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Exact exponent in the remainder term
of Gelfond’s digit theorem in the binary case
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Vladimir Shevelev (Beer-Sheva)

1. Introduction. For integers m > 1 and a ∈ [0,m− 1], define

(1) T (j)
m,a(x) =

∑
0≤n<x, n≡amodm, s(n)≡jmod 2

1, j = 1, 2,

where s(n) is the number of 1’s in the binary expansion of n. Gelfond [7]
proved that

(2) T (j)
m,a(x) =

x

2m
+O(xλ), j = 0, 1,

where

(3) λ =
ln 3
ln 4

= 0.79248125 . . . .

This is the binary case of Gelfond’s main digit theorem about the distribution
of digit sums of arbitrary base in different residue classes. Gelfond’s theorem
initiated a whole line of research (see Notes on Chapter 3 in [1], as well as [10],
[3], [9]). A related circle of works, dealing with the so-called Newman-like
phenomena, started with the unexpected results of D. J. Newman [11] (see
also [2], [5], [15]; again, an extensive bibliography may be found in [1]). In
this paper, we shall be concerned only with the binary case of Gelfond’s
digit theorem. Recently, the author proved [13] that the exponent λ in the
remainder term in (2) is the best possible when m is a multiple of 3 and is
not the best possible otherwise. In this paper we give a simple formula for
the exact exponent in the remainder term of (2) for an arbitrary m. Our
method is based on constructing a recursion relation for the Newman-like
sum corresponding to (1),

(4) Sm,a(x) =
∑

0≤n<x, n≡amodm

(−1)s(n).
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It is sufficient for our purposes to deal with odd numbers m. Indeed, it
is easy to see that, if m is even, then

(5) Sm,a(2x) = (−1)aSm/2,ba/2c(x).

For m > 1 odd, consider the number r = r(m) of distinct cyclotomic cosets
of 2 modulo m [8, pp. 104–105]. E.g., r(15) = 4, since for m = 15 we have
the following four cyclotomic cosets of 2: {1, 2, 4, 8}, {3, 6, 12, 9}, {5, 10},
{7, 14, 13, 11}.

Note that, if C1, . . . , Cr are all different cyclotomic cosets of 2 modulo m,
then

(6)
r⋃
j=1

Cj = {1, . . . ,m− 1}, Cj1 ∩ Cj2 = ∅, j1 6= j2.

Let h be the least common multiple of |C1|, . . . , |Cr|,

(7) h = [|C1|, . . . , |Cr|].

Note that h is of order 2 modulo m (this follows easily, e.g., from Exercise 3,
p. 104 in [12]).

Definition 1. The exact exponent in the remainder term in (2) is α =
α(m) if

T jm,a(x) =
x

2m
+O(xα+ε), T jm,a(x) =

x

2m
+Ω(xα−ε), ∀ε > 0.

Our main result is the following.

Theorem 1. If m ≥ 3 is odd , then the exact exponent in the remainder
term in (2) is

(8) α = max
1≤l≤m−1

(
1 +

1
h ln 2

h−1∑
k=0

(
ln
∣∣∣∣sin πl2km

∣∣∣∣)).
Note that, if 2 is a primitive root of an odd prime p, then r = 1, h = p−1.

As a corollary of Theorem 1 we obtain the following result.

Theorem 2. If p is an odd prime for which 2 is a primitive root , then
the exact exponent in the remainder term in (2) is

(9) α =
ln p

(p− 1) ln 2
.

Theorem 2 generalizes the well-known result for p = 3 ([11], [2], [1]).
Furthermore, we say that 2 is a semiprimitive root modulo p if 2 is of order
(p− 1)/2 modulo p and the congruence 2x ≡ −1 mod p is not solvable. E.g.,
2 is of order 8 modulo 17, but the congruence 2x ≡ −1 mod 17 has the
solution x = 4. Therefore, 2 is not a semiprimitive root of 17. The first
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primes for which 2 is a semiprimitive root are (see [14, A 139035])

(10) 7, 23, 47, 71, 79, 103, 167, 191, 199, 239, 263, . . . .

For these primes we have r = 2 and h = (p− 1)/2. As a second corollary of
Theorem 1 we obtain the following result.

Theorem 3. If p is an odd prime for which 2 is a semiprimitive root ,
then the exact exponent α in the remainder term in (2) is also given by (9).

We also prove the following lower estimate for α(m).

Theorem 4. For m odd ,

α(m) ≥ lnm
rh ln 2

.

In particular, if m = p is prime, then rh = p− 1 and

α(p) ≥ ln p
(p− 1) ln 2

.

Note that, if Artin’s conjecture of the infinity of primes for which 2 is a
primitive root is true, then by Theorem 2,

lim inf
p→∞

α(p) = 0.

In Section 2 we provide an explicit formula for Sm,a(x), while in Sections
3–4 we prove Theorems 1–4.

2. Explicit formula for Sm,a(x). Let bxc = N . We have

Sm,a(N) =
N−1∑

n=0,m|n−a

(−1)s(n) =
1
m

m−1∑
t=0

N−1∑
n=0

(−1)s(n)e2πi(n−a)t/m(11)

=
1
m

m−1∑
t=0

N−1∑
n=0

e2πi(
t
m

(n−a)+ 1
2
s(n)).

Note that the interior sum is of the form

(12) Φa,β(N) =
N−1∑
n=0

e2πi(β(n−a)+ 1
2
s(n)), 0 ≤ β < 1.

Putting

(13) Fβ(N) = e2πiβaΦa,β(N),

we note that Fβ(N) does not depend on a.

Lemma 1. If N = 2ν0 +2ν1 + · · ·+2νσ with ν0 > ν1 > · · · > νσ ≥ 0, then

(14) Fβ(N) =
σ∑
g=0

e2πi(β
Pg−1
j=0 2νj+g/2)

νg−1∏
k=0

(1 + e2πi(β2k+1/2)).
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Proof. Let σ = 0. Then by (12) and (13),

Fβ(N) =
N−1∑
n=0

(−1)s(n)e2πiβn(15)

= 1−
ν0−1∑
j=0

e2πiβ2j +
∑

0≤j1<j2≤ν0−1

e2πiβ(2j1+2j2 ) − · · ·

=
ν0−1∏
k=0

(1− e2πiβ2k),

which corresponds to (14) for σ = 0.
Assuming that (14) is valid for every N with s(N) = σ+1, let us consider

N1 = 2νσb+ 2νσ+1 where b is odd, s(b) = σ + 1 and νσ+1 < νσ. Let

N = 2νσb = 2ν0 + · · ·+ 2νσ ,

N1 = 2ν0 + · · ·+ 2νσ + 2νσ+1 .

Notice that for n ∈ [0, 2νσ+1) we have

s(N + n) = s(N) + s(n).

Therefore,

Fβ(N1) = Fβ(N) +
N1−1∑
n=N

e2πi(βn+ 1
2
s(n))

= Fβ(N) +
2νσ+1−1∑
n=0

e2πi(βn+βN+ 1
2
(s(N)+s(n)))

= Fβ(N) + e2πi(βN+ 1
2
s(N))

2νσ+1−1∑
n=0

e2πi(βn+ 1
2
s(n)).

Thus, by (14) and (15),

Fβ(N1) =
σ∑
g=0

e2πi(β
Pg−1
j=0 2νj+g/2)

νg−1∏
k=0

(1 + e2πi(β2k+1/2))

+ e2πi(β
Pσ
j=0 2νj+(σ+1)/2)

νg+1−1∏
k=0

(1 + e2πi(β2k+1/2))

=
σ+1∑
g=0

e2πi(β
Pg−1
j=0 2νj+g/2)

νg−1∏
k=0

(1 + e2πi(β2k+1/2)).
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Formulas (11)–(14) give an explicit expression for Sm(N) as a linear
combination of products of the form

(16)
νg−1∏
k=0

(1 + e2πi(β2k+1/2)), β = t/m, 0 ≤ t ≤ m− 1.

Remark 1. One may derive (14) from a very complicated general for-
mula of Gelfond [7]. However, we preferred to give an independent proof.

In particular, if N = 2ν , then from (11)–(13) and (15) for

(17) β = t/m, t = 0, 1, . . . ,m− 1,

we obtain the known formula (cf. [4]):

(18) Sm,a(2ν) =
1
m

m−1∑
t=1

e−2πi t
m
a
ν−1∏
k=0

(1− e2πi
t
m

2k).

3. Proof of Theorem 1. Consider the equation of order r

(19) zr + c1z
r−1 + · · ·+ cr = 0

with the roots

(20) zj =
∏
t∈Cj

(1− e2πit/m), j = 1, . . . , r.

Notice that for t ∈ Cj we have

(21)
n+h∏
k=n+1

(1− e2πit2k/m) =
(∏
t∈Cj

(1− e2πit/m)
)h/hj

= z
h/hj
j ,

where h is defined by (7). Therefore, for every t ∈ {1, . . . ,m− 1}, according
to (19) we have

(22)
n+rh∏
k=n+1

(1− e2πit2k/m)

+ c1

n+(r−1)h∏
k=n+1

(1− e2πit2k/m) + · · ·+ cr−1

n+h∏
k=n+1

(1− e2πit2k/m) + cr = 0.

After multiplication by e−2πi t
m
a∏n

k=0(1 − e2πit2
k/m) and summing over

t = 1, . . . ,m− 1, by (18) we find

(23) Sm,a(2n+rh+1) + c1Sm,a(2n+(r−1)h+1)

+ · · ·+ cr−1Sm,a(2n+h+1) + crSm,a(2n+1) = 0.
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Moreover, using the general formulas (11)–(14) for a positive integer u, we
obtain the equality

(24) Sm,a(2rh+1u) + c1Sm,a(2(r−1)h+1u)

+ · · ·+ cr−1Sm,a(2h+1u) + crSm,a(2u) = 0.

Putting here

(25) Sm,a(2u) = fm,a(u),

we have

(26) fm,a(y + rh+ 1) + c1fm,a(y + (r − 1)h+ 1)
+ · · ·+ cr−1fm,a(y + h+ 1) + crfm,a(y + 1) = 0,

where

(27) y = log2 u.

The characteristic equation of (26) is

(28) vrh + c1v
(r−1)h + · · ·+ cr−1v

h + cr = 0.

A comparison of (28) and (20)–(21) shows that the roots of (28) are

(29) vj,w = e2πiw/h
∏
t∈Cj

(1− e2πit/m)1/h, w = 0, . . . , h− 1, j = 1, . . . , r.

Thus,

(30) v = max |vj,l| = 2 max
1≤l≤m−1

(h−1∏
k=0

∣∣∣∣sin πl2km
∣∣∣∣)1/h

.

Generally speaking, some numbers in (20) could be equal. In view of (29),
the vj,w’s have the same multiplicities. If η is the maximal multiplicity, then
according to (25) and (27),

(31) Sm,a(u) = fm,a(log2 u) = O((log2 u)
η−1uln v/ln 2).

Nevertheless, at least

(32) Sm,a(u) = Ω(uln v/ln 2).

Indeed, let, say, v = |v1,w| and suppose that in the solution of (26) with some
natural initial conditions, all coefficients of yj1vy1,w, j1 ≤ η − 1, w = 0, . . . ,
h − 1, are 0. Then fm,a(y) satisfies a difference equation with the charac-
teristic equation not having roots v1,w, and the corresponding relation for
Sm,a(2n) (see (23)) has the characteristic equation (19) without the root z1.
This is impossible since by (18) and (21) we have

Sm,a(2h+1)=
1
m

r∑
j=1

∑
t∈Cj

e−2πi t
m
a

h∏
k=1

(1− e2πi
t
m

2k)=
1
m

r∑
j=1

∑
t∈Cj

e−2πi t
m
az
h/hj
j .



Exact exponent in the remainder term 97

Therefore, the coefficients considered do not all vanish, and (32) follows. Now
from (30)–(32) we obtain (8).

Remark 2. In (8) it is sufficient to let l run over a system of distinct
representatives of the cyclotomic cosets C1, . . . , Cr of 2 modulo m.

Remark 3. It is easy to see that there exists l ≥ 1 such that |Cl| = 2
if and only if m is a multiple of 3. Moreover, for l we can take m/3. Now
from (8), choosing l = m/3, we obtain α = λ = ln 3/ln 4. This result was
obtained in [13] together with estimates of the constants in Sm,0(x) = O(xλ)
and Sm,0(x) = Ω(xλ) which are based on the formula, proved in [13],

Sm,0(x) =
3
m
S3,0(x) +O(xλ1)

for λ1 = λ1(m) < λ and Coquet’s theorem [2].

Example 1. Let m = 17, a = 0. Then r = 2, h = 8,

C1 = {1, 2, 4, 8, 16, 15, 13, 9}, C2 = {3, 6, 12, 7, 14, 11, 5, 10}.
The calculation of

αl = 1 +
1

8 ln 2

17∑
k=0

(
ln
∣∣∣∣sin πl2k17

∣∣∣∣)
for l = 1 and l = 3 gives

α1 = −0.12228749 . . . , α3 = 0.63322035 . . . .

Therefore by Theorem 1, α = 0.63322035 . . . . Moreover, we will prove that

α =
ln(17 + 4

√
17)

ln 256
.

Indeed, according to (23), for n = 0 and n = 1 we obtain the system
(S17,0 = S17):

(33)
{
c1S17(29) + c2S17(2) = −S17(217),
c1S17(210) + c2S17(22) = −S17(218).

By direct calculations we find

S17(2) = 1, S17(22) = 1, S17(29) = 21,

S17(210) = 29, S17(217) = 697, S17(218) = 969.

Solving (33) we obtain

c1 = −34, c2 = 17.

Thus, by (23) and (24),

S17(2n+17) = 34S17(2n+9)− 17S17(2n+1), n ≥ 0,(34)

S17(217x) = 34S17(29x)− 17S17(2x), x ∈ N.(35)
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Putting furthermore

(36) S17(2x) = f(x),

we have
f(y + 17) = 34f(y + 9)− 17(y + 1),

where y = log2 x. Hence,

f(x) = O((17 + 4
√

17)x/8),

that is

(37) S17(x) = O((17 + 4
√

17)
1
8

log2 x) = O(xα),

where

α =
ln(17 + 4

√
17)

ln 256
= 0.633220353 . . . .

4. Proofs of Theorems 2–4

Proof of Theorem 2. By the assumptions of Theorem 2 we have r = 1
and h = p− 1. Using (8) we have

α = 1 +
1

(p− 1) ln 2
ln

p−2∏
k=0

∣∣∣∣sin π2k

p

∣∣∣∣
= 1 +

1
(p− 1) ln 2

ln
p−1∏
l=1

sin
πl

p
.

Furthermore, using the identity

(38)
p−1∏
l=1

sin
lπ

p
=

p

2p−1

([6, p. 378] for example), we find

α = 1 +
1

(p− 1) ln 2
(ln p− (p− 1) ln 2) =

ln p
(p− 1) ln 2

.

Remark 4. In this case, (24) has the simple form

Sp,a(2pu) + c1Sp,a(2u) = 0.

Since in the case of a = 0 or 1 we have

Sp,a(2) = (−1)s(a),

while in the case of a ≥ 2,

Sp,a(2a) = (−1)s(a),

putting

u =
{

1, a = 0, 1,
a, a ≥ 2,
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we find

c1 = (−1)s(a)+1

{
Sp,a(2p), a = 0, 1,
Sp,a(a2p), a ≥ 2.

In particular, if p = 3 and a = 2 we have c1 = S3,2(16) = −3 and

S3,2(8u) = 3S3,2(2u).

Proof of Theorem 3. By the assumptions of Theorem 3 we have r = 2
and h = (p− 1)/2, so that cyclotomic cosets of 2 modulo p satisfy

C1 = −C2.

Therefore, in (8) we obtain the same values for l1 = 1 and l2 = p− 1. Thus,

α = 1 +
2

(p− 1) ln 2
ln
(p−1∏
l=1

sin
πl

p

)1/2

=
ln p

(p− 1) ln 2
.

Proof of Theorem 4. According to (19)–(20),

cr = (−1)r
r∏
j=1

∏
t∈Cj

(1− e2πit/m) = (−1)r
m−1∏
t=1

(1− e2πit/m).

Thus, using (38) we have

|cr| = 2m
m−1∏
t=1

sin
πt

m
= m.

Consequently, by (29),
r∏
j=1

|vj,w| = m1/h, w = 0, 1, . . . , h− 1.

Therefore,
v = max |vj,w| ≥ m1/rh

and Theorem 4 follows.

Using Theorems 1–3, in particular, we find

α(3) = 0.7924 . . . , α(5) = 0.5804 . . . , α(7) = 0.4678 . . . ,
α(11) = 0.3459 . . . , α(13) = 0.3083 . . . , α(17) = 0.6332 . . . ,
α(19) = 0.2359 . . . , α(23) = 0.2056 . . . , α(29) = 0.1734 . . . ,
α(31) = 0.6358 . . . , α(37) = 0.1447 . . . , α(41) = 0.4339 . . . ,
α(43) = 0.6337 . . . , α(47) = 0.1207 . . . .
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