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Abstract
We give a solution to a variation of the classic ménage problem where a fixed couple
— Alice and Bob — are already seated.

1. Introduction

In 1891, Lucas [2] formulated the following “ménage problem”:

Problem 1. To find the number Mn of ways of seating n � 2 male-female couples
at a circular table, ladies and gentlemen in alternate positions, so that no husband
sits next to his wife.

After seating the ladies in 2n! ways we have

Mn = 2n!Un, (1)

where Un is the number of ways of seating the gentlemen.
Earlier, Muir [4] solved a problem posed by Tait (cf. [4]): to find the number Hn

of permutations ⇡ of {1, ..., n} for which ⇡(i) 6= i and ⇡(i) 6= i + 1 (mod n), i =
1, ..., n. Simplifying Muir’s solution, Cayley [1] found a recursion for Hn : H2 =
0,H3 = 1, and for n � 4,

(n� 2)Hn = n(n� 2)Hn�1 + nHn�2 + 4(�1)n+1. (2)

Thirteen years later, Lucas [2] gave the same formula for Un. So, [1] and [2] imply

Hn = Un (3)
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which became well known after the development of rook theory [5]. In Section 2
we also give a one-to-one correspondence between Hn and Un. In 1934, the explicit
formula

Un =
nX

k=0

(�1)k 2n
2n� k

✓
2n� k

k

◆
(n� k)! (4)

was found by Touchard [8]. One can find a beautiful proof of (4) with the help of
the “rook technique” in [5].

The first terms of the sequence {Un}, for n � 2, are ([2], A000179 in [7])

0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, ... (5)

Note that formulas for Un in other forms are given by Wayman and Moser [9] and
Shevelev [6].

In the present paper we study the following problem.

Problem 2. With no gentleman seated next to his wife, n male-female couples,
including Alice and her husband Bob, are to be seated at 2n chairs around a circular
table. After the ladies are seated at every other chair, Bob is the first gentleman
to choose one of the remaining chairs. If Bob chooses to sit d seats clockwise from
Alice, how many seating arrangements are there for the remaining gentlemen?

2. Equivalence of Tait’s Problem with the Ménage Problem

Let A be an n ⇥ n (0, 1)-matrix. For every permutation ⇡ = {i1, ..., in} of the
numbers {1, ..., n} there is a set of elements {(1, i1), ..., (n, in)}, called a diagonal
of A. Thus, A has n! distinct diagonals. The number of diagonals of 1’s of A is
the permanent of A, denoted by perA. This is also the number of distinct ways of
putting n non-attacking rooks in place of the 1’s of A. Let J = Jn be an n ⇥ n
matrix which consists of 1’s only, let I = In be the identity matrix, and let P = Pn

be an n⇥n matrix with this diagonal of 1’s: (1, 2), ..., (n�1, n), (n, 1) and all other
entries 0. In Tait’s problem, we should find the number of permutations with the
prohibited positions (1, 1), ..., (n, n) and (1, 2), ..., (n� 1, n), (n, 1). Therefore, Tait’s
problem is the problem of calculating Hn = per(Jn � I � P ).

Consider now the ménage problem. Denote the 2n chairs at a circular table by
the symbols

1, 1, 2, 2, ..., n, n (6)

going clockwise. Suppose the ladies occupy chairs {1, ..., n}. Number a gentleman
i, if his wife occupies chair i. Now the ith gentleman, for i = 1, ..., n � 1, can
occupy every chair except for chairs i and i + 1, while the nth gentleman cannot
occupy chairs n and 1. If, in the corresponding n⇥n incidence matrix, the prohibited
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positions are 0’s and the other positions are 1’s, we again obtain the matrix Jn�I�P.
Every seating of the gentlemen corresponds to a diagonal of 1’s in this matrix. This
means that (cf. [3])

Un = per(Jn � I � P ), (7)

and (3) follows. In particular, for n = 2, 3, 4, 5, ..., we have the following matricies,
(Jn � I � P ):

✓
0 0
0 0

◆
,

0
@0 0 1

1 0 0
0 1 0

1
A ,

0
BB@

0 0 1 1
1 0 0 1
1 1 0 0
0 1 1 0

1
CCA ,

0
BBBB@

0 0 1 1 1
1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0

1
CCCCA , ...

with permanents 0, 1, 2, 13, ... .
There is a one-to-one correspondence between the diagonals of 1’s of the matrix

Jn � I � P and arrangements of n male-female couples around a circular table, by
the rules of the ménage problem, after the ladies w1, w2, ..., wn have taken the chairs
numbered

2n, 2, 4, ..., 2n� 2 (8)

respectively. Suppose we consider a diagonal of 1’s of the matrix Jn � I � P :

(1, j1), (2, j2), ..., (n, jn). (9)

Then the gentlemen m1,m2, ...,mn took chairs numbered

2ji � 3 (mod 2n), i = 1, 2, ..., n, (10)

where the residues are chosen from the interval [1, 2n].
Since {ji} is a permutation of 1, ..., n, then {2ji � 3} (mod 2n) is a permutation
of the odd positive integers not greater than 2n � 1. The distance between the
places of mi (10) and wi (8) cannot be 1, indeed the equality |2(ji � i) � 1| = 1
(mod 2n) is possible if and only if either ji = i or ji = i+1 (mod n), corresponding
to the positions of the 00s in Jn � I � P. For example, in the case of n = 5 and
j1 = 3, j2 = 1, j3 = 5, j4 = 2, j5 = 4 in (9), then by (8) and (10), the chairs 1, 2, ..., 10
are taken by m4, w2,m1, w3,m5, w4,m3, w5,m2, w1, respectively.

3. Equivalent Form of Problem 2

The one-to-one correspondence above suggests a solution to Problem 2. Let (Jn �
I � P )[1| r] be the matrix obtained by removing the first row and the rth column
of Jn � I � P. Then, by expanding the permanent (7) over the first row, we have

Un =
nX

r=3

per((Jn � I � P )[1| r]). (11)
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In view of symmetry, the solution is invariant with respect to w1, the chair that
Alice occupies. Suppose Alice occupies chair 2n (or 0 (mod 2n)). Then, by (10), in
(11) the values of the distances corresponding to r = 3, 4, 5, 6, ... are d = 3, 5, 7, 9, ...
clockwise, i.e., the distance

d = 2r � 3, r � 3, (12)

clockwise between Alice and Bob. Thus for the solution of Problem 2 we should find
the summands of (11). We can do this by the representation of the rook polynomials
of each matrix Ar = (Jn�I�P )[1| r], 3  r  n, as a product of rook polynomials
of simpler matrices.

4. Lemmas

Let M be a rectangular (0, 1)-matrix.

Definition 1. The polynomial

RM (x) =
nX

j=0

⌫j(M)xj (13)

where ⌫0 = 1 and ⌫j is the number of ways of putting j non-attacking rooks on the
positions of the 1’s in M, is called a rook polynomial.

In particular, if M is an n⇥n-matrix, then ⌫n(M) = perM. Now we formulate
several results of the classic Kaplansky–Riordan rook theory (cf. [5], chaps. 7–8).

Lemma 1. If M is a (0, 1)-matrix with rook polynomial (13), then

per(Jn �M) =
nX

j=0

(�1)j⌫j(M)(n� j)! (14)

Definition 2. Two submatrices M1 and M2 of a (0, 1)-matrix M are called disjunct
if no 1’s of M1 are in the same row or column as those of M2.

From Definition 1, the following lemma is evident.

Lemma 2. If a (0, 1)-matrix M consists of two disjunct submatrices M1 and M2,
then

RM (x) = RM1(x)RM2(x). (15)

Consider the position (i, j) of a 1 in M. Denote by M (0(i,j)) the matrix obtained
from M after replacing it by a 0. Denote by M (i,j) the matrix obtained from M by
removing the ith row and jth column.
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Lemma 3. We have
RM (x) = xRM(i,j) + RM(0(i,j)) . (16)

Consider a staircase (0, 1)-matrix. A (0, 1)-matrix is called staircase if all its
1’s form the endpoints of a polyline with alternate vertical and horizontal links of
length 1. Every line (row or column) can have a maximum of 2 consecutive 1’s. If a
staircase matrix contains k 1’s, then it is called a k-staircase matrix. For example,
the following matrices are 5-staircase:

0
@1 1 0

0 1 1
0 0 1

1
A ,

0
@1 0 0

1 1 0
0 1 1

1
A ,

0
BB@

0 0 0
1 0 0
1 1 0
0 1 1

1
CCA ,

0
@0 0 1 1 0

0 1 1 0 0
0 1 0 0 0

1
A

and the following matrices are 6-staircase:

0
@1 1 0 0

0 1 1 0
0 0 1 1

1
A ,

0
BB@

1 0 0
1 1 0
0 1 1
0 0 1

1
CCA ,

0
BBBB@

0 0 0
1 0 0
1 1 0
0 1 1
0 0 1

1
CCCCA ,

0
@0 0 1 1 0

0 1 1 0 0
1 1 0 0 0

1
A .

Lemma 4. For every k � 1, all k-staircase matrices M have the same rook poly-
nomial

RM (x) =
b k+1

2 cX
i=0

✓
k � i + 1

i

◆
xi. (17)

Proof. Note that since all polylines with k alternate vertical and horizontal links
of length 1 are congruent figures, then all k-staircase (0, 1)-matricies have the same
rook polynomial. So we consider the following k-staircase (0, 1)-matrix with the
configuration of the 1’s of the form

1 1 . . . .
. 1 1 . . .
. . . . . .
. . . 1 1 .
. . . . 1 1

The last 1 on the right is absent for odd k and is present for even k. In both
cases, by Lemma 3, for the rook polynomial Rk(x) we have

R0(x) = 1, R1(x) = x + 1, Rk(x) = Rk�1(x) + xRk�2(x), k >= 2.

This equation has solution (17) of Lemma 4 (see [5], chap. 7, eq. (27)).
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For example, let

M =

0
BB@

1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 0 1 1
0 0 0 0 1 0

1
CCA .

M contains two disjoint staircase matricies:

M1 =
✓

1 1 0
0 1 1

◆
and M2 =

✓
0 1 1
0 1 0

◆
.

So, by Lemmas 2 and 4,

RM (x) = RM1(x)RM2(x) =
2X

i=0

✓
5� i

i

◆
xi

2X
j=0

✓
4� j

j

◆
xj =

(3x2 + 4x + 1)(x2 + 3x + 1) = 3x4 + 13x3 + 16x2 + 7x + 1.

5. Solution of Problem 2

According to Lemma 1, in order to calculate the permanent of the matrix (Jn� I�
P )[1| r], we can find the rook polynomial of the matrix Jn�1 � (Jn � I � P )[1| r].
We use the equation

Jn�1 � (Jn � I � P )[1| r] = (In + P )[1| r], (18)

which follows from (A + B)[1| r] = A[1| r] + B[1| r] and the equality Jn�1 =
Jn[1| r]. Transforming from matrix (In + P ) to the matrix (In + P )[1| r], we have
(in this example, n = 10 and r = 5)

0
BBBBBBBBBBBBBB@

1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCA

!

0
BBBBBBBBBBBB@

0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCA

. (19)

Now let us use Lemma 3 on the latter matrix in the case i = n� 1, j = 1. Write

A = ((In + P )[1| r])(n�1,1), B = ((In + P )[1| r])(0(n�1,1)). (20)
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According to (16), we have

R(In+P )[1| r](x) = xRA(x) + RB(x). (21)

Note that A has the form (following the example, n = 10 and r = 5)

A =

0
BBBBBBBBBB@

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1

1
CCCCCCCCCCA

(22)

which is an (n� 2)⇥ (n� 2) matrix with (2n� 6) 1’s. This matrix consists of two
disjunct matrices: an (r � 2)⇥ (r � 2) matrix A1 of the form (here r = 5)

A1 =

0
@1 1 0

0 1 1
0 0 1

1
A (23)

which is a (2r� 5)-staircase matrix, and an (n� r)⇥ (n� r) matrix (again n = 10
and r = 5)

A2 =

0
BBBB@

1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

1
CCCCA (24)

which is a 2(n� r)� 1-staircase matrix. Thus, by Lemmas 2 and 4, we have

RA(x) =
r�2X
i=0

✓
2r � i� 4

i

◆
xi

n�rX
k=0

✓
2(n� r)� k

k

◆
xk.

It is convenient to put k = j � 1:

RA(x) =
r�2X
i=0

✓
2r � i� 4

i

◆
xi

n�r+1X
j=0

✓
2(n� r)� j + 1

j � 1

◆
xj�1. (25)

Note that, since
� n
�1

�
= 0, we can write the lower limit in the sum over j as

j = 0. Furthermore, the (n� 1)⇥ (n� 1) matrix B = B(r) (20) has the form (here
n = 10 and r = 5)
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B =

0
BBBBBBBBBBBB@

0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCA

(26)

and contains (2n � 5) 1’s. This matrix consists of two disjunct matrices: an (r �
2)⇥ (r � 1) matrix B1 of the form (here r = 5)

B1 =

0
@0 1 1 0

0 0 1 1
0 0 0 1

1
A (27)

which is a (2r�5)-staircase matrix, and an (n�r+1)⇥ (n�r) matrix (here n = 10
and r = 5)

B2 =

0
BBBBBB@

1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

1
CCCCCCA

(28)

which is a 2(n� r)-staircase matrix. Thus, by Lemmas 2 and 4, we have

RB(x) =
r�2X
i=0

✓
2r � i� 4

i

◆
xi

n�r+1X
j=0

✓
2(n� r)� j + 1

j

◆
xj . (29)

Note that, since
� n�r
n�r+1

�
= 0, we can write the upper limit in the second sum as

j = n� r + 1. Now from (21), (25) and (29) we find

R(In+P )[1| r](x) =
r�2X
i=0

✓
2r � i� 4

i

◆
xi

n�r+1X
j=0

✓
2(n� r)� j + 2

j

◆
xj .

Set i + j = k. Then k <= r � 2 + n� r + 1 = n� 1; besides i <= k and since we
have

�2r�i�4
i

�
, then 2r � i� 4 >= i, i <= r � 2. Thus

R(In+P )[1| r](x) =
n�1X
k=0

xk
min(k, r�2)X

i=0

✓
2r � i� 4

i

◆✓
2(n� r)� k + i + 2

k � i

◆
. (30)
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Note that for the interior sum of (30), it is su�cient to take the summation over
interval [max(r + k�n� 1, 0),min(k, r� 2)]. Thus, by Lemma 1 and (18), we have

per((Jn � I � P )[1| r]) =
n�1X
k=0

(�1)k(n� k � 1)!
min(k, r�2)X

i=max(r+k�n�1, 0)

✓
2r � i� 4

i

◆✓
2(n� r)� k + i + 2

k � i

◆
. (31)

Formula (31) solves Problem 2 for r = (d + 3)/2 � 3 (by 12) and naturally
n > (d + 1)/2. ⇧

For sequences corresponding to d = 3, 5, 7, 9 and 11, see A258664–A258667 and
A258673 in [7].

Remark 1. The prohibited values d = 1 and d = 2n � 1 correspond to the case
when Alice and Bob are seated at neighboring chairs. Let us calculate the number
of ways of seating the remaining gentlemen after all the ladies have occupied their
chairs, so that ladies and gentlemen are in alternate chairs, but Alice and Bob are
the only couple seated next to each other. Thus we have a classic ménage problem
for n� 1 couples for a one-sided linear table, after the ladies have already occupied
their chairs. So, by [5], chap. 8, Thm. 1, t = 0, the solution Vn of this problem is

Vn =
n�1X
k=0

(�1)k

✓
2n� k � 2

k

◆
(n� k � 1)!, n > 1. (32)

One can verify that this result can be obtained from (31) for both r = 2 and
r = n + 1. It could also be proved independently. Cf. also A259212 in [7].

6. Enumeration of Arrangements

A simple method of finding the arrangements is to cycle through the permutations
of the n� 1 remaining gentlemen and weed out the ones that do not follow the “no
gentleman next to his wife” rule. This Mathematica (version 7) snippet works in
that manner.

enumerateSeatings[couples_,d_]:=
If[d==1||d>=2 couples-1||EvenQ[d],{},Map[#[[1]]&,
DeleteCases[Map[{#,Differences[#]}&,
Flatten[Map[{Riffle[Range[couples],
RotateRight[Insert[#,1,1],(d-1)/2]]}&,
Permutations[Range[couples-1],{couples-1}]+1],1]],
{{___},{___,0,___}}]]];
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Also, we can code for (31) by

numberOfSeatings[couples_,d_]:=
If[couples<=#-1||EvenQ[d]||d==1,0,
Sum[((-1)^k)*Factorial[(couples-k-1)]Sum[Binomial[2#-j-4,j]*
Binomial[2(couples-#)-k+j+2,k-j],
{j,Max[#+k-couples-1,0],Min[k,#-2]}],{k,0,couples-1}]]&[(d+3)/2];

For 6 couples with Bob sitting 3 seats clockwise from Alice, who is in chair 1,
to find how many possible possible seating arrangements there are, the command
numberOfSeatings[6,3] will return 20. Similarly, to enumerate those possible
seatings, enumerateSeatings[6,3] will give

{1, 3, 2, 1, 3, 2, 4, 6, 5, 4, 6, 5} {1, 3, 2, 1, 3, 5, 4, 6, 5, 2, 6, 4}
{1, 3, 2, 1, 3, 5, 4, 6, 5, 4, 6, 2} {1, 3, 2, 1, 3, 6, 4, 2, 5, 4, 6, 5}
{1, 4, 2, 1, 3, 2, 4, 6, 5, 3, 6, 5} {1, 4, 2, 1, 3, 5, 4, 6, 5, 2, 6, 3}
{1, 4, 2, 1, 3, 5, 4, 6, 5, 3, 6, 2} {1, 4, 2, 1, 3, 6, 4, 2, 5, 3, 6, 5}
{1, 4, 2, 1, 3, 6, 4, 3, 5, 2, 6, 5} {1, 5, 2, 1, 3, 2, 4, 6, 5, 3, 6, 4}
{1, 5, 2, 1, 3, 2, 4, 6, 5, 4, 6, 3} {1, 5, 2, 1, 3, 6, 4, 2, 5, 3, 6, 4}
{1, 5, 2, 1, 3, 6, 4, 2, 5, 4, 6, 3} {1, 5, 2, 1, 3, 6, 4, 3, 5, 2, 6, 4}
{1, 5, 2, 1, 3, 6, 4, 3, 5, 4, 6, 2} {1, 6, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5}
{1, 6, 2, 1, 3, 5, 4, 2, 5, 3, 6, 4} {1, 6, 2, 1, 3, 5, 4, 2, 5, 4, 6, 3}
{1, 6, 2, 1, 3, 5, 4, 3, 5, 2, 6, 4} {1, 6, 2, 1, 3, 5, 4, 3, 5, 4, 6, 2}.

Symbolizing Alice by and Bob by , the nth lady by and her husband
by , we can show this in a graphical manner as in Figure 1, below. Also, Table
1 shows a triangular table of the number of seatings as given by (31). The rows
of Table 1 appear to be unimodal for which we have no proof. The row sums,
1, 2, 13, 80, ..., in Table 1 are equal to the solutions to the classic ménage problem.
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Figure 1: The 20 possible seatings of the 5 remaining gentlemen if Bob sits 3 seats
clockwise from Alice.

n
3 1
4 1 1
5 4 5 4
6 20 20 20 20
7 115 116 117 116 115
8 787 791 791 791 791 787
9 6184 6203 6204 6205 6204 6203 6184
10 54888 55000 55004 55004 55004 55004 55000 54888

3 5 7 9 11 13 15 17
d

Table 1: Number of arrangements for n couples with Bob seated d seats clockwise
from Alice.
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