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1. Introduction

The fundamental “little” Fermat theorem claims that for any integer m and prime p,

mp ≡ m mod p. (1.1)

A natural question is if this theorem can be generalized by allowing the base on the
left-hand side of (1.1) to be non-integer. Indeed, it is easy to check that if we keep
the integrality of the base then the only possible generalization is

∀m, k ∈ N, p prime : (m(kp + 1))p ≡ m mod p. (1.2)

Thus non-integer bases should be considered. Let nint[m] stand for the integer
closest to m.

Definition 1.1. A number ξ(m) is called a Fermat factor of integer m if for every
sufficiently large prime p,

nint[(mξ(m))p] ≡ m mod p. (1.3)
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For instance, as it will be shown later, ξ(m) = 1
2m (m +

√
m2 + 4) is a Fermat

factor. In fact, for this ξ(m) we will prove that (1.3) is valid for all odd p. To see
that this is a non-trivial generalization, let us consider a numerical example.

Example 1.2. Let p = 23, m = 5, then mξ(m) = 5+
√

29
2 = 5.19258 · · ·. Then

523 = 11920928955078125≡ 5 mod 23,

and, at the same time,

nint[(5.19258 · · ·)23] = 28432702285107160≡ 5 mod 23.

We will be searching for Fermat factors explicitly given by expressions depending
on m of algebraic degree not exceeding 3 (i.e. containing only square and cubic
roots). The main result of our paper is given in the following theorem.

Theorem 1.3. (a) The number 1 has an infinite number of Fermat factors of
arbitrary large algebraic degree.

(b) The number 2 has at least three Fermat factors of algebraic degree at most 3.
(c) Every natural number greater than 2 has at least four Fermat factors of

algebraic degree at most 3.

2. Auxiliary Results

We will need the following simple results.

Lemma 2.1. Let P (x) be a polynomial. Then

Coefxn−1

(
(P (x))k−1 · P ′(x)

)
=

n

k
Coefxn(P (x))k. (2.1)

Proof. Straightforward.

The next reults follow from the Cauchy residues formula.

Lemma 2.2. Let P (x) be a polynomial of degree k. Then for small enough ρ,

1
2πi

∮
|w|=ρ

P ′(w)
1 − P (w)

dw

wn
=

n∑
i=1

ξn
i ,

where ξi, i = 1, 2, . . . , k, are the roots (with multiplicities) of the adjoint polynomial

P ∗(x) = xk

(
1 − P

(
1
x

))
. (2.2)

Proof. Follows from the Cauchy theorem since for small enough ρ the function
P ′(w)

1−P (w) has the poles outside the circle of radius ρ, and all of them are simple.

Lemma 2.3. Let P (x) be a polynomial, and P (0) = 0. Then∑
j≥1

Coefxn−1(P (x))j−1P ′(x) =
1

2πi

∮
|w|=ρ

P ′(w)
1 − P (w)

dw

wn
.
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Proof. By the Cauchy theorem for ρ small enough we have∑
j≥1

Coefxn−1(P (x))j−1P ′(x) =
1

2πi

∮
|w|=ρ

∑
j≥1

(P (w))j−1P ′(w)
dw

wn
.

Notice that the summation under the integral is possible since by P (0) = 0 the
summands in the left sum are zero starting from some index j. Choose ρ small
enough such that

{w : |w| = ρ} ⊂
{

w : |P (w)| ≤ 1
2

}
.

This is again possible since P (0) = 0. Then the series
∑

j≥1(P (w))j−1 converges
uniformly on the integration contour to the function 1

1−P (w) .

Lemma 2.4. Let P (x) = x +
∑k

r=2 arx
r, then

n−1∑
j=1

n

j
Coefxn(P (x))j = −1 +

k∑
j=1

ξn
j ,

where ξj are the roots of P ∗(x) (see (2.2)) with their multiplicities.

Proof. By Lemma 2.1
n∑

j=1

Coefxn−1(P (x))j−1P ′(x) =
n∑

j=1

n

j
Coefxn(P (x))j = 1 +

n∑
j=1

n

j
Coefxn(P (x))j .

Then using Lemmas 2.2 and 2.3 we have
n∑

j=1

n

j
Coefxn(P (x))j = −1 +

n∑
j=1

Coefxn−1(P (x))j−1P ′(x)

= −1 +
1

2πi

∮
|w|=ρ

P ′(w)
1 − P (w)

dw

wn
= −1 +

k∑
j=1

ξn
j .

3. Polynomials with Special Properties

Definition 3.1. A sequence of polynomials Pn, n = 1, 2, . . . , with integer coeffi-
cients is said to possess P-property if for every prime p all the coefficients of Pp are
divisible by p.

The next theorem provides a simple method to generate polynomials having
P-property.

Theorem 3.2. Let

Tx(z) = zk − zk−1 − a2(x)zk−2 − · · · − ak(x) (3.1)

satisfy

Tx(0) �= 0, Tx(1) �= 0, (3.2)

In
t. 

J.
 N

um
be

r 
T

he
or

y 
20

05
.0

1:
49

9-
51

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

E
N

 G
U

R
IO

N
 U

N
IV

E
R

SI
T

Y
 O

F 
T

H
E

 N
E

G
E

V
 A

R
A

N
N

E
 L

IB
R

A
R

Y
 o

n 
09

/0
8/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



December 13, 2005 10:15 WSPC/INSTRUCTION FILE 00033

502 S. Litsyn & V. Shevelev

and ai(x), i = 2, . . . , k, be polynomials with integer coefficients. Let there exist an in-
finite set E of values x on which Tx(z) has only simple roots ξ1(x), ξ2(x), . . . , ξk(x).
Let moreover the sequence of polynomials Rn(x) be defined by recurrence

Rn(x) = Rn−1(x) + a2(x)Rn−2(x) + · · · + ak(x)Rn−k(x) + a2(x) + · · · + ak(x),

(3.3)

with the initial conditions

Ri(x) = si(x) − 1, i = 1, 2, . . . , k, (3.4)

where

si(x) =
k∑

j=1

ξi
j(x), (3.5)

i.e. si(x) are power sums of the roots of Tx(z).
Then Rn(x) possess P-property.

Proof. By (3.2), Rn(x) = −1 is a particular solution to (3.3)–(3.4). Let now x ∈ E.
Since Tx(z) is the characteristic polynomial of (3.3) with no multiple roots, the
general solution to (3.3) has form

Rn(x) = −1 +
k∑

j=1

cjξ
n
j (x), x ∈ E. (3.6)

By (3.4)–(3.6), we have

−1 +
k∑

j=1

cjξ
n
j (x) = −1 +

k∑
j=1

ξn
j (x).

Since a system of linear equations defined by the Vandermonde matrix (notice that
ξj �= 0 by (3.2) and all ξj ’s are pair-wise distinct) has a unique solution, this yields
that cj = 1 for j = 1, 2, . . . , k. Thus

Rn(x) = −1 +
k∑

j=1

ξn
j (x), x ∈ E. (3.7)

Notice now that T (z) = P ∗(z), where

P (z) = z + a2(x)z2 + · · · + ak(x)zk. (3.8)

Therefore, by Lemma 2.4 and (3.7),

Rn(x) =
n−1∑
i=1

n

i
Coefzn(P (z))i, x ∈ E. (3.9)

It is well known that a polynomial is uniquely defined by its values at a set of points
of size greater than the degree. Therefore, since E is an infinite set, (3.9) holds for
all x.

It is left to notice that since ai(x), i = 2, . . . , k, are polynomials with integer
coefficients, the power sums of their roots, si(x), are as well polynomials with integer
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coefficients (it follows e.g. from the Newton formulas for power sums). Then from
(3.3) and (3.4) it follows that {Rn(x)} are polynomials with integer coefficients. If
now n is a prime, then all i ≤ n − 1 do not divide n. Therefore,

Rn(x)
n

=
n−1∑
i=1

1
i

Coefzn(P (z))i,

is a polynomial with integer coefficients.

Theorem 3.3. Let k be an integer greater than 1. The sequence of polynomials
{Rn(x)} defined by the recurrence

Rn(x) = Rn−1(x) + xRn−2(x) + · · · + xRn−k(x) + (k − 1)x, n ≥ k + 1,

(3.10)

with initial conditions

Ri(x) = 2
� i

2 �∑
h=1

( i

2h

)
xh, i = 1, 2, . . . , k, (3.11)

possesses P-property.

Proof. For x �= 0 consider the polynomial

Tx(z) = zk − zk−1 − xzk−2 − · · · − xz − x, (3.12)

being the characteristic polynomial of (3.10). Condition (3.2) clearly holds for it.
It is easy to see that Tx(z) can have multiple roots on an at most finite set of x’s.
Indeed, the system 


Tx(z) = 0
d

dz
Tx(z) = 0

,

for z �= 1 is equivalent to{
zk+1 − 2zk − (x − 1)zk−1 + x = 0

kzk+1 − (3k − 1)zk + ((3 − x)k + 2x − 2)zk−1 + (k − 1)(x − 1)zk−2 − x = 0
.

(3.13)

Dividing the sum of the equations by (z − 1) we get

(k + 1)z2 − 2kz − (k − 1)(x − 1) = 0.

Plugging the roots of this quadratic equation into (3.13) we arrive at an equation in
x of finite degree. Thus all the conditions of Theorem 3.2 are valid, and (3.10) plays
the role of (3.3) for the polynomial Tx(z) (3.12). It is left to check the coincidence
of conditions (3.11) and (3.4). Notice that the power sums of the roots of the first
equation from (3.13) are si(x)+1 where si(x) are power sums of the roots of (3.12),
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i = 1, . . . , k. On the other hand the symmetric polynomials σi(x) of the roots of the
first equation of (3.13) are

σ1(x) = 2, σ2(x) = 1 − x, σ3(x) = · · · = σk(x) = 0.

Using the Newton formulas expressing the power sums via the symmetric sums
we get

si(x) + 1 − 2(si−1(x) + 1) + (1 − x)(si−2(x) + 1) = 0, i = 1, 2, . . . , k,

or

si(x) − 2si−1(x) + (1 − x)si−2(x) − x = 0.

Solving this recurrence with initial conditions s1(x) = 1, s2(x) = 1+2x, we find that

si(x) = (1 +
√

x)i + (1 −√
x)i − 1

= 1 + 2
� i

2 �∑
h=1

(
i

2h

)
xh, i = 1, . . . , k. (3.14)

Comparing (3.11) and (3.14) we conclude that

Ri(x) = si(x) − 1,

that coincides with (3.4). Thus by Theorem 3.2 {Rn(x)} possesses the
P-property.

4. Fermat Factors of Natural Numbers

Theorem 4.1. (a) The number

ξ1 =
1
2

(
1 +

√
1 +

4
m2

)
(4.1)

is a Fermat factor of any natural m.
(b) The number

ξ2 =
1
2

(
1 +

√
1 − 4

m2

)
(4.2)

is a Fermat factor of any natural m ≥ 3.

Proof. (a) Consider the sequence of polynomials {Rn(x)} defined in (3.10)–(3.11)
and possessing the P-property. Using induction we obtain that

deg Rn(x) =
⌊n

2

⌋
. (4.3)

Evidently that along with {Rn(x)} the sequence
{
x�n

2 �Rn

(
1
x

)}
possesses the

P-property. Furthermore, by (3.7),

Rn(x) = −1 +
k∑

j=1

ηn
j (x), (4.4)
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where {ηj(x)} are the roots of Tx(z), see (3.12). Let k = 2. Then

η1,2(x) =
1
2
(
1 ±√

1 + 4x
)
, x > 0.

By (4.4)

x�n
2 �Rn

(
1
x

)
= x�n

2 �
((

1
2

(
1 +

√
1 +

4
x

))n

+

(
1
2

(
1 −

√
1 +

4
x

))n

− 1

)
.

(4.5)

Let x = m2, n = p, an odd prime, and m be not divisible by p. Then,

mp−1Rp

(
1

m2

)
= mp−1

((
1
2

(
1 +

√
1 +

4
m2

))p

+

(
1
2

(
1 −

√
1 +

4
m2

))p)
− mp−1 ≡ 0 mod p. (4.6)

Multiplying both sides of this congruence by m and using the Fermat theorem
we get (

m +
√

m2 + 4
2

)p

+

(
m −√

m2 + 4
2

)p

≡ m mod p.

Since
√

m2 + 4 − m decreases in m, we have(√
m2 + 4 − m

2

)p

≤ 0.62p <
1
2
.

Therefore, given p does not divide m,

nint
[
mξp

1

] ≡ m mod p. (4.7)

If m ≡ 0mod p, the left-hand side of (4.6) is a polynomial in m2 (here it is essential
that p �= 2) with all coefficients divisible by p. Therefore, also

mpRp

(
1

m2

)
− mp ≡ 0 mod p,

and (4.7) follows.
(b) The proof is analogous but instead of x = m2 in (4.5) we set x = −m2.

It follows from Theorem 4.1 that every natural m possesses a Fermat factor of
algebraic degree 2 for every odd p. Let us consider now Fermat factors of degree 3.

Theorem 4.2. The numbers

ξ1 =
1
3

(
1 + 3

√
1 +

18
m2

+
3

m3

√
3m4 + 33m2 − 3

+ 3

√
1 +

18
m2

− 3
m3

√
3m4 + 33m2 − 3

)
, (4.8)
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ξ2 =
1
3

(
1 + 3

√
1 +

45
2m2

+
3

2m3

√
12m4 + 177m2 − 96

+ 3

√
1 +

45
2m2

− 3
2m3

√
12m4 + 177m2 − 96

)
, (4.9)

are Fermat factors of any natural m.

Proof. Set in (4.4) k = 3. We have

Rn(x) = ηn
1 (x) + ηn

2 (x) + ηn
3 (x) − 1, (4.10)

where ηi, i = 1, 2, 3, are the roots of Tx(z) (3.12),

Tx(z) = z3 − z2 − xz − x. (4.11)

Therefore,

x�n
2 �Rn

(
1
x

)
= x�n

2 �(ζn
1 (x) + ζn

2 (x) + ζn
3 (x) − 1

)
, (4.12)

where

ζi(x) = ηi

(
1
x

)
, i = 1, 2, 3, . . . , (4.13)

are the roots of T 1
x
(z) (4.11),

T 1
x
(z) = z3 − z2 − 1

x
z − 1

x
. (4.14)

Moreover, the polynomials
{
x�n

2 �Rn

(
1
x

)}
are integer-valued for integer x, and pos-

sess the P-property.
Let us show that for x ≥ 1 the polynomial T 1

x
(z) (4.14) has the unique real root,

ζ1 > 1. Indeed,

d

dz
T 1

x
(z) = 3z2 − 2z − 1

x
,

and T 1
x
(z) has a local maximum in z = 1

3

(
1 −

√
1 + 3

x

)
. However, for x ≥ 1,

T 1
x

(
1
3

(
1 −

√
1 +

3
x

))
=

1
27x

(
(2x + 15)

√
1 +

3
x
− 2x − 45

)

<
1

27x

(
(2x + 15)

(
1 +

3
2x

)
− 2x − 45

)

=
5

6x2
− 1

x
≤ −1

6
.

Thus T 1
x
(z) has the unique real root ζ1(x), and since T 1

x
(1) = − 2

x < 0, we conclude
that ζ1(x) > 1, and we are done.
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Let now x = m2, where m is a positive integer. If ζ2 and ζ̄2 are complex conjugate
roots of T 1

m2
(z) then by Vieta’s theorem

|ζ2| = |ζ̄2| =
√

1
m2ζ1

=
1
m

1√
ζ1

. (4.15)

Let n = p ≥ 3, be a prime number, and p does not divide m. By (4.12)

mp−1
(
ζp
1 + ζp

2 + ζ̄p
2 − 1

) ≡ 0 mod p. (4.16)

Multiplying by m and using the Fermat theorem we get

(ζ1m)p + (ζ2m)p + (ζ̄2m)p ≡ m mod p. (4.17)

Taking into account that ζ1 > 1 we can choose p such that(
1√
ζ1

)p

< 0.25.

Then by (4.15) ∣∣(ζ2m)p + (ζ̄2m)p
∣∣ < 0.5.

By (4.17) for the relevant p’s we find that

nint
[
(ζ1m)p

] ≡ m mod p. (4.18)

It is left to notice that ξ1 = ζ1 is indeed the positive root of T 1
x
(z) when x = m2.

The proof for ξ2 (4.9) is quite analogous and uses the polynomial

Tx(z) = z3 − z2 − 2xz − x, x �= 0. (4.19)

Example 4.3. For m = 3 by (4.9) we have ξ2 = 1.249115513 · · · , and

nint
[
(3ξ2)p

] ≡ 3 mod p,

is valid only for prime p ≥ 13. Thus,

nint
[
(3ξ2)11

]
= 2046268 ≡ 4 mod 11,

nint
[
(3ξ2)13

]
= 28734930 ≡ 3 mod 13.

Indeed, (
1
ξ2

)11

= 0.29 · · · > 0.25,

(
1
ξ2

)13

= 0.23 · · · < 0.25.

The Fermat factors of 1 will be considered in Sec. 6.
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5. Simple Generalizations

In this section we will present some simple generalization of the previous results. If
in Theorems 4.1 and 4.2 instead of x = m2 we assume x = m, then with almost the
same proof we arrive at the following generalization of the Euler congruence:

m
p−1
2 ≡

(
m

p

)
mod p

valid for odd p’s and all natural m not divisible by p. Here
(

m
p

)
is the Legendre

symbol, (
m

p

)
=

{
1, if ∃x : x2 ≡ m mod p,

−1, otherwise.

The Euler congruence can be reformulated as

√
m(λ(m))p ≡ m

(
m

p

)
mod p (5.1)

where λ(m) =
√

m. Our goal is to find other options for λ(m) satisfying (5.1) with
the nint function used on the left-hand side.

Theorem 5.1. We have

nint[
√

m(λ(m))p] ≡ m

(
m

p

)
mod p (5.2)

if
(a) for any natural m and every odd prime p,

λ(m) =
√

m +
√

m + 4
2

; (5.3)

(b) for m ≥ 5 and every odd prime p,

λ(m) =
√

m +
√

m − 4
2

; (5.4)

(c) for any natural m and large enough prime p,

λ(m) =
1
3

(√
m + 3

√
m
√

m + 18
√

m + 3
√

3(m2 + 11m− 1)

+ 3
√

m
√

m + 18
√

m − 3
√

3(m2 + 11m− 1)
)

; (5.5)

(d) for any natural m and large enough prime p,

λ(m) =
1
3

(
√

m + 3

√
m
√

m + 45
√

m +
3
2

√
3(4m2 + 59m− 32)

+ 3

√
m
√

m + 45
√

m − 3
2

√
3(4m2 + 59m− 32)

)
. (5.6)
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Well-known particular values of the Legendre symbol (see e.g. [3]) yield the
following corollary.

Corollary 5.2. For odd p

nint

[√
2
(√

2 +
√

6
2

)p
]
≡
{

2 mod p if p ≡ ±1 mod 8

−2 mod p if p ≡ ±3 mod 8

nint

[√
3
(√

3 +
√

7
2

)p
]
≡
{

3 mod p if p ≡ ±1 mod 12
−3 mod p if p ≡ ±5 mod 12

nint

[√
5
(√

5 + 1
2

)p
]
≡ nint

[√
5
(√

5 + 3
2

)p
]

≡
{

5 mod p if p ≡ ±1 mod 5
−5 mod p if p ≡ ±2 mod 5

.

This list can be easily extended. Other interesting congruences can be derived
from representations of primes, p ≡ 1 mod 4, as a sum of two mutually prime
squares. It is known (see e.g. [3]) that this representation is unique, and the square
root of the odd summand is a quadratic residue modulo p.

Example 5.3. Let p = 53 = 72 + 22. Therefore
(

7
53

)
= 1, and by the theorem

nint

[√
7
(√

7 +
√

11
2

)53
]
≡ nint

[√
7
(√

7 +
√

3
2

)53
]
≡ 7 mod 53.

6. Fermat Factors of 1

Lemma 6.1. (a) For x ∈ (0, 1), and odd k, k ≥ 3,

Tx(z) = zk − zk−1 − xzk−2 − · · · − xz − x, (6.1)

has the unique real root, ξ1 ∈ (1, 1 +
√

x).
(b) For x ∈ (0, 1), and even k, k ≥ 4, Tx(z) has exactly two real roots, ξ1 ∈

(1, 1 +
√

x), ξ2 ∈ (−x
1

k+1 , 0).

Proof. (a) Let

Ux(z) = Tx(z)(z − 1) = zk+1 − 2zk + (1 − x)zk−1 + x. (6.2)

The derivative dUx(z)
dz has zero z1 = 0 of odd multiplicity (k − 2), and two other

zeros

z2,3 =
1

k + 1
(
k ±

√
(k2 − 1)x + 1

)
> 0.
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Moreover, Ux(z) has local minimum at z2, z2 > 1, and local maximum at z3 ∈ (0, 1).
Since Ux(1) = 0, then Ux(z2) < 0, Ux(z3) > 0. Therefore, there exists a real root ξ1

of Ux(z), and thus of Tx(z). Clearly ξ1 > z2 > 1. However, since Tx(1+
√

x) = x > 0,

ξ1 ∈ (1, 1 +
√

x). (6.3)

At z1 = 0 we have a local minimum of Ux(z). However, Ux(0) > 0. This means that
whence z < 1, Ux(z) > 0. Thus ξ1 from (6.3) is the unique real root of Tx(z).

(b) Again we have local minimum and maximum at z2 and z3. However, now
z1 = 0 is the root of even multiplicity. Therefore, to the left of z3, Ux(z) grows from
−∞ up to Ux(z3) > 0. Thus, along with ξ1 from (6.3), Ux(z), as well as Tx(z), has
another real root ξ2. Since Ux(0) > 0, and

Ux(−x
1

k+1 ) = −2x
k

k+1 − (1 − x)x
k−1
k+1 < 0,

we deduce ξ2 ∈ (−x
1

k+1 , 0).

Lemma 6.2. For small enough x, the absolute values of all roots of Tx(z) defined
in (6.1) but ξ1 > 1, are less than 1.

Proof. The roots of a polynomial are continuous functions of its coefficients. In our
case the roots of Tx(z) continuously depend on x. When x → +0, by Lemma 6.1,
ξ1 → 1 + 0, and (existing for even k) the second real root ξ2 → 0. At x = 0,

T0(z) = zk − zk−1.

This polynomial has two zeros, z1 = ξ1 = 1 and (k−1)-fold root z2 = 0. This means
that all complex roots of Tx(z) tend to 0.

Theorem 6.3. For large enough m and k ≥ 2, the positive root ξ = ξ(m) of

T (z) = mzk − mzk−1 − zk−2 − · · · − z − 1 (6.4)

is a Fermat factor of 1.

Proof. Consider the sequence of polynomials {Rn(x)} defined in (3.10)–(3.11),
possessing the P-property. Then, as it was mentioned before,

{
x�n

2 �Rn

(
1
x

)}
also

possesses the P-property. Moreover,

Rn

(
1
x

)
= −1 +

k∑
j=1

ξn
j (x), (6.5)

where ξj(x) are the roots of T 1
x
(z) defined in (3.12), which for x = m coincide

with the roots of T (z) defined in (6.4). On the other hand, by Lemma 6.2 for large
enough m all the zeros of T 1

m
(z) but ξ1 > 1 have absolute value less than 1. For

x = m and odd prime n = p, by (6.5),

m
p−1
2

(
−1 +

k∑
j=1

ξp
j (m)

)
≡ 0 mod p. (6.6)
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Let p not divide m. Then (6.6) yields

k∑
j=1

ξp
j (m) ≡ 1 mod p.

Notice that this also holds for m divisible by p, since the coefficients of Rn

(
1
x

)
are

divisible by p when n = p.
For large enough m, we have |ξj | < 1, j = 2, 3, . . . , k, and for large enough p,∣∣∣∣∣

k∑
j=2

ξp
j (m)

∣∣∣∣∣ ≤ 0.5,

and

nint
[
ξp
1

] ≡ 1 mod p.

The following result demonstrates that there exist Fermat factors of 1 of arbi-
trary large algebraic degree. We will use the following well-known statement, see
e.g. [4, Sec. 8, Chap. 2, Sec. 3].

Lemma 6.4. Let P (x) be an integer-valued polynomial of degree k, and let there
exist an integer � satisfying

(i) the zeros of P (x) lie in the half-plane �e x < k − 1
2 ;

(ii) P (� − 1) �= 0;
(iii) P (�) is a prime.

Then P (x) is irreducible over rationals.

Theorem 6.5. For any even k ≥ 4, there exist arbitrary large m such that T (z)
from (6.4) is irreducible.

Proof. We will show that � = 3 for some arbitrary large m satisfies all conditions
of Lemma 6.4. Indeed, from Lemmas 6.1 and 6.2 it follows that for large enough m

the zeros of T (z) lie within the circle |z| < 2, belonging to half-plane �e z < 4− 1
2 ≤

k − 1
2 . Moreover,

T (2) = m2k−1 − 2k−2 − · · · − 2 − 1 = (m − 1)2k−1 + 1 �= 0.

Finally, the numbers

T (3) = 2m 3k−1 − (3k−2 + 3k−3 + · · · + 3 + 1),

constitute an arithmetic progression when m varies. The initial term of the progres-
sion is a = 2 · 3k−1 − (3k−2 + 3k−3 + · · ·+ 3 + 1), and the difference is d = 2 · 3k−1.
Since k is even, a is odd and not divisible by 3. Therefore a and d are mutually
prime. Thus by the Dirichlet theorem there exists arbitrary large m for which T (3)
is prime.
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7. Open Problems

We suggest the following research problems on Fermat factors.
(i) The Pisot number is defined as a real root of a polynomial with integer

coefficients with absolute value greater than 1, such that all its conjugates have
absolute value strictly less than 1, see [1]. It is easy to check that all our examples
of Fermat factors are Pisot numbers. Are there Fermat factors which are not Pisot
numbers? Is it possible for every Pisot number to find an integer for which it is a
Fermat factor?

(ii) Are there Fermat factors of numbers greater than 1 having algebraic degree
more than 3? Do numbers exceeding 1 have an infinite number of Fermat factors?

(iii) There are many applications of the Fermat theorem in cryptography, see
e.g. [2]. Are there interesting ways for use of the suggested generalization to cryp-
tographic problems?
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