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Abstract

For a fixed k ∈ N we consider a multiplicative basis in N such that every n ∈ N has the
unique factorization as product of elements from the basis with the exponents not exceed-
ing k. We introduce the notion of k-multiplicativity of arithmetic functions, and study
several arithmetic functions naturally defined in k-arithmetics. We study a generalized
Euler function and prove analogs of the Wirsing and Delange theorems for k-arithmetics.

MSC: Primary 11A51, 11A25; Secondary 11N37

1. Introduction

Let
n =

∏

p∈P

pnp (1)

be the canonical factorization of an integer n to prime powers. In other words, the set
{p ∈ P} constitutes a multiplicative basis in N and np can take any non-negative integer
values. In the paper we consider other multiplicative bases such that any integer has
a unique factorization with the exponents not exceeding some prescribed value k. For
example, if k = 1, then the only such basis is

Q(1) = {p2j
, p ∈ P, j = 0, 1, . . . ,∞},
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and every integer n has the unique factorization

n =
∏

q∈Q(1)

qnq , nq ∈ {0, 1}.

For arbitrary k, the basis is

Q(k) = {p(k+1)j
, p ∈ P, j = 0, 1, . . . ,∞},

and the corresponding k-factorization is

n =
∏

q∈Q(k)

qnq , nq ∈ {0, 1, . . . , k}. (2)

Example 1 For k = 2 we have the ordered basis

Q(2) = {2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, . . . , 512, . . .},

and, for example, 35831808 = 22 · 31 · 81 · 272 · 5121.

Notice that the standard prime basis P is the limiting for k tending to ∞, and, by
definition, P = Q(∞).

For a fixed k we use the term k-primes for the elements of Q(k). We say that a number
d is k-divisor of n if the exponents in the k-factorization of d, dq, do not exceed nq.

In this paper we study some non-trivial generalizations of classical arithmetic func-
tions for the introduced k-factorization. It is organized as follows. We start with some
basic relations in Section 2. In Section 3 we define k-unitary and k-polynitary divisors and
demonstrate that in contrast to the standard ∞-arithmetics in k-arithmetics the maximal
divisors are (k − 1)-ary divisors. In Section 4 we study the k-integer part of ratios and
provide an explicit and asymptotic expressions for it. A k-equivalent of the Euler totient
function is introduced in Section 5, and an explicit and asymptotic formula for it is given.
The classical asymptotic Mertens formula is generalized in Section 6. In Section 7 we
study the average of the sums of k-divisors and some other generalized number-theoretic
functions. In Section 8 we prove some results about relations between the classical Euler
totient function and its k-generalization. In Section 9 we develop k-analogs of the classi-
cal Delange and Wirsing theorems for k-multiplicative functions. Generalizations of the
perfect numbers are considered in Section 10. In Section 11 we study bases associated
with k-prime numbers for different k’s. Open problems are summarized in Section 12.

Particular cases of the described problems were considered earlier. The case of k = 1
was introduced in 1981 in [16]. Later in [18] a class of multiplicative functions for k = 1
was addressed. In 1990 G. L. Cohen [5] introduced the so-called infinitary arithmetics
coinciding with the considered situation when k = 1. In the same paper Cohen treated
infinitary perfect numbers coinciding with harmonic numbers from [17]. These numbers
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were also considered in [12, 18, 23]. Cohen and Hagis [6] analyzed some arithmetic
functions associated with infinitary divisors. A survey of unitary and infinitary analogs
of arithmetic functions is by Finch [10], see also Weisstein [23]. Notice that D. Surya-
narayana [20] introduced a definition of k-ary divisors different from the one considered
in this paper.

2. Basic Relations

Let k ∈ N. Consider the factorization of np, see (1), in the basis of (k + 1),

np =
∑

i≥0

ai(k + 1)i, (3)

where ai = ai(np) are integers belonging to [0, k]. Substituting (3) into (1) we find

n =
∏

p∈P

∏

i≥0

pai(k+1)i
=
∏

p∈P

∏

i≥0

(
p(k+1)i

)ai

. (4)

The uniqueness of (1) and (3) yields the uniqueness of factorization (4). Therefore, the
unique multiplicative basis in k-arithmetic consists of k-primes

Q(k) =
{

p(k+1)j−1
: p ∈ P, j ∈ N

}
, (5)

and by (4) the canonical factorization of an integer n is

n =
∏

q∈Q(k)

qn
(k)
q , (6)

with n(k)
q ≤ k.

To every n we associate the finite multi-set Q(k)
n of k-primes of multiplicity defined

by (6). For every k ≥ 1 we assume Q(k)
1 = ∅.

Definition 1 A number d is called a k-divisor of n if Q(k)
d ⊆ Q(k)

n .

We write d |
kn if d is a k-divisor of n. Set

(n1, n2)k = max
d |

k n1,d |
k n2

d. (7)

It is easy to see that Q(k)
(n1,n2)k

= Q(k)
n1 ∩ Q(k)

n2 .

Definition 2 Numbers n1 and n2 are called mutually k-prime if (n1, n2)k = 1.
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Notice that the mutual k-primality for k ≥ 1 is weaker than the mutual primality
in the ordinary arithmetics. Indeed, (n1, n2) = 1 yields (n1, n2)k = 1 for any k >
1. However, the last equality could be valid also when (n1, n2) > 1. For example,(
2(k+1)2 , 3 · 2k+2

)

k
= 1 for every k.

Definition 3 A function θ(n) is called k-multiplicative if it is defined for all natural n
in such a way that θ(n) )= 0, and for mutually k-prime n1 and n2 we have

θ(n1n2) = θ(n1)θ(n2). (8)

From the definition it follows that θ(1) = 1. In the conventional arithmetics the
k-multiplicative functions can be positioned in between the multiplicative functions and
strongly-multiplicative functions (for which (8) holds for any n1 and n2). Let us list sev-
eral examples of k-analogs following from (6) for generalizations of well-known properties
of multiplicative functions, see e.g. [4, 13].

Let θ(n) be a k-multiplicative function. Then, using q to denote k-primes, we have

∑

d |
k n

θ(d) =
∏

q |
k n



1 +

n
(k)
q∑

i=1

θ(qi)



 and (9)

∑

d |
k n

µk(d)θ(d) =
∏

q |
k n

(1 − θ(q)), (10)

where

µk(n) =

{
0, if there exists q ∈ Q(k) : q2 |

kn,

(−1)
∑

q
|
k n

1
, otherwise.

(11)

The function µk(n) is the analog of the Möbius function in k-arithmetics. A distinction
of µk(n) from µ(n) is, for example, in that when µk(n) )= 0 then n is not necessary
square-free in the conventional sense.

When θ(q) = 1 it follows from (10) that

∑

d |
k n

µk(d) =

{
0, if n > 1,
1, if n = 1.

(12)

Furthermore, (see, e.g., [4] for the absolutely converging series
∑∞

n=1 θ(n)) we have

∞∑

n=1

θ(n) =
∏

q∈Q(k)

(1 + θ(q) + · · · + θ(qk)). (13)

Considering here µk(n)θ(n) instead of θ(n), by (11), we find

∞∑

n=1

µk(n)θ(n) =
∏

q∈Q(k)

(1 − θ(q)). (14)
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On the other hand, for θ(n) = n−s, *(s) > 1, an analog of the Euler identity in k-
arithmetics follows:

ζ(s) =
∏

q∈Q(k)

1 − q−(k+1)s

1 − q−s
. (15)

3. Unitary and Polynitary Divisors

Recall that a unitary divisor of a number n in classical arithmetics is a divisor d of n for
which

(
n
d , d
)

= 1. Let (n, m)(1) stand for the greatest unitary divisor of n and m. Then

a divisor d is called bunitary if
(

n
d , d
)(1)

= 1. Analogously we may inductively define

#-ary divisors of n satisfying
(

n
d , d
)(!−1)

= 1. We write in this case d|(!)n. The infinitary
divisors are limiting in this process (# = ∞). As it was mentioned, they were introduced
by G. L. Cohen [5].

Definition 4 If d |
kn, then d is called k-unitary, or a (1)k-ary divisor of n, if

(
n
d , d
)

k
= 1.

Let us denote by (n, m)(1)
k the greatest common k-unitary divisor of n and m.

Definition 5 If d |
kn then d is called k-bunitary, or a (2)k-ary divisor, if

(
n
d , d
)(1)

k
= 1.

Furthermore, if (n, m)(!−1)
k is the greatest common (# − 1)k-ary divisor of n and m, then

a divisor d of n is called (#)k-ary if
(

n
d , d
)(!−1)

k
= 1. !

By convention, d is called a (0)k-ary divisor if d |
kn. We will write d |

k

(!)
when we wish

to indicate that d is an (#)k-ary divisor of n.

Let us show that, in contrast to the classical arithmetics, in k-arithmetics, k < ∞,
there exist divisors of maximal index #. Such are (k − 1)k-ary divisors. The following
iterations of the considered process do not change the (k − 1)k-arity of the divisors. In
other words, whenever # ≥ k − 1, the (#)k-ary divisors are (k − 1)k-ary divisors.

For the proof we employ the following statement due to Cohen [5]:

If p is a prime, then for an integer y ∈ [0, #], and an integer x ∈ [0, y], we have

px|(!−1)py ⇔ px|(y−1)py. (16)

To prove it one should use a trivial fact that the only factors of py are 1, p, . . . , py. For
y ≤ k this is true for any k-prime q ∈ Q(k). Therefore, analogously to (16) for y ∈ [0, k],
we have

px |
k

(k−1)

py ⇔ px |
k

(y−1)

py. (17)
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Analogously, by (16), for y ∈ [0, k + 1], we obtain

px|(k)py ⇔ px|(y−1)py. (18)

However, the last identity is valid in both, the conventional and k-arithmetics. Indeed,
for y ≤ k by (17) and (18),

px |
k

(k−1)

py ⇔ px |
k

(k)

py,

and for y = k + 1, (18) becomes a tautology. Therefore, in k-arithmetics we have for all
y,

px |
k

(k)

py ⇔ px |
k

(k−1)

py,

and the claim easily follows.

In particular,

px |
1

(1)

py ⇔ px |
1

(0)

py,

or px |
1p

y, i.e. in 1-arithmetics all the divisors are 1-unitary.

4. The Function
⌊

x
m

⌋(k)

Let us introduce the function , x
m-(k) being a natural generalization of the function , x

m- as
a function in x for a fixed m. We use , x

m-(k) to denote the number of integers not exceeding
x for which m is a k-divisor. In contrast to , x

m-, as will be seen from what follows, there
is in principle no algorithm for computing , x

m-(k), if the canonical factorization of m in
k-arithmetics is not known. Moreover, without such factorization it is impossible even to
compute the main asymptotical term of , x

m-(k) for x → ∞. The following theorem gives
an explicit expression for , x

m-(k).

4.1. An Exact Formula for
⌊

x
m

⌋(k)

Theorem 1 Let m = q!1
1 q!2

2 . . . q!r
r , 1 ≤ #i ≤ k, be the k-factorization of m (notice, that

the indices of qi’s are not necessary their consecutive numbers in the ordered sequence of
Q(k)). Then for positive real x ≥ m,

⌊ x

m

⌋(k)

=
∑

j1≥!1

∑

j2≥!2

. . .
∑

jr≥!r

((
r∏

i=1

a(!i)
ji

)⌊
x

∏r
i=1 qji

i

⌋)
, (19)
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where for fixed # > 0,

a(!)
j =






1 if j ≡ # mod(k + 1),
−1 if j ≡ 0 mod(k + 1),

0 otherwise.
(20)

To prove the theorem we will need the following lemma.

Lemma 1 Let m and n be positive integers, and m = q!1
1 q!2

2 . . . q!r
r , 1 ≤ #i ≤ k, be the

factorization of m to powers of k-prime numbers. Let, moreover, νj ≥ 1 be the maximal
power of k-prime qj dividing n, j = 1, . . . , r. Then m |

kn if and only if

νj ≥ #j, νj ≡ #j, #j + 1, . . . , k mod(k + 1), j = 1, 2, . . . , r. (21)

Proof. Denote by ij the maximal power of qk+1
j dividing n, j = 1, 2, . . . , r. Notice that

q
!j

j
|
kn if and only if

q
!j

j

∣∣∣
n

(
qk+1
j

)ij .

Thus q
!j

j
|
kn if and only if q

(k+1)ij+!j

j |n. Since 1 ≤ #j ≤ k,

νj ∈ [(k + 1)ij + #j, (k + 1)ij + k] , j = 1, 2, . . . , r.

Indeed, increasing νj we violate the assumption about maximality of ij. !

Proof of Theorem 1. Let x be a positive real. Consider all possible collections of r
non-negative integers α1, α2, . . . , αr, satisfying qα1

1 qα2
2 . . . qαr

r ≤ x. Let us partition the
sequence 1, 2, . . . , ,x- into non-intersecting classes Tα1,...,αr according to the rule:

h ∈ Tα1,...,αr if

max

{
τ ≥ 0 : qτ

i

|
k
h

}
= αi, i = 1, 2, . . . , r.

Using inclusion-exclusion for the cardinalities of the classes we obtain

|Tα1,...,αr | = ,λ- −
∑

1≤i≤r

⌊
λ

qi

⌋
+

∑

1≤i<j≤r

⌊
λ

qiqj

⌋
−

−
∑

1≤i<j<!≤r

⌊
λ

qiqjq!

⌋
+ . . . + (−1)r

⌊
λ

q1q2 . . . qr

⌋
, (22)

where
λ =

x

qα1
1 qα2

2 . . . qαr
r

.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A33 8

By Lemma 1, m |
kqα1

1 qα2
2 . . . qαr

r if and only if αj ≡ #j, #j + 1, . . . , k mod(k + 1), j =
1, 2, . . . , r. Therefore,

⌊ x

m

⌋(k)

=
∑

αj≡!j ,!j+1,...,k mod(k+1), j=1,2,...,r

|Tα1,...,αr | . (23)

Specifically, let us consider the summands with #j ≤ αj ≤ k + 1 (other groups of sum-
mands mod(k+1) are considered analogously). Let us correspond to every summand of

form
⌊

λ
qi1qi2 ...qis

⌋
in (22) the monomial xα1

1 xα2
2 . . . xαr

r · xi1xi2 . . . xis . Clearly it is a one-to-

one correspondence. Assuming that for a linear combination of summands we correspond
the same linear combination of the images, we find that to |Tα1,...,αr |, see (22), corresponds
the polynomial

Pα1,...,αr(x1, . . . , xr) = xα1
1 xα2

2 . . . xαr
r

r∑

s=0

(−1)s
∏

1≤i1<i2<...<is≤r

xi1xi2 . . . xis ,

and to the considered subsum of (23) corresponds the polynomial

R(x1, . . . , xr) =
∑

αj=!j ,!j+1,...,k;j=1,2,...,r

xα1
1 xα2

2 . . . xαr
r ·

·
r∑

s=0

(−1)s
∏

1≤i1<i2<...<is≤r

xi1xi2 . . . xis . (24)

The statement of the theorem is true if we manage to prove that

R(x1, . . . , xr) =
∑

!1≤i1≤k+1

∑

!2≤i2≤k+1

. . .
∑

!r≤ir≤k+1

(
r∏

s=1

a(!s)
is

)
xi1

1 xi2
2 . . . xir

r . (25)

Since
r∑

s=0

(−1)s
∏

1≤i1<i2<...<is≤r

xi1xi2 . . . xis =
r∏

j=1

(1 − xj),

we find from (24) that

R(x1, . . . , xr) =
r∏

j=1

k∑

αj=!j

(x
αj

j − x
αj+1
j ) =

r∏

j=1

(x
!j

j − xk+1
j ),

and (25) follows. !

Example 2 Let k = 2, m = 12, x = 100. Then q1 = 2, q2 = 3, #1 = 2, #2 = 1, and by
(19) we have ⌊

100

12

⌋(2)

=
∑

j1≥2

∑

j2≥1

a(2)
j1 a(1)

j2

⌊
100

2j13j2

⌋
,
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where

a(2)
j1 =






1, if j1 ≡ 2 mod 3
−1, if j1 ≡ 0 mod 3

0, otherwise

and

a(1)
j2 =






1, if j2 ≡ 1 mod 3
−1, if j2 ≡ 0 mod 3

0, otherwise

Therefore, we have

⌊
100
12

⌋(2)
= a(2)

2 a(1)
1

⌊
100
223

⌋
+ a(2)

3 a(1)
1

⌊
100
233

⌋
+ a(2)

4 a(1)
1

⌊
100
243

⌋

+a(2)
5 a(1)

1

⌊
100
253

⌋
+ a(2)

2 a(1)
2

⌊
100
2232

⌋
+ a(2)

3 a(1)
2

⌊
100
2332

⌋

=
⌊

100
223

⌋
−
⌊

100
233

⌋
+
⌊

100
253

⌋

= 8 − 4 + 1 = 5.

Indeed, we have five numbers not exceeding 100, which are 2-multiples of 12: 12, 36, 60, 84,
96. !

Notice that when x = n, the value
⌊

n
m

⌋(k)
is a complicated arithmetic function in

two variables which, in contrast to the conventional function
⌊

n
m

⌋
=
⌊

n
m

⌋(∞)
, is not

homogeneous, i.e., in general
⌊

n
m

⌋(k) )=
⌊

nt
mt

⌋(k)
.

Example 3 Though 25
3 = 50

6 = 600
72 = 100

12 = 300
36 , we have

⌊
25

3

⌋(2)

= 8,

⌊
50

6

⌋(2)

= 7,

⌊
600

72

⌋(2)

= 6,

⌊
100

12

⌋(2)

= 5,

⌊
300

36

⌋(2)

= 4.

The question about the minimum of
⌊

nt
mt

⌋(k)
in t is an interesting open problem in

k-arithmetics.

4.2. Asymptotic Formula for
⌊

x
m

⌋(k)

Theorem 2 a) If m = q!1
1 q!2

2 . . . q!r
r , 1 ≤ #i ≤ k, qi ∈ Q(k), then

⌊ x

m

⌋(k)

= x
r∏

i=1

qk+1−!i
i − 1

qk+1
i − 1

+ θ lnr x, (26)
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such that

|θ| ≤
r∏

i=1

1

ln qi
.

b) For any ε > 0 there exists a constant aε > 0 depending only on ε, such that uniformly
in m ≤ x the following inequality holds:

∣∣∣∣∣

⌊ x

m

⌋(k)

− x
r∏

i=1

qk+1−!i
i − 1

qk+1
i − 1

∣∣∣∣∣ ≤ aεx
ε. (27)

Proof. a) Omitting in the right-hand side of (19) the floor function and taking into account
that by (20),

∑

j≥!

a(!)
j

1

qj
=
∑

i≥1

(
1

q(k+1)(i−1)+!
− 1

q(k+1)i

)
=

qk+1−! − 1

qk+1 − 1
, (28)

we obtain instead of the right-hand side of (19) the following value:

x
r∏

i=1

qk+1−!i
i − 1

qk+1
i − 1

.

The remainder in (26) is an evident estimate for the number of non-zero summands in
(19).

b) Notice that the number of divisors m is at least 2r, which, by the Wiman-Ramanujan
theorem (see e.g. [14]), for large enough n > nδ does not exceed

2(1+δ) ln x
ln ln x (29)

uniformly in m ≤ x. Therefore,

r ≤ (1 + δ)
ln x

ln ln x
. (30)

Furthermore, the number of non-zero summands in the right-hand side of (19) does not
exceed the number of solutions in natural numbers k1, k2, . . . , kr of the inequality

r∏

i=1

2ki ≤ x, (31)

or, which is the same, the number of solutions to the inequality

k1 + k2 + . . . + kr ≤ ,log2 x-. (32)

Denote by c(r, n) the number of compositions of n with exactly r parts. It is well
known [1] that c(r, n) =

(
n−1
r−1

)
. Therefore, the number Nx of solutions to (32) is

'log2 x(∑

i=1

c(r, i) =
'log2 x(∑

i=1

(
i − 1
r − 1

)
=
(
,log2 x- + 1

r

)
− δr,1 ≤

(
,log2 2x-

r

)
≤
(

,log2 2x-
(1 + δ) ln x

ln ln x

)
, (33)
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where the last inequality follows from (30). Now using the Stirling approximation we
obtain

Nx ≤ x
ln ln ln x
ln ln x (1 + o(x)). (34)

Therefore, for x > xε,
Nx ≤ xε. (35)

It is only left to choose the constant aε in such a way that (35) will hold as well for
x ≤ xε. !

Remark 1 It is known [14] that estimate (29) cannot be essentially improved, i.e. there
are infinitely many n ≤ x for which the number of divisors exceeds 2(1−δ) ln x

ln ln x . Let us
show that also in the case k < ∞, (29) cannot be essentially improved when k-divisors
are used instead of the conventional divisors.

Indeed,
∏

p≤N,p∈P p ∼ eN+o(N). Let us consider the most distinct from the conven-
tional case k = 1. For r large enough consider n =

∏
p≤pr

p. We have

n ≤ epr(1+ε) ⇒ pr ≥
ln n

1 + ε
, r ≥ π

(
ln n

1 + ε

)
≥

ln n
1+ε(1 − ε)

ln ln n − ln(1 + ε)
.

Therefore, for 2r divisors of n (coinciding with 1-divisors) we have

2r ≥ 2
(ln n)(1−2ε)

ln ln n−ln(1+ε) ≤ 2(1−δ) ln n
ln ln n

for a relevant small enough δ. It is easy to check that (34) cannot be essentially improved
by a more accurate estimate of the number of summands in the right-hand side of (19),
i.e., the number

k1 ln q1 + · · · + kr ln qr ≤ ,ln x-, (36)

instead of the estimate (31). It is known [3] that the number of solutions to (36) in

natural numbers is O
(

lnr x
r!
∏

i≤r ln qi

)
. This by more cumbersome calculations using (30)

also yields (34). !

Example 4 The obtained asymptotics provide accurate enough estimates even for small
numbers. For example, using the main term (27), we get (with rounding)

⌊
25

3

⌋(2)

= 7.7,

⌊
50

6

⌋(2)

= 6.6,

⌊
600

72

⌋(2)

= 5.7,

⌊
100

12

⌋(2)

= 4.4,

⌊
300

36

⌋(2)

= 3.3.

This can be compared to the exact values 8, 7, 6, 5, and 4 appearing in Example 3. !
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5. A k-analog of the Euler Function

Let us consider a k-analog of the Euler function in k-arithmetics:

ϕk(n) =
∑

1≤j≤n:(j,n)k=1

1. (37)

Example 5 It is easy to check that

ϕ1(100) = 77, ϕ2(100) = 46, ϕ3(100) = 43, ϕ4(100) = 42, ϕ5(100) = 41,

and ϕk(100) = 40 for k ≥ 6.

Notice that it is convenient considering the Euler function along with the more general
function

ϕk(x, n) =
∑

1≤j≤x:(j,n)k=1

1, (38)

such that ϕk(n) = ϕk(n, n).

Theorem 3

ϕk(x, n) =
∑

d |
k n

µk(d)
⌊x

d

⌋(k)

. (39)

Remark 2 Consider a structurally close to ϕ(n), but not having a clear arithmetic sense,
multiplicative function

ϕ̃k(n) =
∑

d |
k n

µk(d)
n

d
. (40)

Notice, that in contrast to ϕ̃k(n) the function ϕk(n) is not multiplicative. In particular
the equality ∑

d |
k n

ϕk(d) = n,

is not valid here (though is correct for (40)). Therefore, and as well since
⌊

n
d

⌋(k)
is not a

function of the ratio n
d , apparently there is no way to use here the k-analog of the Möbius

inversion: ∑

d |
k n

f(d) = F (n) ⇒
∑

d |
k n

µk(d)F
(n

d

)
= f(n).

Moreover, it follows from (40) that

ϕ̃k(n) = n
∏

q |
k n, q∈Q(k)

(
1 − 1

q

)
. (41)
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We will see later that this means that ϕ̃k(n) even asymptotically does not approximate
ϕk(n). Nevertheless we will demonstrate that ϕk(n) is accurately approximated by some
simple enough multiplicative function.

Proof of Theorem 3. For every fixed n let us consider the k-multiplicative function λ(k)
n (m)

defined on the powers of k-primes as

λ(k)
n (q!) =

{
1, if q! |

kn;
0, otherwise,

1 ≤ # ≤ k.

Then for every m ≤ n we have

λ(k)
n (m) =

{
1, if m |

kn;
0, otherwise.

(42)

It follows from (38) and (42) that

ϕk(x, n) =
∑

1≤j≤x

∏

q |
k n

(
1 − λ(k)

j (q)
)

. (43)

Indeed, if there is no k-prime, which simultaneously k-divides n and k-divides j, then
(j, n)k = 1 and ∏

q |
k n

(
1 − λ(k)

j (q)
)

= 1.

If there is at least one k-prime q that k-divides simultaneously n and j, then
∏

q |
k n

(
1 − λ(k)

j (q)
)

= 0.

This gives (43). Let us rewrite now (10) for θ(d) = λ(k)
j (d). We have

∏

q |
k n

(
1 − λ(k)

j (q)
)

=
∑

d |
k n

µk(d)λ(k)
j (d). (44)

We deduce from (43) and (44)

ϕk(x, n) =
∑

1≤j≤x

∑

d |
k n

µk(d)λ(k)
j (d) =

∑

d |
k n

µk(d)
∑

1≤j≤x

λ(k)
j (d). (45)

However, it follows from (42) that

∑

1≤j≤x

λ(k)
j (d) =

⌊x

d

⌋(k)

, (46)

and (45) and (46) yield (39). !

Now we are in a position to present an explicit expression for ϕk(n).
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Theorem 4 Let q1, q2, . . . , qr, be all k-prime k-divisors of n. Then

ϕk(x, n) =
∑

(−1)τ1+τ2+...+τr

⌊
x

qt1
1 qt2

2 . . . qtr
r

⌋
, (47)

where the summation is over all non-negative t1, t2, . . . , tr, for which ti ≡ 0 mod(k + 1)
or ti ≡ 1 mod(k + 1), and

τi =

{
0, if ti ≡ 0 mod(k + 1),
1, if ti ≡ 1 mod(k + 1),

(48)

i = 1, 2, . . . , r.

Proof. According to Theorem 3 it is sufficient to consider the divisors of n having the
form d = qi1qi2 . . . qih , 1 ≤ i1 < i2 < . . . < ih ≤ r. By Theorem 1 in this case

⌊x

d

⌋(k)

=
∑

j1≥1

∑

j2≥1

. . .
∑

jh≥1

(
h∏

i=1

a(1)
ji

)⌊
x

qj1
i1 qj2

i2 . . . qjh
ih

⌋
, (49)

where

a(1)
j =






1, if j ≡ 1 mod(k + 1),
−1, if j ≡ 0 mod(k + 1),

0, otherwise.
(50)

Set

θ(j) =

{
0, if j ≡ 0 mod(k + 1),
1, if j ≡ 1 mod(k + 1).

(51)

Then by (49)-(50) we have

⌊x

d

⌋(k)

=
∑

(−1)θ(j1)+θ(j2)+...+θ(jh)+h

⌊
x

qj1
i1 qj2

i2 . . . qjh
ih

⌋
,

where the summation is over all ji ≥ 1 for which ji ≡ 0 mod(k+1) or ji ≡ 1 mod(k+1).
Hence for d = qi1qi2 . . . qih ,

µk(d)
⌊x

d

⌋(k)

=
∑

(−1)θ(j1)+θ(j2)+...+θ(jh)

⌊
x

qj1
i1 qj2

i2 . . . qjh
ih

⌋
.

By Theorem 3 then

ϕk(x, n) =
∑

1≤i1<i2<...<ih≤r

∑
(−1)θ(j1)+θ(j2)+...+θ(jh)

⌊
x

qj1
i1 qj2

i2 . . . qjh
ih

⌋
, (52)

where the internal summation is over all ji ≥ 1 satisfying either j ≡ 0 mod(k + 1) or
j ≡ 1 mod(k + 1). Clearly (47) follows from (52) and (51). !
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Example 6 For n = x = 100 (r = 2, q1 = 2, q2 = 5) we have by (47) and (48),

ϕ2(100) =
∑

t1≥0, t1≡0 or 1 mod 3

∑

t2≥0, t2≡0 or 1 mod 3

(−1)τ1+τ2

⌊
100

2t15t2

⌋
=

= 100 − 100

2
+

⌊
100

8

⌋
−
⌊

100

16

⌋
+

⌊
100

64

⌋
−

−100

5
+

100

2 · 5 −
⌊

100

8 · 5

⌋
+

⌊
100

16 · 5

⌋
= 46.

Now we treat the asymptotic behavior of ϕk(n).

Theorem 5
ϕk(x, n) = κk(n)x + O ((nx)ε) , (53)

where

κk(n) =
∏

q |
k n

(
1 +

1

q
+ . . . +

1

qk

)−1

,

and the implied constant only depends on ε.

Proof. Set

n∗ =
∏

q |
k n

qk+1 − 1

qk − 1
. (54)

Using Theorem 3 and the uniform estimate (27) for #i = 1, i = 1, 2, . . . , r, we find
∣∣∣∣∣∣∣
ϕk(x, n) − x

∑

d |
k n

µk(d)

d∗

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∑

d |
k n

µk(d)

(⌊x

d

⌋(k)

− x

d∗

)
∣∣∣∣∣∣∣
≤

≤
∑

d |
k n

∣∣∣∣
⌊x

d

⌋(k)

− x

d∗

∣∣∣∣ ≤ aεx
ε
∑

d |
k n

1 = aεx
ετ (k)(n) ≤ aεx

ετ(n), (55)

where τ (k)(n) is the number of k-divisors of n, and τ(n) is the number of conventional
divisors of n. By the Wiman-Ramanujan theorem (see e.g. [14]) for δ > 0 and n > n0(δ),

τ(n) < n
(1+δ) ln 2

ln ln n < nε, n ≥ nε.

By (55) and (53) this means that it is sufficient to demonstrate that

∑

d |
k n

µk(d)

d∗ =
∏

q |
k n

(
1 +

1

q
+ . . . +

1

qk

)−1

. (56)
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This easily follows from (10) if one sets θ(n) = (n∗)−1. !

Theorem 5 is a generalization of the main result of [16] which can be deduced from it
setting k = 1, x = n. As well Theorem 14 of [6] is a particular case of our theorem when
k = 1.

Notice that for the values ϕk(n) presented in Example 5, using the main term (53)
for x = n we obtain the following approximations: ϕ1(100) ≈ 76.9 (the exact value 77),
ϕ2(100) ≈ 46.1(46), ϕ3(100) ≈ 42.7(43), ϕ4(100) ≈ 41.3(42), ϕ5(100) ≈ 40.6(41), and
ϕk(100) ≈ 40.3(40) for k ≥ 6. Thus the approximation is quite accurate even for small
n’s.

6. Sums of the Values of the k-Euler Function

The following double summation formula due to Mertens (see e.g. [9]) is well known:

n∑

i=1

ϕ(i) =
3

π2
n2 + O(n ln n). (57)

Consider
∑n

i=1 ϕk(n). We will need an estimate for the following sum:

νk(x, d) =
∑

1≤i≤x:d |
k i

i (58)

for the numbers of the form

d = q1q2 . . . qr, q1 < q2 < . . . < qr, qi ∈ Q(k), i = 1, 2, . . . , r. (59)

Lemma 2 Let d be of the form (59). Then for any ε > 0 there exists a bε > 0, such that
∣∣∣∣νk(x, d) − x2

2d∗

∣∣∣∣ ≤ bεx
1+ε, (60)

where

d∗ =
r∏

i=1

qk+1
i − 1

qk
i − 1

. (61)

Proof. By (27) when #i = 1 uniformly in d ≤ x we have

⌊x

d

⌋(k)

=
∑

1≤i≤x:d |
k i

1 =
x

d∗ + O(xε). (62)

Using the Stieltjes integration with the integrator
⌊

x
d

⌋(k)
(assuming d is a constant) we

obtain the sought results from (62). !
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Theorem 6 We have for any ε > 0,

∑

n≤x

ϕk(n) =
x2

2

∏

q∈Q(k)

(
1 −

(
qk − 1

qk+1 − 1

)2
)

+ o(x1+ε).

Proof. Using (39) and (62) for x = n we find

∑

n≤x

ϕk(n) =
∑

n≤x

∑

d |
k n

µk(d)
⌊n

d

⌋(k)

=

=
∑

n≤x

n
∑

d |
k n

µk(d)

d∗ + o(x1+ε) =
∑

d≤x

µk(d)

d∗

∑

n≤x: d |
k n

n + o(x1+ε).

From Lemma 2 now we get

∑

n≤x

ϕk(n) =
∑

d≤x

µk(d)

d∗

(
x2

2d∗ + o(x1+ε)

)
=

=
x2

2

∑

d≤x

µk(d)

(d∗)2
+ o

(
x1+ε

∑

d≤x

µk(d)

d∗

)
. (63)

Notice that since

d∗ =
r∏

i=1

qk+1
i − 1

qk
i − 1

>
r∏

i=1

qi = d,

we have ∣∣∣∣∣
∑

d≤x

µk(d)

d∗

∣∣∣∣∣ ≤
∑

d≤x

1

d
= O(log x).

Moreover, ∣∣∣∣∣
∑

d≥x

µk(d)

(d∗)2

∣∣∣∣∣ ≤
∑

d>x

1

d2
≤ 1

x − 1
.

Therefore, by (63),
∑

n≤x

ϕk(n) =
x2

2

∞∑

i=1

µk(i)

(i∗)2
+ o(x1+ε),

where by (61) n∗ is a k-multiplicative function.

Finally, using (14) for θ(n) = (n∗)−2 we obtain the claim. !

In particular, when k = 1, a result from [6] follows from the theorem:

∑

n≤x

ϕ1(n) =
x2

2

∏

q∈Q(1)

(
1 − 1

(q + 1)2

)
+ o(x1+ε) = 0.3666252769 . . . x2 + o(x1+ε).
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Here (and in what follows) the constant was computed in [10], see also [7, 11] for efficient
computational methods.

When k → ∞ we find from the theorem that

∑

n≤x

ϕ(n) ∼ x2

2

∏

p∈P

(
1 − 1

p2

)
=

3

π2
x2. (64)

7. Other Functions

Let us consider several natural arithmetical functions.

1. The function ϕ̃k(n) has been defined above in (40) and (41) as a second (formal)
generalization of the Euler totient function. For k = 1, ϕ̃1(n) was considered in [6] and
[10]. For it we analogously deduce:

∑

n≤x

ϕ̃k(n) =
∑

n≤x

∑

d |
k n

µk(d)
n

d
=
∑

n≤x

n
∑

d |
k n

µk(d)

d
=

=
∑

d≤x

µk(d)

d

∑

n≤x: d |
k n

n =
∑

d≤x

µk(d)

d
νk(x, d) =

=
∑

d≤x

µk(d)

d

(
x2

2d∗ + o(x1+ε)

)
=

x2

2

∞∑

i=1

µk(i)

ii∗
+ o(x1+ε) =

=
x2

2

∏

q∈Q(k)

(
1 − qk − 1

(qk+1 − 1)q

)
+ o(x1+ε).

In particular, when k = 1,

∑

n≤x

ϕ1(n) ∼ x2

2

∏

q∈Q(1)

(
1 − 1

q(q + 1)

)
= 0.3289358388 . . . x2,

like in [6], the constant has been computed in [10]. If k → ∞ we arrive again at the
classical expression (64).

2. The summatory function for sums of k-divisors.

Consider
∑

n≤x σk(n) where σk(n) is the sum of k-divisors of n. Analogously to
Lemma 2 we obtain from (27) the following result for the function νk(x, d) from (58):

νk(x, d) =
x2

2d∗ + o(x1+ε), (65)
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where

d∗ =
∏

q |
k d

qk+1 − 1

qk+1−d
(k)
q − 1

, (66)

and d(k)
q is defined by the factorization (6) for n = d. Furthermore,

∑

n≤x

σk(n) =
∑

n≤x

∑

d |
k n

n

d
=
∑

n≤x

n
∑

d |
k n

1

d
=

=
∑

d≤x

1

d

∑

n≤x: d |
k n

n =
∑

d≤x

νk(x, d)

d
=

=
∑

d≤x

1

d

(
x2

2d∗ + o(x1+ε)

)
=

x2

2

∞∑

i=1

1

ii∗
+ o(x1+ε).

Setting in (13), θ(n) = 1
nn∗ and noticing that by (66),

θ(qj) =
qk−j+1 − 1

(qk+1 − 1)qj
, j = 1, 2, . . . , k,

we find

∑

n≤x

σk(n) =
x2

2

∏

q∈Q(k)

(
1 +

qk+1

qk+1 − 1

k∑

j=1

1

q2j
− 1

qk+1 − 1

k∑

j=1

1

qj

)
+ o(x1+ε) =

=
x2

2

∏

q∈Q(k)

(
1 +

qk − 1

qk(q2 − 1)

)
+ o(x1+ε).

In particular, when k = 1,

∑

n≤x

σ1(n) ∼ x2

2

∏

q∈Q(1)

(
1 +

1

q(q + 1)

)
= 0.7307182421 . . . x2,

coinciding with [6, 10]. When k → ∞ we obtain a result from [10],

∑

n≤x

σ(n) ∼ x2

2

∏

p∈P

(
1 +

1

p2 − 1

)
=

ζ(2)

2
x2 =

π2

12
x2.

3. The numbers k-free from the (i + 1)-st powers.

Consider the sequence Sk(i) of numbers in k-arithmetics for which in the canonical
representation (6) only the powers not exceeding i are allowed, i ≤ k− 1. Let us find the
asymptotics for the sum,

∑
n∈S

(i)
k

1. Using inclusion-exclusion we have

∑

n∈S
(i)
k

1 = ,x- −
∑

q≤x

⌊
x

qi+1

⌋(k)

+
∑

q1<q2≤x

⌊
x

qi+1
1 qi+1

2

⌋(k)

− . . . =
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=
∑

n≤x

∑

di+1 |
k n

µk(d) =
∑

d≤x
1

i+1

µk(d)
∑

n≤x: di+1 |
k n

1 =

=
∑

d≤x
1

i+1

µk(d)
⌊ x

di+1

⌋(k)

=
∑

d≤x
1

i+1

µk(d)

(
x

(di+1)∗
+ o(xε)

)
,

where the last equality is by Theorem 2. Therefore,

∑

n∈S
(i)
k

1 = x
∑

d≤x
1

i+1

µk(d)

(di+1)∗
+ o

(
x

1
i+1+ε

)
= x

∞∑

d=1

µk(d)

(di+1)∗
+ o

(
x

1
i+1+ε

)
.

Since 1
(ni+1)∗ is a k-multiplicative function for a fixed i, by (14) we conclude that

∑

n∈S
(i)
k

1 = x
∏

q∈Q(k)

(
1 − qk−i − 1

qk+1 − i

)
+ o

(
x

1
i+1+ε

)
.

In particular, when k → ∞ we obtain the known result, cf. [21],

∑

n∈S
(i)
∞

1 ∼ x
∏

p∈P

(
1 − 1

pi+1

)
=

x

ζ(i + 1)
.

4. k-complete numbers.

A number n is called k-complete if in its factorization (6) at least one k-prime has
power k. Let Fk(x) be the number of k-complete numbers not exceeding x. For k = 1
clearly F1(x) = ,x- − 1. Using inclusion-exclusion, for k ≥ 2, we deduce

Fk(x) = −
∑

n≤x
1
k

∑

d>1: dk |
k n

µk(d) =
⌊
x

1
k

⌋
−
∑

n≤x
1
k

∑

d≥1: dk |
k n

µk(d) =

=
⌊
x

1
k

⌋
−

∑

1≤d≤x
1
k

µk(d)
∑

n≤x
1
k : dk |

k n

1 =

=
⌊
x

1
k

⌋
−

∑

1≤d≤x
1
k

µk(d)

⌊
x

1
k

dk

⌋(k)

=

=
⌊
x

1
k

⌋
−

∑

1≤d≤x
1
k

(
µk(d)

x
1
k

(dk)∗
+ o(xε)

)
,

where the last equality is due to Theorem 2. Furthermore,

Fk(x) =
⌊
x

1
k

⌋
− x

1
k

∑

1≤d≤x
1
k

µk(d)

(dk)∗
+ o(x

1
k +ε) =



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A33 21

= x
1
k

(
1 −

∞∑

d=1

µk(d)

(dk)∗

)
+ o(x

1
k +ε).

Since (nk)∗ is k-multiplicative, then by (14) for θ(n) = (nk)∗ we have finally for k ≥ 2,

Fk(x) = x
1
k



1 −
∏

q∈Q(k)

(
1 − q − 1

qk+1 − 1

)

+ o(x
1
k +ε).

8. Relations Between ϕk(n) and ϕ(n)

Since for all n and k we have ϕk(n) ≥ ϕ(n), it is of interest to study the equation

ϕk(n) − ϕ(n) = c, (67)

for a nonnegative constant c.

Theorem 7 For any nonnegative integer c the equation (67) has an infinite number of
solutions.

Proof. 1) Let c = 0. Assume n = pa, where p is a prime, a ≥ 1. Let (k + 1)m−1 ≤ a ≤
(k + 1)m, and a has the following representation in the basis k + 1:

a = (αm−1, αm−2, . . . , α0)k+1, 0 ≤ αi ≤ k, αm−1 ≥ 1.

Let us demonstrate that ϕk(pa) = ϕ(pa) if and only if all αi ≥ 1, i = 0, 1, . . . , m − 2.
Indeed, let there exist j ≤ m − 2 such that αj = 0. Then p(k+1)j ≤ p(k+1)m−2

< pa,

but
(
p(k+1)j

, pa
)

k
= 1. Therefore, ϕk(pa) > ϕ(pa), and we are done. In the opposite

direction, if ϕk(pa) > ϕ(pa), then there exists j ≤ m − 2, for which
(
p(k+1)j

, pa
)

k
= 1,

but then αj = 0. In particular, if α0 = α1 = . . . = αm−1 = 1 then, by the above claim,

for the number a = 1 + (k + 1) + (k + 1)2 + . . . + (k + 1)m−1 = (k+1)m−1
k we have

ϕk

(
p

1
k ((k+1)m−1)

)
= ϕ

(
p

1
k ((k+1)m−1)

)

for every prime p and integer m.

2) Let now c ≥ 1. It is well known, see e.g. [14], that for any ε > 0 there exists x0(ε)
such that for every x > x0(ε) between x and (1+ε)x there is a prime. Set ε = 1

c . Choose

a prime p > max

(
x0( 1

c)
c , c

)
, and set x = cp. Then x > x0

(
1
c

)
. Therefore, between cp

and
(
1 + 1

c

)
cp = (c + 1)p, there is a prime. Let us denote it by q: cp < q < (c + 1)p. We

will show now that
ϕk(p

kq) = ϕ(pkq) + c. (68)
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Indeed, since c < p, the numbers

pk+1, 2pk+1, . . . , cpk+1,

are mutually k-prime with pkq. Moreover cpk+1 < pkq, but (c+1)pk+1 > pkq. This implies
(68). The theorem is proved since for every c there exists an infinite set of possibilities
for the choice of relevant p and q. !

Let us prove another statement about the intermediate position of ϕk(n) between
ϕ(n) and n.

Theorem 8

lim inf
n→∞

ϕk(n)

n
= 0, lim sup

n→∞

ϕk(n)

ϕ(n)
= ∞.

Proof. Set n = nm =
∏m

i=1 pi, m ≥ 1, where pn is the n-th prime. By Theorem 5

ϕk(nm)

nm
=

m∏

i=1

(
1 +

1

pi
+ . . . +

1

pk
i

)−1

+ o
(
n−1+ε

m

)
. (69)

We have
m∏

i=1

(
1 +

1

pi
+ . . . +

1

pk
i

)
≥

m∏

i=1

(
1 +

1

pi

)
=

=

∏m
i=1

(
1 − 1

p2
i

)

∏m
i=1

(
1 − 1

pi

) =
eγ

ζ(2)
ln pm,

where for the last equality see [14], and γ is the Euler constant. Thus (69) yields the first
statement of the theorem.

Furthermore, for n = nk+1
m we deduce

ϕk(nk+1
m )

ϕ(nk+1
m )

=

∏m
i=1

(
1 + 1

pk+1
i

+ . . . + 1

p
k(k+1)
i

)−1

+ o
(
n(k+1)(−1+ε)

m

)

∏m
i=1

(
1 − 1

pi

) . (70)

Since

∏m
i=1

(
1 + 1

pk+1
i

+ . . . + 1

p
k(k+1)
i

)−1

∏m
i=1

(
1 − 1

pi

) >

∏m
i=1

(
1 − 1

pk+1
i

)

∏m
i=1

(
1 − 1

pi

) =
eγ

ζ(k + 1)
ln pm,

(70) yields the second statement of the theorem. !

Furthermore, let us show that the following result is valid.
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Theorem 9 For any natural number k,

lim inf
n→∞

ϕk(n) ln ln n

n
= e−γ, (71)

where γ is the Euler constant.

Proof. The statement of the theorem is well known in the conventional case k = ∞. Since
for every natural k we have ϕk(n) ≥ ϕ(n), we conclude

lim inf
n→∞

ϕk(n) ln ln n

n
≥ e−γ.

Thus, to prove the theorem it is sufficient to present a sequence {nm} on which the
equality holds. We will demonstrate that the sequence

nm =
∏

q∈Q(k),q≤ln m

q (72)

satisfies the requirement. Notice that for k-primes we have
∏

q∈Q(k),q≤n

q ∼ en+o(n). (73)

Consequently for the sequence (72) we have

nm ∼ eln m+o(ln m) = m1+o(1). (74)

Using (74) and Theorem 5 we find

ϕk(nm) ln ln nm

nm
= (ln ln nm)

∏

q≤ln m

(
1 +

1

q
+ . . . +

1

qk

)−1

+ O(n−1+ε
m ) =

= (ln ln nm)
∏

q≤ln m

((
1 − 1

qk+1

)−1(
1 − 1

q

))
+ O(n−1+ε

m ) =

= (ln ln nm)
∏

q≤ln m

(
1 − 1

qk+1

)−1 ∏

p≤ln m

(
1 − 1

p

)
·

·




∏

q≤ln m

(
1 − 1

q

)

∏
p≤ln m

(
1 − 1

p

)



+ O(n−1+ε
m ).

However, from the definition of the set Q(k) we have that

∏
q≤ln m

(
1 − 1

q

)

∏
p≤ln m

(
1 − 1

p

) =
∏

q≤(ln m)
1

k+1

(
1 − 1

qk+1

)
. (75)
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Thus,

ϕk(nm) ln lnnm

nm
= (ln lnnm)

∏

(ln m)
1

k+1 ≤q≤ln m

(
1 − 1

qk+1

)−1 ∏

p≤ln m

(
1 − 1

p

)
+ O(n−1+ε

m ). (76)

It is well known (see e.g. [14]) that

∏

p≤x

(
1 − 1

p

)
=

e−γ

ln x

(
1 + O

(
e−c

√
ln x
))

, (77)

where c is a positive constant.

Let us also estimate
∏

(ln m)
1

k+1 ≤q≤ln m

(
1 − 1

qk+1

)−1

.

Since for 0 < x < 1 we have

− ln(1 − x) =

∫ x

0

dt

1 − t
≤ x

1 − x
,

for m large enough we deduce

ln
∏

(ln m)
1

k+1 ≤q≤ln m

(
1 − 1

qk+1

)−1

≤
∑

(ln m)
1

k+1 ≤q≤ln m

1

(q − 1)k+1
≤

≤
∫ ln m−1

(ln m)
1

k+1 −1

dt

tk+1
= O

(
(ln m)−

k
k+1

)
.

Therefore,
∏

(ln m)
1

k+1 ≤q≤ln m

(
1 − 1

qk+1

)−1

= 1 + O
(
(ln m)−

k
k+1

)
. (78)

Taking into account that from (74) it follows that

ln ln nm

ln ln m
= 1 + o

(
1

ln ln m

)
,

we deduce from (76), (77) for x = ln m, and (78) that

ϕk(nm) ln ln nm

nm
= e−γ

(
1 + O

(
1

ln ln m

))
.

!

Let us also mention that since

ec
√

ln x = o
(
x

k
k+1

)
,
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i.e., x− k
k+1 = o(e−c

√
ln x), it follows from (75), (77) and (78) that the following equality,

being a k-generalization of (77), holds:

∏

q≤x

(
1 − 1

q

)
=

e−γ

ln x




∏

q∈Q(k)

(
1 − 1

qk+1

)


(
1 + O(e−c

√
x)
)

. (79)

Applying ln to (79), after simple transformations we find

∑

q≤x

1
q

= ln lnx+γ−
∑

q∈Q(k)

∑

j≥2

1
jqj

+
∑

q∈Q(k)

∑

j≥1

1
jq(k+1)j

+O(e−c
√

ln x) = ln lnx+Bk +O(e−c
√

ln x),

where

Bk = γ +
∑

q∈Q(k)

1

qk+1
−
∑

q∈Q(k)

∑

j≥2

1

jqj

(
1 − 1

qkj

)
.

The latter for k = ∞ becomes

B = γ −
∑

p

∑

j≥2

1

jpj
= 0.2614972128 . . .

and is known as the prime reciprocal constant, the Mertens constant, the Kronecker
constant, or the Hadamard-de La Vallée-Poussin constant.

9. Analogs of the Wirsing and Delange Theorems

Since the k-multiplicative functions are multiplicative as well in the conventional sense,
all the theorems about multiplicative functions are formally valid for k-multiplicative
functions. However, it is worth noticing that from the point of view of the standard
arithmetics the k-multiplicative functions are ”under-defined” since they are defined only
on a small subset of the set of prime numbers. For example, when k = 2 this subset is
{p, p2, p3, p6, p9, p18, . . .} and the direct application of known asymptotic theorems about
multiplicative functions seems to be impossible. Therefore, the question about k-analogs
of such theorems is non-trivial. For this goal we have chosen the well known theorems of
Wirzing and Delange. Note that the condition on k-multiplicativity allows an essential
simplification of the statements of these theorems.

Theorem 10 a) (Wirzing, see [13]) Let h(n) be a multiplicative function satisfying

1) h(n) ≥ 0, n = 1, 2, . . .;

2) h(pν) ≤ c1cν
2, p ∈ P, ν = 1, 2, . . . , c2 < 2;

3)
∑

p≤x,p∈P h(p) = (τ + o(1)) x
ln x , where τ ≥ 0, is a constant.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A33 26

Then, for x → ∞,

∑

n≤x

h(n) =

(
e−γτ

Γ(τ)
+ o(1)

)
x

ln x

∏

p≤x,p∈P

(
1 +

h(p)

p
+

h(p2)

p2
. . .

)
(80)

where Γ(x) is the gamma-function, and γ is the Euler constant.

b) (k-analog) Let h(n) be a k-multiplicative function satisfying

1) h(n) ≥ 0, n = 1, 2, . . .;

2) h(qr) ≤ c, q ∈ Q(k), r = 1, 2, . . . , k;

3)
∑

q≤x,q∈Q(k) h(q) = (τ + o(1)) x
ln x , where τ ≥ 0, is a constant.

Then,

∑

n≤x

h(n) =

(
e−γτ

Γ(τ)
+ o(1)

)
x

ln x

∏

q≤x,q∈Q(k)

(
1 +

h(q)

q
+ . . . +

h(qk)

qk

)
. (81)

Theorem 11 a) (Delange, see [13]) Let h(n) be a multiplicative function such that

1) |h(n)| ≤ 1, n = 1, 2, . . . ;

2) the series
∑

p∈P
1−h(p)

p converges.

Then,

lim
n→∞

1

n

n∑

m=1

h(m) =
∏

p∈P

(
1 − 1

p

)(
1 +

∞∑

j=1

h(pj)

pj

)
. (82)

b) (k-analog) Let h(n) be a k-multiplicative function satisfying

1) |h(n)| ≤ 1, n = 1, 2, . . . ;

2) the series
∑

q∈Q(k)
1−h(q)

q converges.

Then,

lim
n→∞

1

n

n∑

m=1

h(m) =
∏

q∈Q(k)

q − 1

qk+1 − 1

k∑

i=0

qk−ih(qi). (83)

Proof. We just prove the k-analog of the Delange theorem, the proof the previous theorem
is similar. Notice that under the conditions of b) of Theorem 11, the conditions of a) are
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also valid. We have

1 − 1

p
=

1 − 1
p

1 − 1
pk+1

·
1 − 1

pk+1

1 − 1
p(k+1)2

·
1 − 1

p(k+1)2

1 − 1
p(k+1)3

. . .

=
∞∏

!=0

(
1 +

1

p(k+1)# +
1

p2(k+1)# + . . . +
1

pk(k+1)#

)−1

=
∏

q∈Q(k): p|q

(
1 +

1

q
+

1

q2
+ . . . +

1

qk

)−1

. (84)

Further, using the k-multiplicativity of h(n) for a fixed p ∈ P we have

1 +
∞∑

j=1

h(pj)

pj
=

∏

q∈Q(k): p|q

(
1 +

h(q)

q
+ . . . +

h(qk)

qk

)
,

and consequently

∏

p∈P

(
1 +

∞∑

j=1

h(pj)

pj

)
=

∏

q∈Q(k)

(
1 +

h(q)

q
+ . . . +

h(qk)

qk

)
. (85)

Substituting (84) and (85) into (82) we find:

lim
n→∞

1

n

n∑

m=1

h(m) =
∏

q∈Q(k)

(
1 +

1

q
+

1

q2
+ . . . +

1

qk

)−1(
1 +

h(q)

q
+

h(q2)

q2
+ . . . +

h(qk)

qk

)
,

and (83) follows. !

10. Perfect Numbers

A number n is called k-perfect if it equals to the sum of its proper positive k-divisors. It
follows from (6) that any k-perfect number satisfies

σk(n) =
∏

q |
k n

qnq+1 − 1

q − 1
= 2n, (86)

where σk(n) is the sum of k-divisors of n. For example, 28 is k-perfect for all k ≥ 2.

Consider a sequence S = {nk}k∈T , such that nk is a k-perfect number of the form

nk = 2k+1(2l − 1), (87)

where (2l − 1) possesses the conventional factorization (1) into primes having powers
not exceeding k, and T is the set of such k for which there exists at least one k-perfect
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number of the form (87). We will address such numbers as being of type S. Hence by
(86) for nk we have

σk(nk) = (2k+1 + 1)
∏

p|2l−1

pnp+1 − 1

p − 1
= 2k+2(2l − 1).

Example 7 In the following table we present examples of k-perfect numbers of type S
for every k, 1 ≤ k ≤ 10.

k n
1 22 · 3 · 5
2 23 · 32 · 7 · 13
3 24 · 32 · 7 · 13 · 17
4 25 · 32 · 7 · 11 · 13
5 26 · 3 · 5 · 7 · 13
6 27 · 32 · 7 · 11 · 13 · 43
7 28 · 32 · 7 · 11 · 13 · 43 · 257
8 29 · 33 · 52 · 19 · 31
9 210 · 3 · 52 · 7 · 31 · 41

10 211 · 33 · 52 · 19 · 31 · 683

Notice that in the examples with the pairs of k-perfect numbers of type S for k1 = 2,
k2 = 3; k1 = 2, k2 = 4; k1 = 4, k2 = 6; k1 = 6, k2 = 7; k1 = 8, k2 = 10; the ratio of
the k-perfect numbers in these pairs are 2k2−k1p where p is a prime not dividing the first
number in the pair. The corresponding primes in the examples are 17, 11, 43, 257, and
683. This hints at a general description of all such pairs of type S.

Theorem 12 Let n1 be a k-perfect number of type S. For n2 to be a (k + m)-perfect
number of type S having the form

n2 = 2mn1p,

where p is a prime, p does not divide n1, it is necessary and sufficient that one of the
following conditions is valid

1. m = 1, p is a Fermat prime of the form 2k+2 + 1;

2. m = 2, p is a prime of the form 2k+3+1
3 for an even k.

Theorem 12 claims that there are no considered pairs of k-perfect numbers of type S
if k2 − k1 ≥ 3. Under validity of the conjecture that there is a finite number of Fermat
primes, the number of considered pairs satisfying k2 − k1 = 1 is also finite. Finally, if
k2 − k1 = 2, notice that 2k+3+1

3 can be prime only if k + 3 is prime. It is conjectured in
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[2] that the number of primes having form 2p+1
3 is infinite and, moreover, the number of

such primes not exceeding x is approximately eγ log2 x, γ is the Euler constant.

For the proof of Theorem 12 we will need the following result.

Lemma 3 The Diophantine equation

2k+m+1 + 1 = n(2m − 1), (88)

for k ≥ 1, m ≥ 1, n ≥ 1, has only the following solutions:

m = 1, k ∈ N, n = 2k+2 + 1, (89)

m = 2, k = 2r, r ∈ N, n =
2k+3 + 1

3
. (90)

Proof. The case m = 1 is trivial. Assume m ≥ 2. Let

k = rm + s, 0 ≤ s ≤ m − 1. (91)

We have

(2m − 1)
'k/m(∑

i=0

2k−mi = 2k−rm(2m(r+1) − 1) = 2k+m − 2s.

Therefore,
2k+m ≡ 2s mod(2m − 1),

and
2k+m+1 + 1 ≡ 2s+1 + 1 mod(2m − 1).

Now, from (88) it follows that

2s+1 + 1 ≡ 0 mod(2m − 1). (92)

Since 2(2m − 1) > 2m + 1 ≥ 2s+1 + 1, (92) is possible only if 2s+1 + 1 = 2m − 1, or
2m−1 − 2s = 1. The last relation can be valid only if m = 2, s = 0. Therefore, by (91),
k = 2r. This gives (90). !

Proof of Theorem 12. Let n1 be a k-perfect number of type S, i.e.

n1 = 2k+1(2l − 1), (93)

where the factorization (1) of (2l − 1) has powers of the primes not exceeding k. This
means that

σk(2l − 1) = σ(2l − 1).

By (86) specified for n1 and by the k-multiplicativity of σk(n) we have

(2k+1 + 1)σ(2l − 1) = 2k+2(2l − 1). (94)
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Furthermore, by (86), the number

n2 = 2k+m+1(2l − 1)p, p ) |n1, (95)

is a (k + m) -perfect number of type S if and only if

(
2k+m+1 + 1

)
σ(2l − 1)(p + 1) = 2k+m+2(2l − 1)p. (96)

Dividing (96) by (94) we find

(2k+m+1 + 1)(p + 1)

2k+1 + 1
= 2mp,

yielding

p =
2k+m+1 + 1

2m − 1
.

By Lemma 3 only two possibilities are relevant:

1) m = 1, p = 2k+2 + 1.

Clearly, k + 2 cannot have odd prime factors. Therefore, k + 2 = 2ν−1, ν ∈ N. Thus,
p = 22ν−1

+ 1, i.e. is a Fermat prime.

2) m = 2, p = 2k+3+1
3 .

In this case, k + 3 is prime.

Let us demonstrate, in the opposite direction, that if n1 from (93) is k-perfect, then
n2 from (95) for

p = 2k+2 + 1 (97)

is (k + 1)-perfect, and for

p =
2k+3 + 1

3
, k even, (98)

is (k + 2)-perfect.

Indeed, when (97) holds, multiplying (94) by 2(2k+2 + 1) = 2p, and noticing that
2(2k+1 + 1) = p + 1, we find

(2k+2 + 1)(p + 1)σ(2l − 1) = 2k+3(2l − 1)p,

corresponding to (96) for m = 1. Therefore, the number n2 is (k + 1)-perfect for m = 1.

Under (98), multiplying (94) by 42k+3+1
3 = 4p, and noticing that 4

3(2
k+1 + 1) = p + 1,

we find
(2k+3 + 1)(p + 1)σ(2l − 1) = 2k+4(2l − 1)p,

corresponding to (96) for m = 2. Therefore, n2 is (k + 2)-perfect for m = 2. !
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Example 8 For k = 14 the number 216 + 1 is a Fermat prime. It is easily checked using
(86) that

215 · 34 · 7 · 113 · 31 · 61 · 83 · 331 (99)

is 14-prime. Therefore using Theorem 12 with m = 1 we find the following 15-perfect
number

216 · 34 · 7 · 113 · 31 · 61 · 83 · 331 · 65537.

When k = 10, the number 213+1
3 = 2731, is prime. Using Theorem 12 for m = 2,

we have, along with the last number in the table of Example 7, the following 12-perfect
number:

213 · 33 · 52 · 19 · 31 · 683 · 2731. (100)

Furthermore, using 14-perfect number (99), and taking into account that 217+1
3 =

43691 is prime, we find analogously the following 16-perfect number:

217 · 34 · 7 · 113 · 31 · 61 · 83 · 331 · 43691,

which in turn yields, since 219+1
3 = 174763 is prime, the following 18-perfect number

219 · 34 · 7 · 113 · 31 · 61 · 83 · 331 · 43691 · 174763.

Example 9 Notice that for the same k we may have different k-perfect numbers of type
S. For example, when k = 8, along with the number given in Example 7, we have another
8-perfect number

29 · 34 · 7 · 112 · 192 · 127.

Therefore, by Theorem 12, we find a 10-perfect number which differs from the corre-
sponding number in Example 7,

211 · 34 · 7 · 112 · 192 · 127 · 683,

which in turn yields yet another 12-perfect number different from (100),

213 · 34 · 7 · 112 · 192 · 127 · 683 · 2731.

11. Mixed Multiplicative Factorizations

Consider an infinite sequence of positive integers k = (k1, k2, . . .). Let us introduce the
corresponding multiplicative basis

Q(k) =
{

p(ki+1)j−1

i

∣∣∣pi being the i-th prime, i, j ∈ N
}

. (101)
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Analogously to (6) we find the unique factorization for every n ∈ N in this basis:

n =
∏

q∈Q(k)

qn
(k)
q , (102)

where n(k)
q ≤ ki, if q is divisible by pi. Note that some of ki’s can be assumed to be ∞.

Analogously we introduce the notion of divisibility m |
kn, the greatest common divisor

(m, n)k = max
d |
km,d |

kn
d,

and all the above-defined functions. For example, the Möbius function is defined as

µk(n) =

{
(−1)

∑
q
|
kn

1
, if all n(k)

q = 1
0, otherwise.

Furthermore, ⌊ x

m

⌋(k)

=
∑

n≤x:m |
kn

1,

ϕk(x, n) =
∑

1≤j≤x:(j,n)k=1

1, ϕk(n) = ϕk(n, n).

Notice that from the proofs of Theorems 2 and 5 it follows that the asymptotic formula
(53) is uniform also in k. Let In be the set of indices of the primes dividing n. We have
the following generalizations of Theorems 5 and 6.

Theorem 13
ϕk(x, n) = κk(n)x + O ((nx)ε) ,

where

κk(n) =
∏

i∈In

∏

q |
ki

n: pi|q

(
1 +

1

q
+ . . . +

1

qki

)−1

.

Theorem 14 ∑

n≤x

ϕk(n) = akx
2 + o

(
x1+ε

)
,

where

ak =
1

2

∞∏

i=1

∏

q∈Q(k): pi|q

(
1 −

(
qki − 1

qki+1 − 1

)2
)

. (103)

Note that we have continuum of mixed multiplicative bases.
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12. Open Problems

1. Find asymptotics for
∑

n≤x dk(n) where dk(n) is the number of k-factors of n (the
Dirichlet k-divisors problem). It is well known that for k = ∞ by the classical result due
to Dirichlet ∑

n≤x

d(n) = x ln x + (2γ − 1)x + O
(
x

1
2

)
, (104)

where γ is the Euler constant. For better estimates of the residual term see [8, 15] and
references therein. When k = 1 the only known estimate [6] is

∑

n≤x

d1(n) = c1x ln x + (2γ1 − c1)x + o
(
x

1
2+ε
)

,

where

c1 =
∏

q∈Q(1)

(
1 − 1

(q + 1)2

)
= 0.73325055 . . .

and γ1 is a constant. It would be natural to conjecture that

∑

n≤x

dk(n) = ckx ln x + (2γk − ck)x + o
(
x

1
2+ε
)

,

so that
lim
k→∞

ck = 1, lim
k→∞

γk = γ.

2. Find the sum of k-complete numbers not exceeding x (see Section 7).

3. A number n is called k-compact if in its k-factorization (6) all k-primes are pairwise
mutually prime (in the conventional sense). In particular all natural numbers are ∞-
compact. The following are open problems: a) find the number of k-compact numbers
not exceeding x; b) find the sum of k-compact numbers not exceeding x.

4. a) Is the size of the union of the sets of k-perfect number of type S, k = 1, 2, . . .
(see Section 10) infinite? In other words, whether the table of Example 7 has an infinite
number of rows?

b) Is there a value k for which the set of k-perfect numbers of type S is empty? We
conjecture that there is. For instance we do not know if there are 11-perfect and/or
13-perfect numbers of type S.

5. Estimate the least term of the sequence {n(c)
k } and the density of this sequence (see

Theorem 7).

6. a) Do we have for every k ∈ N an infinite number of n such that ϕk(n) = nκk(n)
(see Theorem 5 for x = n)? Notice that for n ≤ 1000 there are only 6 solutions to the
equation ϕ1(n) = nκ1(n) [18], namely, 1, 6, 60, 120, 360, 816.
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b) For every x ≤ 1000, we have that the number of those n ≤ x for which nκ1(n) > ϕ1(n)
is greater than the number of those not satisfying the inequality. For example, when
x = 1000 the number of such n is 565. Is that true for all x?

7. For every pair of mutually prime m and n, find mint∈N
⌊

nt
mt

⌋
(see Section 4).

8. N. P. Romanov, see [14], proved that

∞∑

n=2

ϕ(n)

n
xn =

6

π2

∞∑

n=1

µ(n)

n2

∏

p|n,p∈P

(
1 − 1

p2

)−1

Sn(x),

where

Sn(x) =
∑

ρ=ρ(n)

ρ2x2

1 − ρx
,

with the summation over all primitive n-th roots of unity. Find a k-analog of this identity
for

∑∞
n=2

ϕk(n)
n xn.

9. Is the set of constants ak (see (103)) everywhere dense in the interval [ak1 , ak2 ], where
k1 = (∞,∞, . . .) and k2 = (1, 1, . . .), i.e., in the interval



 3

π2
,
1

2

∏

q∈Q(1)

(
1 − 1

(q + 1)2

)

 = [0.303963551 . . . , 0.3666252769 . . .]?
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