O \to O$ is a minimal holomorphic map between orbifolds, the relation $O \preceq O^A_0$ holds. Furthermore, $O^A_{0l} = O^A_0$ for any $l \geq 1$. □

Clearly, generalized Lattès maps are exactly rational functions for which the orbifold O^A_0 is distinct from the non-ramified sphere, completed by the functions z^d and $\pm T_d$ for which the orbifold O^A_0 is not defined. Furthermore, ordinary Lattès maps are exactly rational functions for which $\chi(O^A_0) = 0$ (see [21], Lemma 6.4). Notice also that since a rational function A is conjugate to z^d or $\pm T_d$ if and only if some iterate A^l is conjugate to z^{ld} or $\pm T_{ld}$ (see e.g. [21], Lemma 6.3), Theorem 2.7 implies that A is a generalized Lattès map if and only if some iterate A^l is a generalized Lattès map.

We recall that a rational function A is called special if it is either a Lattès map, or it is conjugate to z^n or $\pm T_n$. If A is a generalized Lattès map which is not special, then $\chi(O^A_0) > 0$, and corresponding diagram (17) takes the form

$$\begin{array}{ccc}
\mathbb{CP}^1 & \xrightarrow{F} & \mathbb{CP}^1 \\
\downarrow \theta_{O^A} & & \downarrow \theta_{O^A} \\
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1.
\end{array}$$

Moreover, for such A the homomorphism (18) is an automorphism. More precisely, the following statement holds (see [15], Theorem 5.1).

Theorem 2.8. Let A and F be rational functions of degree at least two and O an orbifold with $\chi(O) > 0$ such that $A : O \to O$ is a holomorphic map between orbifolds and the diagram

$$\begin{array}{ccc}
\mathbb{CP}^1 & \xrightarrow{F} & \mathbb{CP}^1 \\
\downarrow \theta_O & & \downarrow \theta_O \\
O & \xrightarrow{A} & O
\end{array}$$

commutes. Then the following conditions are equivalent:

1. The holomorphic map A is a minimal holomorphic map.
2. The homomorphism $\varphi : \Gamma_O \to \Gamma_O$ defined by the equality
 \[F \circ \sigma = \varphi(\sigma) \circ F, \quad \sigma \in \Gamma_O, \]
 is an automorphism of Γ_O.
3. The functions θ_O, F, A, θ_O form a good solution of equation (25).

Finally, we need the following simple result (see Lemma 6.6 of [21]) imposing restrictions on ramification of generalized Lattès maps, and, more generally, on ramification of holomorphic coverings maps between orbifolds of positive Euler characteristic.

Lemma 2.9. Let A be a rational function of degree at least five, and O_1, O_2 orbifolds distinct from the non-ramified sphere such that $A : O_1 \to O_2$ is a minimal holomorphic map between orbifolds. Assume that $\chi(O_1) \geq 0$. Then $c(O_2) \subseteq c(O_2^A)$.
3. Semiconjugate rational functions

3.1. Primitive solutions. Let A and B be rational functions of degree at least two. Recall that B is said to be semiconjugate to A if there exists a non-constant rational function X such that the equality

$$A \circ X = X \circ B$$

holds. If $\deg X = 1$, then A and B are conjugate in the usual sense. We say that a solution A, X, B of functional equation (29) is primitive if $\mathcal{C}(B, X) = \mathcal{C}(x)$. By Lemma 2.5, a solution A, X, B of (29) is primitive if and only if the quadruple

$$f = A, \ p = X, \ g = X, \ q = B$$

is a good solution of (25). Primitive solution are described as follows (see [15], Theorem 6.1, or [20]).

Theorem 3.1. Let A, X, B be a primitive solution of (29) with $\deg X > 1$. Then $\chi(O_1^X) \geq 0$, $\chi(O_2^X) \geq 0$, and the commutative diagram

$$
\begin{array}{ccc}
\mathcal{O}_1^X & \xrightarrow{B} & \mathcal{O}_1^X \\
\downarrow{X} & & \downarrow{X} \\
\mathcal{O}_2^X & \xrightarrow{A} & \mathcal{O}_2^X \\
\end{array}
$$

consists of minimal holomorphic maps between orbifolds. □

In particular, Theorem 3.1 implies that if A, X, B is a primitive solution of (29) with $\deg X > 1$, then A is necessarily a generalized Lattès map, and X satisfies the condition $\chi(O_2^X) \geq 0$, implying strong restrictions on X (see [19]).

3.2. Elementary transformations. Let A be a rational function. For any decomposition $A = V \circ U$, where U and V are rational functions, the rational function $\tilde{A} = U \circ V$ is called an elementary transformation of A, and rational functions A and B are called equivalent if there exists a chain of elementary transformations between A and B. For a rational function A we denote its equivalence class by $[A]$. Since for any Möbius transformation W the equality

$$A = (A \circ W) \circ W^{-1}$$

holds, each equivalence class $[A]$ is a union of conjugacy classes. Moreover, an equivalence class $[F]$ contains infinitely many conjugacy classes if and only if F is a flexible Lattès map ([17]). If A is a generalized Lattès map, then any elementary transformation of A is a generalized Lattès map (see [21], Theorem 4.1), implying that any $B \sim A$ is a generalized Lattès map.

The connection between the relation \sim and semiconjugacy is straightforward. Namely, for \tilde{A} and A as above the diagrams

$$
\begin{array}{ccc}
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1 \\
\downarrow{U} & & \downarrow{U} \\
\mathbb{CP}^1 & \xrightarrow{\tilde{A}} & \mathbb{CP}^1 \\
\end{array}
\quad \quad \quad
\begin{array}{ccc}
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1 \\
\downarrow{V} & & \downarrow{V} \\
\mathbb{CP}^1 & \xrightarrow{\tilde{A}} & \mathbb{CP}^1 \\
\end{array}
$$
commute, implying inductively that if $A \sim \tilde{A}$, then A is semiconjugate to \tilde{A}, and \tilde{A} is semiconjugate to A. Moreover, the following statement, obtained by a direct calculation, is true (see [21], Lemma 3.1).

Lemma 3.2. Let

$$A \to A_1 \to A_2 \to \cdots \to A_s$$

be a chain of elementary transformations, and $U_i, V_i, 1 \leq i \leq s$, rational functions such that

$$A = V_1 \circ U_1, \quad A_i = U_i \circ V_i, \quad 1 \leq i \leq s,$$

and

$$U_i \circ V_i = V_{i+1} \circ U_{i+1}, \quad 1 \leq i \leq s - 1.$$

Then the functions

$$U = U_s \circ U_{s-1} \circ \cdots \circ U_1, \quad V = V_1 \circ \cdots \circ V_{s-1} \circ V_s$$

make the diagram

\[
\begin{array}{ccc}
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1 \\
\downarrow U & & \downarrow U \\
\mathbb{CP}^1 & \xrightarrow{A_s} & \mathbb{CP}^1 \\
\downarrow V & & \downarrow V \\
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1,
\end{array}
\]

commutative and satisfy the equalities

$$V \circ U = A^s, \quad U \circ V = A^s.$$

□

Non-primitive solutions of (29) reduce to primitive ones by chains of elementary transformation (see [15] and [21] for more detail). Below we only need the following statement.

Proposition 3.3. If A, X, B is a solution of (29) and A is not a generalized Lattès map, then $B \sim A$ and there exists a rational function Y such that the diagram

\[
\begin{array}{ccc}
\mathbb{CP}^1 & \xrightarrow{B} & \mathbb{CP}^1 \\
\downarrow X & & \downarrow X \\
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1 \\
\downarrow Y & & \downarrow Y \\
\mathbb{CP}^1 & \xrightarrow{B} & \mathbb{CP}^1,
\end{array}
\]

commutes, and the equalities

$$Y \circ X = B^d, \quad X \circ Y = A^d$$

hold.
Proof. Since \(A \) is not a generalized Lattès map, it follows from Theorem 3.1 that the triple \(A, X, B \) is not a primitive solution of (29). Therefore, by the Lüroth theorem, \(\mathbb{C}(B, X) = \mathbb{C}(U_1) \) for some rational function \(U_1 \) with \(\deg U_1 > 1 \), and hence

\[
B = V_1 \circ U_1, \quad X = X_1 \circ U_1
\]

for some rational functions \(X_1, V_1 \). Since equality (29) implies the equality

\[
A \circ X_1 = X_1 \circ (U_1 \circ V_1),
\]

the triple \(A, X_1, U_1 \circ V_1 \) is also a solution of (29). Moreover, this new solution again is not primitive by Theorem 3.1, implying that there exist rational functions \(X_2, V_2, U_2 \) such that

\[
U_1 \circ V_1 = V_2 \circ U_2, \quad X_1 = X_2 \circ U_2,
\]

and

\[
A \circ X_2 = X_2 \circ (U_2 \circ V_2).
\]

Continuing in this way and taking into account that

\[
\deg X > \deg X_1 > \deg X_2 \ldots,
\]

we obtain a chain of elementary transformations between \(A \) and \(B \) and the representation \(X = U_s \circ U_{s-1} \circ \cdots \circ U_1 \) as in Lemma 3.2, so the proposition follows from this lemma. \(\square \)

4. Invariant curves

4.1. Invariant curves and semiconjugacies.

Let \(A_1, A_2 \) be rational functions. We denote by \((A_1, A_2) : (\mathbb{C}P^1)^2 \to (\mathbb{C}P^1)^2 \) the map given by the formula

\[
(z_1, z_2) \to (A(z_1), A(z_2)).
\]

We say that an irreducible algebraic curve \(C \) in \((\mathbb{C}P^1)^2\) is \((A_1, A_2)\)-invariant if \((A_1, A_2)(C) = C\), and \((A_1, A_2)\)-periodic if

\[
(A_1, A_2)^n(C) = C
\]

for some \(n \geq 1 \). Finally, we say that \(E \) is \((A_1, A_2)\)-preperiodic if \((A_1, A_2)^l(C)\) is periodic for some \(l \geq 1 \).

The simplest \((A_1, A_2)\)-invariant curves are vertical lines \(x = a \), where \(a \) is a fixed point of \(A_1 \), and horizontal lines \(y = b \), where \(b \) is a fixed point of \(A_2 \). Other invariant curves are described as follows.

Theorem 4.1. Let \(A_1, A_2 \) be rational functions of degree at least two, and \(C \) an irreducible \((A_1, A_2)\)-invariant curve that is not a vertical or horizontal line. Then the desingularization \(\tilde{C} \) of \(C \) has genus zero or one, and there exist non-constant holomorphic maps \(X_1, X_2 : \tilde{C} \to \mathbb{C}P^1 \) and \(B : \tilde{C} \to \tilde{C} \) such that the diagram

\[
\begin{array}{ccc}
\tilde{C} & \xrightarrow{B} & \tilde{C} \\
(x_1, x_2) \downarrow & & \downarrow (x_1, x_2) \\
(CP^1)^2 & \xrightarrow{(A_1, A_2)} & (CP^1)^2
\end{array}
\]

commutes and the map \(t \to (X_1(t), X_2(t)) \) is a generically one-to-one parametrization of \(C \). Finally, unless both \(A_1, A_2 \) are Lattès maps, \(\tilde{C} \) is the Riemann sphere.
Proof. Let \tilde{C} be the desingularization of C, and $\pi : \tilde{C} \to C$ the desingularization map. We set

\[X_1 = x \circ \pi, \quad X_2 = y \circ \pi, \]

where $x, y : (\mathbb{P}^1)^2 \to \mathbb{P}^1$ are the projections on the first and on the second coordinate correspondingly. Since the map $(X_1, X_2) : \tilde{C} \to C$ is a holomorphic bijection off a finite set of points, the map $(A_1, A_2) : C \to C$ lifts to a holomorphic map $B : \tilde{C} \to \tilde{C}$ which makes diagram (30) commutative. Furthermore, since C is not a vertical or horizontal line, X_1 and X_2 are non-constant, implying by (30) that $\deg A_1 = \deg A_2 = \deg B$.

In particular, $\deg B \geq 2$. It follows now from the Riemann-Hurwitz formula

\[2g(\tilde{C}) - 2 = (2g(\tilde{C}) - 2)\deg B + \sum_{P \in \mathbb{R}} (e_P - 1) \]

that $g(\tilde{C}) \leq 1$. Finally, if $g(\tilde{C}) = 1$, then A_1 and A_2 are Lattès maps. Indeed, in this case $\tilde{C} = \mathbb{C}/\Lambda$ for some lattice Λ, and $B : \mathbb{C}/\Lambda \to \mathbb{C}/\Lambda$ is an affine map. Thus, diagram (30) consists of a pair of diagrams of the form (26). □

Remark 4.2. Note that Theorem 4.1 implies in particular that if $\deg A_1 \neq \deg A_2$, then any (A_1, A_2)-invariant curve is a vertical or horizontal line.

The following lemma relates periodic curves for pairs of semiconjugate maps.

Lemma 4.3. Let $A_1, A_2, B_1, B_2, X_1, X_2$ be non-constant rational functions such that the diagram

\[(\mathbb{C}P^1)^2 \xrightarrow{(B_1, B_2)} (\mathbb{C}P^1)^2 \xrightarrow{(X_1, X_2)} (\mathbb{C}P^1)^2 \]

\[(\mathbb{C}P^1)^2 \xrightarrow{(A_1, A_2)} (\mathbb{C}P^1)^2 \xrightarrow{(X_1, X_2)} (\mathbb{C}P^1)^2 \]

commutes. Then for any irreducible (A_1, A_2)-periodic (resp. preperiodic) curve C there exists an irreducible (B_1, B_2)-periodic (resp. preperiodic) curve C' such that $C = (X_1, X_2)(C')$.

Proof. For any irreducible curve C in $(\mathbb{C}P^1)^2$ the preimage $\mathcal{E} = (X_1, X_2)^{-1}(C)$ is a union of irreducible curves, and any irreducible component C' of \mathcal{E} satisfies

\[(X_1, X_2)(C') = C. \]

Furthermore, if C satisfies $(A_1, A_2)^{\circ n}(C) = C$, then \mathcal{E} satisfies $(B_1, B_2)^{\circ n}(\mathcal{E}) \subseteq \mathcal{E}$, implying that all components of \mathcal{E} are (B_1, B_2)-preperiodic and at least one of these components is (B_1, B_2)-periodic. Similarly, if C is (A_1, A_2)-preperiodic, then any component C' of \mathcal{E} is (B_1, B_2)-preperiodic. □

Assuming that at least one (A_1, A_2)-invariant curve C is known, Lemma 4.3 combined with Theorem 4.1 permits to reduce describing (A_1, A_2)-periodic curves for the pair of functions A_1, A_2 to describing (B, B)-periodic curves for a single function B.

Corollary 4.4. Let A_1, A_2 be rational functions of degree at least two that are not Lattès maps, and B a fixed irreducible (A_1, A_2)-invariant curve that is not a vertical or horizontal line. Then there exist rational functions X_1, X_2, B such that diagram (5) commutes, the map $t \to (X_1(t), X_2(t))$ is a parametrization of B, and any irreducible (A_1, A_2)-periodic (resp. preperiodic) curve C is the (X_1, X_2)-image of some irreducible (B, B)-periodic (resp. preperiodic) curve C'.

4.2. Proofs of Theorem 1.1 and Theorem 1.2. Proof of Theorem 1.1. It was already mentioned in the introduction, that for any rational functions X_1, X_2, A, B that make diagram (5) commutative, the map $t \to (X_1(t), X_2(t))$ is a parametrization of some (A_1, A_2)-invariant curve \mathcal{C}.

In the other direction, assume that \mathcal{C} is an (A_1, A_2)-invariant curve. Then by Theorem 4.1 there exist rational functions X_1, X_2, B such that diagram (5) commutes and the map $t \to (X_1(t), X_2(t))$ is a parametrization of \mathcal{C}. Furthermore, since A_1 and A_2 are not generalized Lattès maps, it follows from Proposition 3.3 that there exist rational functions Y_i, $i = 1, 2$, such that the diagram

\[
\begin{array}{ccc}
(CP^1)^2 & \overset{(B, B)}{\longrightarrow} & (CP^1)^2 \\
(X_1, X_2) \downarrow & & \downarrow (X_1, X_2) \\
(CP^1)^2 & \overset{(A_1, A_2)}{\longrightarrow} & (CP^1)^2 \\
(Y_1, Y_2) \downarrow & & \downarrow (Y_1, Y_2) \\
(CP^1)^2 & \overset{(B, B)}{\longrightarrow} & (CP^1)^2 \\
(B^{(d_2-d_1)}, z) \downarrow & & \downarrow (B^{(d_2-d_1)}, z) \\
(CP^1)^2 & \overset{(B, B)}{\longrightarrow} & (CP^1)^2,
\end{array}
\]

commutes and the equalities

\[X_1 \circ Y_i = A_i^{(d_i)}, \quad Y_i \circ X_i = B^{(d_i)}, \quad i = 1, 2,\]

hold for some $d_1, d_2 \geq 1$.

Let us show that modifying Y_1 and Y_2 we may assume that $d_1 = d_2$. Suppose, say, that $d_2 \geq d_1$. Setting $d = d_2$ and completing diagram (31) to the diagram

\[
\begin{array}{ccc}
CP^1 & \overset{(B, B)}{\longrightarrow} & CP^1 \\
(X_1, X_2) \downarrow & & \downarrow (X_1, X_2) \\
(CP^1)^2 & \overset{(A_1, A_2)}{\longrightarrow} & (CP^1)^2 \\
(Y_1, Y_2) \downarrow & & \downarrow (Y_1, Y_2) \\
CP^1 & \overset{(B, B)}{\longrightarrow} & CP^1 \\
(B^{(d_2-d_1)}, z) \downarrow & & \downarrow (B^{(d_2-d_1)}, z) \\
(CP^1)^2 & \overset{(B, B)}{\longrightarrow} & (CP^1)^2,
\end{array}
\]

we see that for the rational functions

\[\bar{Y}_1 = B^{(d_2-d_1)} \circ Y_1, \quad \bar{Y}_2 = Y_2\]

diagram (31) still commutes. Moreover,

\[X_1 \circ \bar{Y}_1 = X_1 \circ B^{(d_2-d_1)} \circ Y_1 = A_1^{(d_2-d_1)} \circ X_1 \circ Y_1 = A_1^d,\]
commutes, the equalities

\[Y_i \circ X_i = B^{od}, \quad i = 1, 2. \]

\[\square \]

Proof of Theorem 1.2. If \((A_1, A_2)^{ol}(C) = C\), then by Theorem 1.1 there exist rational functions \(X_1, X_2, Y_1, Y_2, B\) such that the diagram

\[
\begin{array}{ccc}
(CP^1)^2 & \xrightarrow{(B,B)} & (CP^1)^2 \\
(X_1, X_2) & \downarrow & (X_1, X_2) \\
\end{array}
\]

(32)

\[
\begin{array}{ccc}
(CP^1)^2 & \xrightarrow{(A_1^{al}, A_2^{al})} & (CP^1)^2 \\
(Y_1, Y_2) & \downarrow & (Y_1, Y_2) \\
\end{array}
\]

\[
\begin{array}{ccc}
(CP^1)^2 & \xrightarrow{(B,B)} & (CP^1)^2 \\
\end{array}
\]

commutes, the equalities

\[X_1 \circ Y_1 = A_1^{odl}, \quad X_2 \circ Y_2 = A_2^{odl}, \]

(33)

\[Y_1 \circ X_1 = Y_2 \circ X_2 = B^{od} \]

(34)

hold for some \(d \geq 1\), and \(t \to (X_1(t), X_2(t))\) is a parametrization of \(C\). Thus, (12) and (13) hold for \(n = ld\).

On the other hand, if (12) and (13) hold, then setting

\[B = Y_1 \circ X_1 = Y_2 \circ X_2 \]

we see that the diagram

\[
\begin{array}{ccc}
(CP^1)^2 & \xrightarrow{(B,B)} & (CP^1)^2 \\
(X_1, X_2) & \downarrow & (X_1, X_2) \\
\end{array}
\]

\[\xrightarrow{(A_1^{al}, A_2^{al})} \]

\[
\begin{array}{ccc}
CP^1 & \xrightarrow{(A_1^{al}, A_2^{al})} & CP^1 \\
\end{array}
\]

commutes, implying that the curve \(C\) parametrized by the map \(t \to (X_1(t), X_2(t))\) satisfies \((A_1, A_2)^{on}(C) = C\). This proves the first part of the theorem.

Assume now that \(C\) is an \((A_1, A_2)\)-preperiodic curve. Then there exists an \((A_1, A_2)\)-periodic curve \(C'\) of period \(l \geq 1\) such that \(C\) is contained in the preimage of \(C'\) under the map \((A_1, A_2)^{os}\) for some \(s \geq 0\). Therefore, by the already proved part of the theorem, \(C\) is a component of the curve

\[(Y_1 \circ A_1^{os})(x) - (Y_2 \circ A_2^{os})(y) = 0 \]

for some rational functions \(Y_1, Y_2\) satisfying (32), (33), (34). Moreover, since \((A_1, A_2)^{ol}(C') = C'\), the curve \(C\) is also a component of the curve

\[Y'_1(x) - Y'_2(y) = 0, \]

where

\[Y'_1 = Y_1 \circ A_1^{ol}, \quad Y'_2 = Y_2 \circ A_2^{ol}. \]

Finally, \(Y'_1, Y'_2\) satisfy the required conditions (12) and (13) since

\[X_i \circ Y'_i = A_i^{odl} \circ A_i^{osl} = A_i^{odsl}, \quad i = 1, 2, \]
and
\[Y_i' \circ X_i = Y_i \circ A_i^{\text{ols}} \circ X_i = Y_i \circ X_i \circ B_i^{\text{os}} = B_i^{\text{od}} \circ B_i^{\text{os}} = B_i^{\text{ods}}, \quad i = 1, 2. \]

Lastly, if (12) and (13) hold, then for \(B \) defined by formula (35) the diagram
\[
\begin{array}{ccc}
(CP^1)^2 & \xrightarrow{(A_i^{\text{on}}, A_j^{\text{on}})} & (CP^1)^2 \\
(Y_1, Y_2) & \downarrow & (Y_1, Y_2) \\
CP^1 & \xrightarrow{(B, B)} & CP^1
\end{array}
\]
commutes. Therefore, curve (11) satisfies \((A_1, A_2)^{\text{on}}(E) \subseteq E\), implying that every component of \(E \) is preperiodic. \(\square \)

Remark 4.5. Note that for every \((A_1, A_2)\)-invariant curve \(C \) we can find rational functions \(X_1, X_2, Y_1, Y_2, B \) satisfying conditions 1)-3) of Theorem 1.1 and the additional condition that the parametrization \(t \to (X_1(t), X_2(t)) \) of \(C \) is generically one-to-one, or equivalently that
\[
(36) \quad C(X_1, X_2) = C(z). \]

Indeed, the functions \(Y_1 \) and \(Y_2 \) in the proof of the necessity are constructed from the functions \(X_1 \) and \(X_2 \) from Theorem 4.1, and the latter functions satisfy (36). On the other hand, arbitrary rational functions satisfying system (9), (10) and making diagram (8) commutative do not necessarily satisfy condition (36). A similar remark holds for Theorem 1.2.

4.3. **Case \(A_1 = A_2 \).** In the case \(A_1 = A_2 \), Theorem 1.1 and Theorem 1.2 can be modified as follows.

Theorem 4.6. Let \(A \) be a rational function of degree at least two that is not a generalized Lattès map, and \(C \) an irreducible algebraic curve in \((CP^1)^2\) that is not a vertical or horizontal line. Then \(C \) is \((A, A)\)-invariant if and only if there exist rational functions \(U_1, U_2, V_1, V_2 \) commuting with \(A \) such that the equalities
\[
(37) \quad U_1 \circ V_1 = U_2 \circ V_2 = A^{\text{on}},
\]
\[
(38) \quad V_1 \circ U_1 = V_2 \circ U_2 = A^{\text{on}}
\]
hold, and the map \(t \to (U_1(t), U_2(t)) \) is a parametrization of \(C \).

Proof. If \(C \) is \((A, A)\)-invariant, then applying Theorem 1.1 we can find rational functions \(X_1, X_2, Y_1, Y_2, B \) such that the diagram
\[
\begin{array}{ccc}
(CP^1)^2 & \xrightarrow{(B, B)} & (CP^1)^2 \\
(X_1, X_2) & \downarrow & (X_1, X_2) \\
CP^1 & \xrightarrow{(A, A)} & CP^1
\end{array}
\]
commutes, the equalities
\[
X_i \circ Y_i = A_i^{\text{od}}, \quad Y_i \circ X_i = B_i^{\text{od}}, \quad i = 1, 2,
\]
and
\[
Y_i' \circ X_i = Y_i \circ A_i^{\text{ols}} \circ X_i = Y_i \circ X_i \circ B_i^{\text{os}} = B_i^{\text{od}} \circ B_i^{\text{os}} = B_i^{\text{ods}}, \quad i = 1, 2.
\]
hold for some \(d \geq 1 \), and \(t \to (X_1(t), X_2(t)) \) is a parametrization of \(\mathcal{C} \). Completing now diagram (39) to the diagram

\[
\begin{array}{ccc}
\text{(CP)}^2 & \xrightarrow{(A,A)} & \text{(CP)}^2 \\
\downarrow (Y_1,Y_1) & & \downarrow (Y_1,Y_1) \\
\text{CP}^1 & \xrightarrow{(B,B)} & \text{CP}^1 \\
\downarrow (X_1,X_2) & & \downarrow (X_1,X_2) \\
\end{array}
\]

and setting

\[U_1 = X_1 \circ Y_1, \quad U_2 = X_2 \circ Y_1, \quad V_1 = X_1 \circ Y_1, \quad V_2 = X_1 \circ Y_2, \]

we see that the diagram

\[
\begin{array}{ccc}
\text{(CP)}^2 & \xrightarrow{(A,A)} & \text{(CP)}^2 \\
\downarrow (U_1,U_2) & & \downarrow (U_1,U_2) \\
\text{(CP)}^2 & \xrightarrow{(A,A)} & \text{(CP)}^2 \\
\downarrow (V_1,V_2) & & \downarrow (V_1,V_2) \\
\end{array}
\]

commutes, implying that \(U_1, U_2, V_1, V_2 \) commute with \(A \).

Furthermore, we have:

\[V_i \circ U_i = X_1 \circ Y_i \circ X_1 \circ Y_1 = X_1 \circ B^{od} \circ Y_1 = A^{od} \circ X_1 \circ Y_1 = A^{od}, \quad i = 1, 2, \]

and

\[U_i \circ V_i = X_i \circ Y_1 \circ X_i \circ Y_1 = X_i \circ B^{od} \circ Y_1 = A^{od} \circ X_i \circ Y_i = A^{od}, \quad i = 1, 2, \]

implying that equalities (37) and (38) hold for \(n = 2d \). Finally, since obviously \((Y_1,Y_1)(\Delta) = \Delta \), the equality

\[(U_1,U_2)(\Delta) = (X_1,X_2)(\Delta) = \mathcal{C} \]

holds, that is \(t \to (U_1(t), U_2(t)) \) is a parametrization of \(\mathcal{C} \). This proves the necessity.

The sufficiency follows merely from the commutativity of the upper part of diagram (41).

\[\square \]

Remark 4.7. Note that for \(A_2 \neq A_1 \) it is still possible to construct an analogue of diagram (40) changing \((Y_1,Y_1) \) to \((Y_1,Y_2) \) and \((X_1,X_1) \) to \((X_1,X_2) \). Nevertheless, equality (42) does not hold anymore since \((Y_1,Y_2)(\Delta) \neq \Delta \).
Theorem 4.8. Let A be a rational function of degree at least two that is not a
generalized Lattès map, and C an irreducible algebraic curve in $(\mathbb{CP}^1)^2$ that is not
a vertical or horizontal line. Then C is (A,A)-periodic if and only if there exist an
integer $n \geq 1$ and rational functions U_1, U_2, V_1, V_2 commuting with some iterate
of A such that the equalities

\begin{align}
U_1 \circ V_1 &= U_2 \circ V_2 = A^{\circ n}, \\
V_1 \circ U_1 &= V_2 \circ U_2 = A^{\circ n}
\end{align}

hold, and the map $t \to (U_1(t), U_2(t))$ is a parametrization of C. On the other hand,C is (A,A)-preperiodic if and only if there exist rational functions as above such
that C is a component of the curve $V_1(x) - V_2(y) = 0$.

Proof. The first part of the theorem follows directly from Theorem 4.6, and the
sufficiency in the second part follows from the commutativity of the diagram

\[
\begin{array}{ccc}
\mathbb{CP}^1 & \xrightarrow{(A^{\circ n}, A^{\circ n})} & \mathbb{CP}^1 \\
(V_1, V_2) \downarrow & & \downarrow (V_1, V_2) \\
\mathbb{CP}^1 & \xrightarrow{(A^{\circ n}, A^{\circ n})} & \mathbb{CP}^1.
\end{array}
\]

To prove the necessity, we observe first that, in the notation of the proof of
Theorem 4.6, the invariant curve $C = (X_1, X_2)(\Delta)$ is a component of the curve
$\mathcal{R} : V_1(x) - V_2(y) = 0$.

Indeed, since the equality

\[Y_1 \circ X_1 = Y_2 \circ X_2\]

implies that C is a component of the curve $(Y_1, Y_2)^{-1}(\Delta)$, defined by the equation

\[Y_1(x) - Y_2(y) = 0,
\]

it follows from

\[\Delta \subseteq (X_1, X_1)^{-1}(\Delta)\]

that C is a component of the curve $\mathcal{R} = (V_1, V_2)^{-1}(\Delta)$.

The above remark implies that if C is (A, A)-preperiodic, then C is a component
of the curve

\[(V_1 \circ A^{\circ s})(x) - (V_2 \circ A^{\circ s})(y) = 0
\]

for some $s \geq 0$ and V_1, V_2, which commute with $A^{\circ s}, e \geq 1$, and satisfy (43), (44)
for $n = e$. To finish the proof we can use an argument similar to the one used in
the proof of Theorem 1.2. Namely, we observe that C is a component of the curve

\[V_1'(x) - V_2'(y) = 0,
\]

where

\[V_1' = V_1 \circ A^{\circ s}, \quad V_2' = V_2 \circ A^{\circ s}.
\]

Moreover, V_1' and V_2' commute with $A^{\circ s}$ and satisfy

\[U_i \circ V_i' = A^{\circ s^2}, \quad i = 1, 2,
\]

\[V_i' \circ U_i = V_i \circ A^{\circ s} \circ U_i = A^{\circ s} \circ V_i \circ U_i = A^{\circ s} \circ A^{\circ s} = A^{\circ s^2}, \quad i = 1, 2. \quad \Box\]
Remark 4.9. Note that since the functions U_1, U_2, V_1, V_2 in Theorem 4.6 and Theorem 4.8 commute with some iterate of A, and A is not special, it follows from the Ritt theorem about commuting rational functions (see [25]) that each of the functions U_1, U_2, V_1, V_2 has a common iterate with A.

4.4. Proof of Theorem 1.3. We start by proving the following statement.

Lemma 4.10. Let U, V, X be rational functions such that $X = U \circ V$. Then $O^U_2 \preceq O^X_2$. Moreover, if $O^U_2 = O^X_2$, then $O^V_2 \preceq O^U_1$.

Proof. Since $X : O^X_1 \rightarrow O^X_2$ is a covering map, it follows from Corollary 2.3 that

\begin{equation}
U : U^*O^X_2 \rightarrow O^X_2, \quad V : O^X_1 \rightarrow U^*O^X_2
\end{equation}

are covering maps. Therefore, since

\begin{equation}
U : O^U_1 \rightarrow O^U_2, \quad V : O^V_1 \rightarrow O^V_2
\end{equation}

are also covering maps, the relation $O^U_2 \preceq O^X_2$ holds by (24). Moreover, in addition, we see that

\begin{equation}
O^U_1 \preceq U^*O^X_2, \quad O^V_2 \preceq U^*O^X_2.
\end{equation}

It follows from formula (19) applied to the first covering in (45) that

$$\chi(U^*O^X_2) = \deg U \cdot \chi(O^X_2).$$

Since, on the other hand,

$$\chi(O^U_1) = \deg U \cdot \chi(O^U_1),$$

we see that if $O^U_2 = O^X_2$, then

\begin{equation}
\chi(O^U_1) = \chi(U^*O^X_2).
\end{equation}

Since for any pair of orbifolds satisfying $\tilde{O} \preceq O$ the equality $\chi(\tilde{O}) = \chi(O)$ holds if and only if $\tilde{O} = O$, equality (47) and the first relation in (46) imply that $O^U_1 = U^*O^X_2$. It follows now from the second relation in (46) that $O^V_2 \preceq O^U_1$. □

The following statement is “the orbifold counterpart” of Theorem 1.3.

Theorem 4.11. Let A be a non-special rational function of degree at least two, and B a rational function that makes the diagram

\begin{equation}
\xymatrix{ \mathbb{CP}^1 \ar[r]^B & \mathbb{CP}^1 \ar[d]^{\theta_{O^B_2}} \ar[u]_{\theta_{O^B_1}} \ar[d]^{\theta_{O^B_2}} \\
\mathbb{CP}^1 \ar[r]^A & \mathbb{CP}^1.}
\end{equation}

commutative. Then the orbifold O^B_0 is the non-ramified sphere.
Proof. Let us complete diagram (48) to the diagram

\[
\begin{array}{ccc}
\tilde{O}_0^B & \xrightarrow{C} & \tilde{O}_B^B \\
\downarrow{\theta_0^B} & & \downarrow{\theta_0^B} \\
\mathbb{CP}^1 & \xrightarrow{B} & \mathbb{CP}^1 \\
\downarrow{\theta_0^A} & & \downarrow{\theta_0^A} \\
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1,
\end{array}
\]

and set

\[X = \theta_0^A \circ \theta_0^B.\]

First, we observe that \(\tilde{O}_0^B = \mathbb{CP}^1\), implying that the functions \(\theta_0^B\) and \(X\) are rational. Indeed, otherwise \(\tilde{O}_0^B = \mathbb{C}\), the map \(C\) is affine, and \(\theta_0^B\) and \(X\) are doubly periodic meromorphic function with respect to some lattice \(\Lambda\). Therefore, in this case diagram (26) commutes for \(ax + b = C\) and some holomorphic function \(\Theta\), in contradiction with the assumption that \(A\) is not a Lattès map. Secondly, we observe that for any orbifold \(O\), \(\chi(O) > 0\), the orbifold \(O_1^{\theta_0}\) is non-ramified, while the orbifold \(O_2^{\theta_0}\) coincides with \(O\). In particular,

\[(49) \quad O_2^{\theta_0^A} = O_0^A.
\]

Since the quadruples \(A, \theta_0^A, \theta_0^A, B\) and \(B, \theta_0^B, \theta_0^B, C\) are good solutions of (25) by Theorem 2.8, the quadruple \(A, X, X, C\) is also a good solution of (25) by Theorem 2.6, implying that \(A : O_2^X \to O_2^X\) is a minimal holomorphic map by Theorem 2.4. Therefore,

\[(50) \quad O_2^X \preceq O_0^A,
\]

by Theorem 2.7. Since

\[O_2^{\theta_0^A} \preceq O_2^X
\]

by the first part of Lemma 4.10, it follows from equalities (49) and (50) that

\[(51) \quad O_2^X = O_0^A.
\]

Finally, it follows from (51) by the second part of Lemma 4.10 that

\[O_2^{\theta_0^B} = O_0^{\theta_0^A}.
\]

Since the orbifold \(O_1^{\theta_0^A}\) is non-ramified and \(O_2^{\theta_0^B} = O_0^B\), we conclude that the orbifold \(O_0^B\) is non-ramified. \(\square\)

Proof of Theorem 1.3. To prove Theorem 1.3, we apply Theorem 4.11 to \(A_1\) and \(A_2\). This gives us the commutative diagram

\[
\begin{array}{ccc}
\mathbb{CP}^1 & \xrightarrow{(B_1,B_2)} & \mathbb{CP}^1 \\
\downarrow{(\theta_0^A_1, \theta_0^A_2)} & & \downarrow{(\theta_0^A_1, \theta_0^A_2)} \\
\mathbb{CP}^1 & \xrightarrow{(A_1,A_2)} & \mathbb{CP}^1,
\end{array}
\]
where B_1, B_2 are not generalized Lattès map, and the use of Lemma 4.3 finishes the proof.

Remark 4.12. Note that in fact we proved a more precise version of Theorem 1.3 with the concrete representation

$$X_1 = \theta_{O_1^A}, \quad X_2 = \theta_{O_2^A},$$

suitable for applications.

5. **Finiteness theorems**

5.1. **Formulation of results.** In this section, we prove several results, which can be considered as quantitative analogues of results of the paper [22] in a slightly simplified setting. As an application, we deduce Theorem 1.4 and Theorem 1.5.

The first result is following.

Theorem 5.1. There exists a function $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ with the following property. For any non-special rational function A of degree at least two and rational function X such that for every $d \geq 1$ the algebraic curve

$$A^{ad}(x) - X(y) = 0$$

has a factor of genus zero, there exists $N \leq \varphi(\deg A, \deg X)$ such that the equality

$$A^{aN} \circ \theta_{O_0^A} = X \circ R$$

holds for some rational function R.

Note that the assumption of Theorem 5.1 holds for any pair of rational functions A and X satisfying (4) for some rational function B. Indeed, it follows from (4) that

$$A^{ad} \circ X = X \circ B^{ad}, \quad d \geq 1,$$

implying that the curve (52) has a component of genus zero with the parametrization $t \to (X(t), B^{ad}(t))$. Similarly, the assumption of Theorem 5.1 holds for any A and X satisfying (14). However, in this case Theorem 1.5 provides a more precise conclusion which permits to get rid of the function $\theta_{O_0^A}$ in (53). On the other hand, if A is not a generalized Lattès map, then $\theta_{O_0^A}$ reduces to the identical map even in the more general setting of Theorem 5.1.

We say that two rational functions W_1 and W_2 are μ-equivalent if there exists a Möbius transformation μ such that

$$W_1 = W_2 \circ \mu.$$

The next result is a weaker form of Theorem 5.1, which holds, however, for all functions A including special, for which the function $\theta_{O_0^A}$ is transcendental or is not defined.

Theorem 5.2. There exists a function $\chi : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ with the following property. For any rational functions A of degree $m \geq 2$ and integer $n \geq 1$, there exist at most $\chi(m, n)$ classes of μ-equivalence of rational functions X of degree n such that for every $d \geq 1$ the algebraic curve

$$A^{ad}(x) - X(y) = 0$$

has a factor of genus zero.
Let A be a rational function. We denote by $D = D[A, N, W_d, h_d]$ a commutative diagram of the form
\[
\begin{array}{cccc}
\mathbb{C}P^1 & \mathbb{C}P^1 & \cdots & \mathbb{C}P^1 \\
W_N & W_{N-1} & \cdots & W_1 \downarrow W_0 \\
\mathbb{C}P^1 & \mathbb{C}P^1 & \cdots & \mathbb{C}P^1
\end{array}
\]
(54)
where $h_d, W_d, 1 \leq d \leq N,$ and W_0 are rational functions. We say that D is good if for any $d_1, d_2, 0 \leq d_1 < d_2 \leq N,$ the functions
\[
W_{d_1}, h_{d_1+1} \circ h_{d_1+2} \circ \cdots \circ h_{d_2}, A^{\circ(d_2-d_1)}, W_{d_2}
\]
form a good solution of equation (25). Note that if D is good, then $\deg W_d = \deg W_0, d \geq 1,$
by Lemma 2.5. For a good diagram $D,$ we set
\[
m_D = \deg A, \quad n_D = \deg W_0.
\]
We call the number N the length of $D.$ For a diagram $D = D[A, N, W_d, h_d]$ and $j_1, j_2, 0 \leq j_1 < j_2 \leq N,$ we denote by D_{j_1,j_2} the sub-diagram of D bounded by the arrows W_{j_1} and $W_{j_2}.$
Let $r, 1 \leq r \leq N,$ be an integer. We say that $D = D[A, N, W_d, h_d]$ is r-periodic if for every $j, 0 \leq j \leq N - r,$ the equality
\[
W_{j+r} = W_j \circ \alpha_j
\]
holds for some Möbius transformation $\alpha_j.$ We say that D is periodic if it is r-periodic for some $r, 1 \leq r \leq N.$ Finally, we say that D is preperiodic if for some $N_0, 0 \leq N_0 \leq N - 1,$ the sub-diagram $D_{N_0,N}$ is periodic.

The last of the analogues of results of the paper [22] proved in this section is following.

Theorem 5.3. There exists a function $\psi : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ with the following property. Any good diagram $D = D[A, N, W_d, h_d]$ such that $m_D \geq 2$ and $N > \psi(m_D, n_D)$ is preperiodic.

5.2. **Proof of Theorem 5.3.** As in [22], we use the following result proved in [18].

Theorem 5.4. Let U be a rational function of degree $n.$ Then for any rational function V of degree m such that the curve $E_{U,V} : U(x) - V(y) = 0$ is irreducible the inequality
\[
g(E_{U,V}) > \frac{m - 84n + 168}{84}
\]
holds, unless $\chi(\mathcal{O}_2^U) \geq 0.$ \hfill \Box

We also need the following lemma, which is a particular case of Theorem 2.4 in the paper [22].
Lemma 5.5. Let R be a compact Riemann surface, $f : R \to \mathbb{CP}^1$ a holomorphic map, and \mathcal{O} an orbifold. Then

\begin{equation}
\theta_\mathcal{O} = f \circ h
\end{equation}

for some holomorphic map $h : \tilde{\mathcal{O}} \to R$ if and only if $\mathcal{O}_2^f = \mathcal{O}$.

For brevity, we call a rational function f satisfying (55) **compositional left factor** of $\theta_\mathcal{O}$. More precisely, by a compositional left factor of a holomorphic map $f : R_1 \to R_2$ between Riemann surfaces, we mean any holomorphic map $g : R' \to R_2$ between Riemann surfaces such that $f = g \circ h$ for some holomorphic map $h : R_1 \to R'$.

Lemma 5.6. There exists a function $\kappa : \mathbb{N} \to \mathbb{N}$ with the following property. For any orbifold \mathcal{O} with $\chi(\mathcal{O}) \geq 0$ there exist at most $\kappa(m)$ classes of μ-equivalence of rational functions f of degree m with $\mathcal{O}_2^f = \mathcal{O}$.

Proof. By Lemma 5.5, the equality $\mathcal{O}_2^f = \mathcal{O}$ implies that f is a compositional left factor of $\theta_\mathcal{O}$ (in fact, it is easy to see that the equality

$$\theta_{\mathcal{O}_2^f} = f \circ \theta_{\mathcal{O}_1^f}$$

holds). Therefore, the number of μ-equivalence classes of rational functions f of degree m with $\mathcal{O}_2^f = \mathcal{O}$ does not exceed the number of subgroups of index m in the group $\Gamma_\mathcal{O}$. Since $\Gamma_\mathcal{O}$ is finitely generated, it has only finitely many subgroups of any given index. Thus, to prove the lemma we only must show that for \mathcal{O} belonging to the infinite series $\{n,n\}, n \geq 2$, and $\{2,2,n\}, n \geq 2$, the bounds for the number of classes are uniform.

It is well-known (see e.g. Corollary 2.7 in [22]) that if \mathcal{O}_2^f is defined by the conditions

$$\nu_2^f(0) = n, \quad \nu_2^f(\infty) = n,$$

then

\begin{equation}
f = z^n \circ \mu
\end{equation}

for some Möbius transformation μ, while if \mathcal{O}_2^f is defined by the conditions

$$\nu_2^f(-1) = 2, \quad \nu_2^f(1) = 2, \quad \nu_2^f(\infty) = n,$$

then either

\begin{equation}
f = \frac{1}{2} \left(z^n + \frac{1}{z^n}\right) \circ \mu,
\end{equation}

or

\begin{equation}
f = \pm T_n \circ \mu
\end{equation}

for some Möbius transformation μ. Therefore, there exists exactly one μ-equivalence class of rational functions f of degree m such that the signature of \mathcal{O}_2^f belongs to the series $\{n,n\}, n \geq 2$, and there exist at most three such classes if the signature of \mathcal{O}_2^f belongs to the series $\{2,2,n\}, n \geq 2$. \qed
Lemma 5.7. Let $D = D[A, N, W, h]$ be a diagram such that

$$C(h_d, W_d) = C(z), \quad 1 \leq d \leq N.$$

Assume that

$$W_r = W_0 \circ \mu$$

for some r, $1 \leq r \leq N$, and Möbius transformation μ. Then D is good and r-periodic.

Proof. Since (59) implies that the map

$$t \rightarrow (h_d(t), W_d(t)), \quad 1 \leq d \leq N,$$

is a generically one-to-one parametrization of some component of the curve

$$W_{d-1}(x) - A(y) = 0,$$

we see that

$$\deg W_N \leq \deg W_{N-1} \leq \cdots \leq \deg W_1 \leq \deg W_0.$$

Thus, (60) yields that

$$\deg W_r = \deg W_{r-1} = \cdots = \deg W_1 = \deg W_0,$$

implying by Lemma 2.5 and Theorem 2.6 that the sub-diagram $D_{0, r}$ is good. In particular, the fiber product of W_0 and A has a unique component and the functions W_1, h_1 are defined by W_0 in a unique way up to natural isomorphisms. It follows now from (60) that the fiber product of W_r and A also has a unique component

$$W_{r+1} = W_1 \circ \mu'$$

for some Möbius transformation μ'. In particular, the sub-diagram $D_{0, r+1}$ is good. Continuing arguing in this way, we conclude that D is good and r-periodic. □

Proof of Theorem 5.3. We first prove the theorem under the additional assumption

$$\chi(O_2^{W_d}) \geq 0, \quad 0 \leq d \leq N.$$

For a good diagram $D = D[A, N, W, h]$ define $k = k(D)$ as the number of distinct orbifolds among the orbifolds $O_2^{W_d}$, $0 \leq d \leq N$. To prove the theorem it is enough to show that there exists a function $C = C(m_D)$ such that

$$k(D) \leq C(m_D).$$

Indeed, if (63) holds, then Lemma 5.6 and the box principle imply that whenever

$$N > \psi = C(m_D)k(m_D),$$

there exist j_1, j_2, $0 \leq j_1 < j_2 \leq N$, such that W_{j_2} and W_{j_1} are μ-equivalent. Since equalities (59) hold by Lemma 2.5, this implies by Lemma 5.7 that the sub-diagram $D_{j_1, N}$ is $(j_2 - j_1)$-periodic.

To prove (63) it is enough to bound in terms of m_D the number of distinct sets among the sets $c(O_2^{W_d})$, $0 \leq d \leq N$, and the number of distinct signatures among the signatures $\nu(O_2^{W_d})$, $0 < d < N$. Since

$$A : O_2^{W_{d+1}} \rightarrow O_2^{W_d}, \quad 0 \leq d \leq N - 1,$$

is a minimal holomorphic map between orbifolds by Theorem 2.4, it follows from Lemma 2.9 that if $m_D > 4$, then every set $c(O_2^{W_d})$, $0 \leq d \leq N - 1$, is a subset of the
set \(c(O_2^d)\). Since a rational function of degree \(m\) has at most \(2m - 2\) critical values, this implies that the number of distinct sets among the sets \(c(O_2^{W_d}), 0 \leq d \leq N\), is bounded in terms of \(m_D\). Moreover, this is also true if \(m_D \leq 4\). Indeed, the inequality \(m_D \geq 2\) implies the inequality \(m_D^3 > 4\), and hence every set \(c(O_2^{W_d}), 0 \leq d \leq N - 3\), is a subset of the set \(c(A^{53})\), since

\[
A^{53} : O_2^{W_{d+3}} \to O_2^{W_d}, \quad 0 \leq d \leq N - 3,
\]

also are minimal holomorphic maps. Finally, possible signatures of the orbifolds \(O_2^{W_d}, 0 \leq d \leq N\), are contained in the lists (22), (23), and by formulas (56), (57), (58), if \(\nu(O_2^{W_d}) = \{n, n\}, n \geq 2\), then \(n = n_D\), while if \(\nu(O_2^{W_d}) = \{2, 2, n\}, n \geq 2\), then either \(n = n_D\) or \(n = n_D/2\). Thus, the number of distinct signatures among the signatures \(\nu(O_2^{W_d}), d \geq 0\), does not exceed ten.

The proof of the theorem in the general case reduces to the case where (62) is satisfied. Indeed, since the commutativity of diagram (54) implies that the curves

\[A^{\circ d}(x) - W_0(y) = 0, \quad 1 \leq d \leq N,\]

have genus zero, applying Theorem 5.4 for \(U = W_0\) and \(V = A^{\circ N}\), we see that whenever

\[m_D^N > 84(n_D - 2)\]

the inequality \(\chi(O_2^{W_0}) \geq 0\) holds. More generally, setting \(U = W_i, 0 \leq i \leq N_0\), and \(V = A^{\circ (N - i)}\), we see that whenever

\[m_D^{N - N_0} > 84(n_D - 2), \quad N_0 \geq 0,
\]

the inequalities

\[\chi(O_2^{W_i}) \geq 0, \quad 0 \leq d \leq N_0,
\]

hold. Therefore, if

\[N > \psi = \log_{m_D}(84(n_D - 2)) + C(m_D)\kappa(m_D) + 1,
\]

then the inequalities

\[\chi(O_2^{W_i}) \geq 0, \quad 0 \leq d \leq C(m_D)\kappa(m_D) + 1,
\]

hold. By the already proved part of the theorem, we conclude that there exist \(j_1, j_2, 0 \leq j_1 < j_2 \leq C(m_D)\kappa(m_D) + 1\), such that \(W_{j_2}\) and \(W_{j_1}\) are \(\mu\)-equivalent, implying as above that \(D\) is preperiodic.

\[\square\]

5.3. **Proof of Theorem 5.1, Theorem 5.2, and Theorem 1.5.** Proof of Theorem 5.1. Since for any holomorphic map \(f : R \to R'\) between compact Riemann surfaces the inequality \(g(R) \geq g(R')\) holds, it follows from the universality property of the fiber product that if for every \(d \geq 1\) curve (52) has a factor of genus zero, then for every \(N \geq 1\) there exists a diagram \(D\) of the form (54) such that \(W_0 = X\) and the conditions (59), (61) hold.

Assume that for some \(j_1, j_2, 0 \leq j_1 < j_2 \leq N\), the condition

\[\deg W_{j_2} = \cdots = \deg W_{j_1+1} = \deg W_{j_1} \geq 2
\]

holds. Then we conclude as in Lemma 5.7 that the sub-diagram \(D_{j_1, j_2}\) is good, and applying Theorem 5.3 to \(D_{j_1, j_2}\) we see that either there exist \(j_1, j_2, d_1 \leq j_1 < j_2 \leq d_2\) such that \(W_{j_2}\) and \(W_{j_1}\) are \(\mu\)-equivalent, or

\[d_1 - d_2 \leq \psi(\deg A, \deg W_{d_1}),
\]
implying that
\begin{equation}
\label{eq:65}
d_1 - d_2 \leq \psi(\deg A, \deg X),
\end{equation}

since the function in the right part of \eqref{eq:64} is increasing in the argument \(n_D \). It follows now from \eqref{eq:61} and \eqref{eq:65} that whenever
\begin{equation}
\label{eq:66}
N > \varphi(\deg A, \deg X) = \psi(\deg A, \deg X) \cdot (\deg X - 1) + 1,
\end{equation}
either
\begin{equation}
\label{eq:67}
\deg W_N = 1,
\end{equation}
or there exist a Möbius transformation \(\mu \) and integers \(j_1, j_2, 1 \leq j_1 < j_2 \leq N \), such that
\begin{equation}
\label{eq:68}
W_{j_2} = W_{j_1} \circ \mu
\end{equation}
and
\begin{equation}
\label{eq:69}
\deg W_{j_2} = \deg W_{j_1} \geq 2.
\end{equation}

In the first case, the function
\[R_1 = h_1 \circ h_2 \circ \cdots \circ h_N \circ W_N^{-1} \]
satisfies
\begin{equation}
\label{eq:70}
A^\circ N = X \circ R_1,
\end{equation}
implying that
\[A^\circ N \circ \theta_{O^A_0} = X \circ (R_1 \circ \theta_{O^A_0}). \]
In the second case, the equality
\begin{equation}
\label{eq:71}
A^{\circ j_1} \circ W_{j_1} = X \circ R_2
\end{equation}
holds for the function
\[R_2 = h_1 \circ h_2 \circ \cdots \circ h_{j_1}. \]
Furthermore, since \(D_{j_1, j_2} \) is good, it follows from \eqref{eq:68} by Theorem 2.4 that
\[A^{\circ (j_2 - j_1)} : O_2^{W_{j_1}} \rightarrow O_2^{W_{j_1}} \]
is a minimal holomorphic map, and hence
\begin{equation}
\label{eq:72}
O_2^{W_{j_1}} \preceq O^A_0,
\end{equation}
by Theorem 2.7. It follows now from Lemma 5.5 that the equality
\[\theta_{O^A_0} = W_{j_1} \circ T \]
holds for some rational function \(T \), implying by \eqref{eq:71} that
\[A^{\circ j_1} \circ \theta_{O^A_0} = X \circ (R_2 \circ T). \]

\textbf{Proof of Theorem 5.2.} We recall that if \(R \) is a compact Riemann surface and \(f : R \rightarrow \mathbb{CP}^1 \) is a holomorphic map, then functional decompositions \(f = U \circ V \), where \(V : R \rightarrow R' \) and \(U : R' \rightarrow \mathbb{CP}^1 \) are holomorphic maps between compact Riemann surfaces, considered up to the equivalence
\[U \rightarrow U \circ \mu, \quad V \rightarrow \mu^{-1} \circ V, \quad \mu \in \text{Aut}(R'). \]
are in a one-to-one correspondence with imprimitivity systems of the monodromy group of \(f \). Thus, Theorem 5.1 implies that for non-special \(A \) the number of \(\mu \)-equivalence classes of rational functions \(X \) of degree \(m \) such that for every \(d \geq 1 \) the algebraic curve (52) has a factor of genus zero is bounded by the number of imprimitivity systems in the monodromy group of the function \(A^N \circ \theta_{O_A^0} \). In turn, this number is bounded in terms of \(m \) and \(n \).

Assume now that \(A \) is a Lattès map. In this case, it is still true that if \(N \) satisfies (66), then either conditions (67) and (70), or conditions (71) and (72) hold. Moreover, (72) implies that

\[
\chi(O_{W_{j1}}) \geq \chi(O_A^0) = 0.
\]

Since

\[
\deg W_{j1} \leq \deg W_0 = n,
\]

it follows now from Lemma 5.6 that the considered number of \(\mu \)-equivalence classes is bounded by the total number of imprimitivity systems in the monodromy groups of a finite number of rational functions of the form \(A^N \circ W \), where \(\deg W \leq n \).

Finally, by Theorem 3.6 of [22], if \(A \) is conjugate to \(z^m \), then any \(X \) satisfying the conditions of the theorem has the form \(X = z^n \circ \mu \) for some \(\mu \in Aut(\mathbb{C}P^1) \), while if \(A \) is conjugate to \(\pm T \), then either \(X = \pm T_n \circ \mu \), or

\[
X = \frac{1}{2} \left(\frac{z^{n/2}}{z^{n/2}} + \frac{1}{z^{n/2}} \right) \circ \mu,
\]

for some \(\mu \in Aut(\mathbb{C}P^1) \). Thus, the theorem is true also in this case. \(\square \)

Proof of Theorem 1.5. It follows from equality (14) that the map

\[
t \to (A^{o(N-1)}(t), R(t))
\]

is a parametrization of some irreducible component of the curve

\[
A(x) - X(y) = 0.
\]

This parametrization is not necessary one-to-one. However, we can find a parametrization \(W_1, h_1 \) such that \(\mathbb{C}(W_1, h_1) = \mathbb{C}(z) \). Moreover, the functions \(W_1, h_1 \) satisfy the equalities

\[
A^{o(N-1)}(t) = W_1 \circ H_1, \quad R = h_1 \circ H_1
\]

for some rational function \(H_1 \). In particular, the diagram

\[
\begin{array}{ccc}
\mathbb{C}P^1 & \overset{H_1}{\longrightarrow} & \mathbb{C}P^1 \\
\downarrow z & & \downarrow h_1 \\
\mathbb{C}P^1 & \overset{w_1}{\longrightarrow} & \mathbb{C}P^1 \\
& \downarrow x & \\
\mathbb{C}P^1 & \overset{A^{o(N-1)}}{\longrightarrow} & \mathbb{C}P^1
\end{array}
\]

commutes. Similarly, the map

\[
t \to (A^{o(N-2)}(t), H_1(t))
\]

is a parametrization of some irreducible component of the curve

\[
A(x) - W_1(y) = 0,
\]

implying that there exist rational functions \(W_2, h_2 \) and \(H_2 \) such that the equalities

\[
A^{o(N-2)}(t) = W_2 \circ H_2, \quad H_1 = h_2 \circ H_2, \quad \mathbb{C}(W_2, h_2) = \mathbb{C}(z)
\]
INVARIANT CURVES FOR ENDOmorphisms of $\mathbb{P}^1 \times \mathbb{P}^1$ hold and the diagram

\[
\begin{array}{cccccccccc}
\mathbb{C}P^1 & \xrightarrow{h_2} & \mathbb{C}P^1 & \xrightarrow{h_2} & \mathbb{C}P^1 & \xrightarrow{h_1} & \mathbb{C}P^1 \\
\downarrow z & & \downarrow w_2 & & \downarrow w_3 & & \downarrow X \\
\mathbb{C}P^1 & \xrightarrow{A^{\alpha(N-2)}} & \mathbb{C}P^1 & \xrightarrow{A} & \mathbb{C}P^1 & \xrightarrow{A} & \mathbb{C}P^1,
\end{array}
\]

commutes. Continuing arguing in the same way, we obtain diagram (54), such that

\[W_0 = X, \quad W_N = z,\]

and the conditions (59), (61) hold.

As in the proof of Theorem 5.1 and Theorem 5.2, we see that if N satisfies (66), then either (67) and (70) hold, or there exist integers j_1, j_2, $1 \leq j_1 < j_2 \leq N$, such that (68) and (69) hold. However, the last case is impossible. Indeed, if (68) holds, then Lemma 5.7 applied to the diagram $D_{j_1, N}$ implies that

\[\deg W_N = \deg W_{j_1},\]

in contradiction with the conditions

\[\deg W_N = 1, \quad \deg W_{j_1} \geq 2. \quad \square\]

5.4. **Proof of Theorem 1.4.** Let R be a compact Riemann surface of genus zero or one, and $B : R \to R$ a holomorphic map. We denote by $G_1(B)$ the subgroup of $\text{Aut}(R)$ consisting of $\mu \in \text{Aut}(R)$ such that

\[B \circ \mu = B,\]

and by $G_2(B)$ the subgroup consisting of μ such that

\[\mu^{-1} \circ B \circ \mu = B.\]

Lemma 5.8. The group $G_1(B)$ is finite, and its order can be bounded in terms of the degree of B. The same conclusion holds for the group $G_2(B)$ whenever the degree of B is at least two.

Proof. Assume first that $g(R) = 0$, so that B is a rational function and elements of $G_1(B)$ and $G_2(B)$ are Möbius transformations. If $\deg B = 1$, then the group $G_1(B)$ is trivial. So, assume that $\deg B \geq 2$. Let us observe that any $\mu \in G_1(B)$ permutes preimages of $(B^{{\circ}k})^{-1}(z_0)$ for any $z_0 \in \mathbb{C}P^1$ and $k \geq 1$. Since each Möbius transformation is determined by specifying its value at three distinct points, this implies that the group $G_1(B)$ is finite and its order can be bounded in terms of $\deg B$. Similarly, any $\mu \in G_2(B)$ permutes B-periodic points of any given period $k \geq 1$, implying that the group $G_2(B)$ is finite.

If $g(R) = 1$, then any $\mu \in G_1(B)$ still permutes preimages of $(B^{{\circ}k})^{-1}(z_0)$, while any $\mu \in G_2(B)$ permutes B-periodic points. Furthermore, any $\mu \in \text{Aut}(R)$ is induced by a linear map

\[F = \omega z + c, \quad \omega, c \in \mathbb{C},\]

where ω is an lth root of unity with $l = 1, 2, 3, 4, \text{or} \ 6$. Such μ has $|\omega - 1|^2$ fixed points, implying that it is determined by its values at $|\omega - 1|^2 + 1$ distinct points. Thus, the same argument as above shows the finiteness of $G_1(B)$ and $G_2(B). \quad \square
Lemma 5.9. Let \(A \) be a rational function of degree at least two, \(R \) a compact Riemann surface of genus zero or one, and \(X: R \to \mathbb{CP}^1 \) a holomorphic map. Then the number of holomorphic maps \(B: R \to R \) such that the diagram

\[
\begin{array}{ccc}
R & \xrightarrow{B} & R \\
\downarrow X & & \downarrow X \\
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1
\end{array}
\]

(73)

commutes is finite and can be bounded in terms of degrees of \(A \) and \(X \).

Proof. Setting \(F = A \circ X \), we see that any two functions \(B \) and \(B' \) making diagram (73) commutative satisfy the equality

\[F = X \circ B = X \circ B'. \]

Since the number of imprimitivity systems in the monodromy group of \(F \) is finite, this implies that there exist holomorphic maps \(B_1, B_2, \ldots, B_N: R \to R \) such that the equality \(F = X \circ B \) holds for a holomorphic map \(B: R \to R \) if and only if there exists \(\mu \in \text{Aut}(R) \) such that

\[X = X \circ \mu, \quad B = \mu \circ B_j \]

for some \(j, 1 \leq j \leq N \). Moreover, the number \(N \) is bounded in terms of degrees of \(A \) and \(X \), since \(\deg F = \deg A \cdot \deg X \). Finally, the number of \(\mu \)satisfying the first equality in (74) is also bounded by Lemma 5.8. \(\square \)

Proof of Theorem 1.4. Assume first that \(A_1 \) and \(A_2 \) are not both Lattès maps. Then by Theorem 4.1 any irreducible invariant curve \(\mathcal{C} \) of bi-degree \((d_1, d_2)\) has genus zero and can be parametrized by rational functions \(X_1 \) and \(X_2 \) of degrees \(d_1 \) and \(d_2 \), correspondingly making the diagram

\[
\begin{array}{ccc}
(\mathbb{CP}^1)^2 & \xrightarrow{(B, B)} & (\mathbb{CP}^1)^2 \\
(\mathbb{CP}^1)^2 & \xrightarrow{(A_1, A_2)} & (\mathbb{CP}^1)^2
\end{array}
\]

commutative for some rational function \(B \). It follows now from Theorem 5.2 that there exist rational functions

\[X_{1,1}, X_{1,2}, \ldots, X_{1,l_1} \quad \text{and} \quad X_{2,1}, X_{2,2}, \ldots, X_{2,l_2} \]

such that any irreducible invariant curve \(\mathcal{C} \) of bi-degree \((d_1, d_2)\) is parametrized by rational functions \(X_1 \) and \(X_2 \) satisfying

\[X_1 = X_{1,j_1} \circ \mu_1, \quad X_2 = X_{2,j_2} \circ \mu_2 \]

for some \(j_1, 1 \leq j_1 \leq l_1, j_2, 1 \leq j_2 \leq l_2, \mu_1, \mu_2 \in \text{Aut} (\mathbb{CP}^1) \). Moreover, the numbers \(l_1 \) and \(l_2 \) can be bounded in terms of \(d_1, d_2 \), and \(m = \deg A_1 = \deg A_2 \). Since a parametrization \(X_1, X_2 \) of \(\mathcal{C} \) is defined in a unique way up to the change

\[(X_1, X_2) \to (X_1 \circ \alpha, X_2 \circ \alpha), \quad \alpha \in \text{Aut} (\mathbb{CP}^1), \]

this implies that to prove the theorem it is enough to show that for any fixed rational functions \(X_1, X_2 \) there exist at most finitely many \(\mu \in \text{Aut} (\mathbb{CP}^1) \) such
that the diagram

\[
\begin{array}{c}
\mathbb{CP}^1 \times \mathbb{CP}^1 \\
(X_1, X_2 \circ \mu) \\
\downarrow \\
\mathbb{CP}^1 \times \mathbb{CP}^1
\end{array} \xrightarrow{(C, C)} \begin{array}{c}
\mathbb{CP}^1 \times \mathbb{CP}^1 \\
(X_1, X_2 \circ \mu) \\
\downarrow \\
\mathbb{CP}^1 \times \mathbb{CP}^1
\end{array}
\]

(75)

commutes for some rational function \(C\), and that the number of such \(\mu\) can be bounded in terms of the numbers \(m, d_1, d_2\).

By Lemma 5.9, there exist \(B_{1,1}, B_{1,2}, \ldots, B_{1,s_1}\) and \(B_{2,1}, B_{2,2}, \ldots, B_{2,s_2}\), where \(s_1\) and \(s_2\) are bounded in terms of \(m, d_1, d_2\), such that (75) holds if and only if

\[
C = B_{1,j_1}, \quad \mu \circ C \circ \mu^{-1} = B_{2,j_2}
\]

for some \(j_1, 1 \leq j \leq s_1, j_2, 1 \leq j \leq s_2\) and \(\mu \in Aut(\mathbb{CP}^1)\). Thus, we only must show that for each pair \(j_1, j_2\) the number of \(\mu \in Aut(\mathbb{CP}^1)\) such that

\[
(76) \quad \mu \circ B_{1,j_1} \circ \mu^{-1} = B_{2,j_2}
\]

is finite and can be bounded in terms of \(m\). For this purpose, we observe that if along with (76) the equality

\[
\tilde{\mu} \circ B_{1,j_1} \circ \tilde{\mu}^{-1} = B_{2,j_2}
\]

holds for some \(\tilde{\mu} \in Aut(\mathbb{CP}^1)\), then \(\tilde{\mu} \circ \mu^{-1}\) belongs to \(G_2(B_{2,j_2})\). Therefore, the number of \(\mu \in Aut(\mathbb{CP}^1)\) satisfying (76) is equal to the order of the group \(G_2(B_{2,j_2})\), which is finite by Lemma 5.8.

Assume finally that both \(A_1\) and \(A_2\) are Lattès maps. In this case, by Theorem 4.1 there exist a compact Riemann surface \(R\) of genus zero or one, and holomorphic maps \(X_1 : R \to \mathbb{CP}^1\) and \(X_2 : R \to \mathbb{CP}^1\) of degrees \(d_1\) and \(d_2\) correspondingly such that the diagram

\[
\begin{array}{c}
R^2 \\
(X_1, X_2) \\
\downarrow \\
\mathbb{CP}^1 \times \mathbb{CP}^1 \\
\downarrow \\
\mathbb{CP}^1 \times \mathbb{CP}^1
\end{array} \xrightarrow{(B, B)} \begin{array}{c}
R^2 \\
(X_1, X_2) \\
\downarrow \\
\mathbb{CP}^1 \times \mathbb{CP}^1
\end{array}
\]

commutes for some holomorphic map \(B : R \to R\). In turn, the commutativity of this diagram implies that for every \(d \geq 1\) the algebraic curves

\[
A_i^d(x) - B(y) = 0, \quad i = 1, 2,
\]

have a factor of genus one. By Theorem 3.5 of [22], this implies that \(X_i\) is a compositional left factor of \(\theta_{O_{A_i}}\). Therefore, \(O_{X_i} \preceq O_{A_i}\), by Lemma 5.5. Thus, \(\chi(O_{X_i}) \geq 0\), and arguing as in Lemma 5.6 we see that, up to the change

\[
X \mapsto X \circ \alpha, \quad \alpha \in Aut(R),
\]

there exist only finitely many choices for \(X_i\). Now we can finish the proof as above using the full versions of Lemma 5.8 and Lemma 5.9.
References

[22] F. Pakovich, Algebraic curves $A(x)+U(y) = 0$ and arithmetic of orbits of rational functions, arxiv:1801.01985.

Department of Mathematics, Ben-Gurion University of the Negev, P.O.B. 653 Beer Sheva, 8410501 Israel
E-mail address: pakovich@math.bgu.ac.il