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1. Introduction, Main Results and Problems

There are many papers devoted to arithmetical properties of the binomial coeffi-
cients (see [1-9, 13-18]). In this paper, we consider some other aspect of the divis-
ibility problem of the binomial coefficients. The well-known combinatorial lemma
by Kaplansky (cf. [12]), states that the number of ways of selecting ¢ objects, no
two consecutive, from n objects arrayed on a circle is % ( " : N ! > This means that

T —1
-1

for all n,i in the natural condition 7 < 7, the number %("1—

Consequently, if (¢,n) = 1 then i | (n . 1>.
For n € N consider the set

B, = {ie [2%} C(ny0) > 1, z‘ (”:Il»

The cardinality b(n) of B,, we call the binomial index of n. The number n is called
a binomial prime if b(n) = 0.
In particular, every prime is also a binomial prime. We have the following 24

) is an integer.

binomial primes not exceeding 33:
1,2,3,4,5,6,7,8,9,10,11,12,13,15,17,19, 20, 21, 23, 24, 25, 29, 31, 33. (1)

At first sight, there is no visible regularity for the binomial primes sequence.
Further calculations, however, convinced us more and more that the nine numbers
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of the sequence (1), namely, 1,6,8,10,12,20,21,24,33, are an exception from a
general rule. This conjecture is confirmed by the following theorem:

Theorem 1. Ifn > 33 then n is a binomial prime if and only if either n is a prime
or square of a prime or a product of twin primes (n = p(p + 2)).

Thus, for the sequence of the binomial primes, the prime number theorem is
true.

Of course, it would have been interesting to split the binomial primes into three
types according to Theorem 1. Let ¢(n) be the Euler phi-function. First of all, it is
rather simple to establish the following statement: if b(n) + 2¢(n) = 251, then n
is a prime.

However, the question about the validity of the following two natural conjectures
remains open:

(a) if b(n?) + 3¢(n?) = 1(n? — n), then n is a prime;
(b) if b(4n? —1)+ 1p(4n? —1) = 2(n? —n), then 2n— 1 and 2n+ 1 are prime twins.

Another open question, which is interesting in our opinion, is the following
conjecture based on numerical experiments: if p > 5 is a prime, then b(2p) is even
for p=1 (mod4) and is odd for p = 3 (mod 4).

Further, we investigate the equation b(n) = a. The next result shows that for
“almost all” a € N this equation has infinitely many solutions.

Theorem 2. The number of numbers a < = for which the set of solutions of the
equation b(n) = a is finite or empty does not exceed Cnyz/(logz)YN, where N is an
arbitrary large number, C depends on only N .

In the proof of Theorem 2 we establish that the equation b(n) = a has an infinite
set of solutions, at least, in case of existence of infinitely many pairs of so-called
“(a41)-prime twins” (p, p+2(a+1)). Since the latter is an old very difficult unsolved
problem, it would have been interesting to find weaker conditions for the existence
of an infinite set of solutions of the considered equation. On the other hand, it would
have been interesting to conduct a full investigation, in the form of Theorem 1, of
the following concrete cases: b(n) =1, b(n) =2, b(n) = 3.

Notice furthermore that, evidently, liminf,,_, % = 0. We prove the following

result:

Theorem 3. If the sequence of Mersenne primes is infinite, then

limsup,,_, % > %

Although there is no doubt that there exist infinitely many Mersenne primes, the

question of finding of an unconditional proof of Theorem 3 is interesting. Notice that
p_

one of the ways to do that is to prove that limsup,,_, ‘9(22,, D

form of the conjecture of infinity of the Mersenne primes. It seems that another

way is to estimate b([ ]!, p;), where p; is the ith prime. We conjecture that indeed

= 1. It is a weakened
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limsup,_, % is finite but more than % Notice that using the Landau inequality
for ¢(n) [11] we can only state that b(n) < 2] — $¢(n) = 0(¢(n)loglogn).

In conclusion, we present some open questions regarding the set B,,;

(i) Is it true that there is no n for which |By| > 2 and B, contains only odd
numbers?
Notice that one can show (it follows from the proof of Theorem (2) that for
pairs of 2-prime twins (p,p +4), Bppta) = {3p}-

(i1) Are there infinitely many numbers n for which B, contains a divisor of n?
Notice that, for n < 100, we have only seven such numbers:
18, 45,48, 75,84, 90, 100.

(iii) It is easy to see that there are infinitely many pairs (n,n + 1), for which
B, N Byy1 # 9, eg. forn="72k+8 B, N B,11 contains the number 6.
It is interesting to estimate the number of all such pairs not exceeding x.

Now some words about the structure of the article.
Sections 2—4 are devoted to proofs of Theorems 1-3. Finally, in Sec. 5, we provide
some numerical results.

2. Proof of Theorem 1

The proof of Theorem 1 follows from Lemmas 1-14.

Lemma 1. Let n be a composite number, p be a prime divisor of n, and for some
positive integer a suppose that i = p“k < 5 such that (k,n) = 1.

<n.—z—1> then i € B,,.
1 —1

Proof. Since ﬂ(" o 1) € N we have: k | (” i 1). Therefore by the condition

2 1 —1 i—1

i|("7i71> and (i,n) > p. m|

i— 1

If p*

Everywhere below we denote for m € N and a prime p via o,(m) the number
for which p7»(™) || m.

Lemma 2. A prime p divides (” 0t

t for which
e e N e e R

) if and only if there exists a positive integer

Proof. As it is very well known,

op(m!) = EJ + {%J 4o (3)

p

Since (":_l; 1) = % the lemma follows directly from (3) and the

trivial inequalities for real numbers o and 3: 0 < |+ 3] — |a) — | B8] < 1. O



Int. J. Number Theory 2007.03:119-139. Downloaded from www.worldscientific.com
by BEN GURION UNIVERSITY OF THE NEGEV ARANNE LIBRARY on 09/08/12. For personal use only.

122 V. Shevelev

Lemma 3. For each twin pair p, p+ 2 the number n = p (p + 2) is a binomial
prime.

Proof. Consider i1 = pg, i2 = (p + 2)h, such that i; < p(p—2+2), j = 1,2. Thus,
1<g< %, 1<h< ’72;1. We have obviously

- ((p(p +i)_—1i1 - 1>> _ Lp(p + 2)p— pg—1

5 ;
_ V)(“;g_zw —0,
o O R
. sz)p o 22<p+2>hJ ~0,
ie. i f (p(“ij)__lij - 1), j=1,2. -

2

Lemma 4. For a prime p, the number n = p~ is a binomial prime.

Proof. Consider i = ph, 1 <h < §. We have
() === - [
op _ = _ _ —0,
1 —1 p p p
2 .
. . pr—i—1
ie. z)(( i1 ) O

Lemma 5. Let n = pi1ps where py,ps are primes so that 5 < py < pa, p2—p1 > 4.
Then n is not a binomial prime.

Proof. We distinguish two cases:

Case 1.p; — 1< 1”2;1.
Let po = Ap1+7, 1 <r<p; —1, A >2 (\r € N). Here we distinguish between
three subcases:

1(a‘) r Spl _37
1(b) r=p1 — 17
1(c) r=p1 — 2.
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In subcase 1(a), put i = p1(p1 — 1). Notice that ¢ < plmz—_l < 4. We have for
P Z 5a

n—1i-—1 i—1 n—2i
AQ nviapl = J_L J_L J
( ) L p? p? pi

_ p1p2—p%+p1—1J_{p%—p1—1J _{plpz—Qp%+2p1J
I P I pi

B Ap? — p? +1py +p1—1J V\p%—2p%+7"p1+2p1J

- 2 - 2
L b1 V251

—A-1-(A-2)=1,

and by Lemmas 1 and 2, ¢ € B,,.
In subcase 1(b) put i = p1(p1 — 2). We have for p; > 5,

AQ(n7i7p1)
- {Ap? —pi+pi(p1 — 1) +2p1 — 1J Vp? —2p7 + p1(p1 — 1) +4le .
f— 2 - 2 - b
P p1
and 7 € B,,.

At last in subcase 1(c) put ¢ = p1(p1 — 3). We have for p; > 5,
AQ(nvivpl)
N Vp? — i+ pi(p1—2) +3p1 — 1J B Vp? —ri+pip—2) +6le _

p? p?

and 7 € B,,.

Case 2. p2—2_1§p1—1<p2—1orp1 <p2 <2p1 — L
Using the condition, we have 4 < ps — p1 < p; — 1. Consequently, p; > 7 (if p1 =5
we have ps —5 =4 and p2 is not a prime). Since

p1+4<p2<p+(p1—1),
suppose that po =p; + 7, 4 <r <p; — 1. Now put ¢ = (r — 1)p;. Then by (2)

) +7r)—(r—1)p1 —1 r—1)p; —1
VAP PSe: St iy
P P1
_ {pl(pl +7) —2(r — 1)p1J
pi
_|piAp -1 Pi—pr+2p|
- 2 - 2 =1 O
Py pr

Lemma 6. Let n = pipo---pi, k > 3 where p1,pa,...,pr are primes so that
5<p1 <po<---<pi. Then n is not a binomial prime.

Proof. Denote pops - - pr = P so that n = py P. It is clear that p; — 1 < %. Let
P=Xp1+7,0<r <p;—1, > 2. Here the case r = 0 is realized if po = p;.
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Again we distinguish three subcases (cf. that of Lemma 5, Case 1):

(a) T.Spl_?)v
(b) r=p1 —1,
(¢c) r=p1—2.

As in the proof of Lemma 5 we put: in Case (a) i = p1(p1 — 1) (then i <
p1E5t < 2);in Case (b) i = py(p1 — 2); in Case (c) i = p1(p1 — 3), and verify that
AQ(nvivpl):]" o

Lemma 7. If p is a prime > 13, then n = 3p is not a binomial prime.

Proof. We distinguish two cases:

Case 1. p = 1(mod 3).
We have by modulo 18 three subcases:

1(a) p=1,
1(b) p=T7,
1(c) p=13.
1(a) Let p=18k +1, k > 1. Put i = 325 5 < 2. Notice that (25 ) = 1. Then

by

/\

2)

Aa(n,i,3) = {27k+8J B {27k—7J L

27 27
1(b) Let p=18k+ 7, k> 2. Put i =

, o7k +32| |2Tk—13| |51
s = [T - [ - 3] -

3215 Then by (2)

1(c) Let p =18k + 13, k > 0. Put again i = 325>, Then
27k + 41 27k — 4 45
A ) = — — — =
3(n,%,3) { 27 J { 27 J {27J

Case 2. p = 2 (mod 3).
We have by modulo 18 three subcases:

2(a) p =5,

2(b) p =11,

2(c) p=17

2(a) Let p=18k+5, k> 1. Puti = 37’ . Notice that (257,3) = 1. Now by (2)

. 27k 4 17 27k — 4
Ag(n,z,S):{ o J—{ o le.
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2(b) Let p =18k + 11, k > 1. Put i = 32212, Then

Ag(m,i,3) = {271; 38J - {2% 7J - {%J
,3)

Let p=18k + 17, k> 0. Put i = 3p . Notice that (257
2

2Tk +35| |27k + 14 .
27 27 o

. In this case

st = | ;

Lemma 8. If n = 3pips---pr, where p1,...,pr are primes so that 5 < p; <
po < -+ < pp, k>2, then n is not a binomial prime.

Proof. Denote P =3 Hf:z p; such that n = p; P. Let
P=Xp+r, 0<r<p -1, A>2
We distinguish two cases:

Case 1. p; =2 (mod 3).
We consider the following subcases:

As(n,i,p1) = {plp—pl(pp%l -1)— 1J _ Vn(pl ;%1) - 1J
_ {plp—Zp;(pl — 1)J
p
_ {()\—1)10% +;(%T‘+1)P1 —1J B {0\_2)10%;% (7‘+2)P1J _1

1(b) Put i = p1(p1 — 3). Then

. Ap?+pr—1 A—1)p? +4

A2(n72’p1) _ \‘ pl gl J o \‘( )p21 le _ 1
P1 b1

1(c) Again put i = p1(p1 — 3). Then
ApT + 2py —1J B {(A—l)p?+5p1J .

Pt pi '
1(d) In this subcase py > 7 and n > 195. Put ¢ = 40. We have
5(5\ + 4) —41J - {39J {5(5>\+4) —SOJ _1

As(n,i,p1) = {

Az(n,40,5) = { 25 25 25
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Case 2. py = 1(mod3), p1 > 7.
We consider the following subcases:

2(a)

2(b) r=p1—lorr=p; —2,
2(C) T:p1—47

2(d) r=p1 -3, p1 > 13;
2€) pp =7, r=p—1-3=4.
(a)

2(a) Put i = p1(p1 — 2). Notice that (p; —2,n) = 1). We have

0§7'§P1—57

As(n,i,pr1) = Lplp—pl(p; —2)— 1J B VHP— 2;0;(101 — 2)J
V40 p?
_ {()\—1)17%+(27"+2)P1—1J _ {()\_Q)P%‘Z(T—Hl)mJ .
P1 P2

2(b) Put i = p1(p1 — 3). Then

] A—Dp?+(r+3)p— 1 A=2)p?+(r+6
Matmip) = | DAL OB | Ot 02 O
P p3
AP +2p1 — 1 A—1)p2+5
{p1+2p1 J_{( )1721+ le, r=pr— 1,
V%0 Dy
- )\2 —1 )\_1 2 4
{P1+1271 J_{( )1721+ P1J’ = py -2,
b1 pi

whence As(n,i,p1) = 1.
2(c) Put i = p1(p1 —5). Then

. Ap?+pr—1 A—1)p?+6
A2(n727p1) _ \‘ pl ]2)1 J o \‘( )p21 le _ 1
py b1
2(d) Again put i = p1(p1 — 5). Then
. Ap? +2pp — 1 A—1)p? +7
Ag(n,l,pl) — \‘ pl 2p1 J _ \‘( )le le — 1.
Py p1

2(e) In this subcase py > 11 and n > 273. Put ¢ = 70. We have

(GO RL YO R

7(
Aa(n, 70,7) = { 49 19 49 O

Lemma 9. Let n = 2°3°pipa---pi, 5 < p1 < pa <--- < pp, k> 1, with a > 0,
8 > 2. Then n is not a binomial prime.

Proof. Denote P = 2%pips - - - pi, so that n = 3°P.
Put ¢ = 3¢, where

; P—-3, if P=2 (mod3)
P41, if P=1 (mod3)’
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Notice that (b,n) = 1; moreover, t = 2 (mod 3). Let t = 37+ 2, 7 > 1. We have:

: 3P —9r -7 97 +5 3PP — 187 — 12
sins= [P o] [roter|,
Lemma 10. If n = 2%3° > 32, then n is not a binomial prime.
Proof. Distinguish between three cases:
Case 1. n =2%, «a > 6.
Put i = 6. We have
24 —7 2% — 12

s = | 27|22
Case 2.n =30 3> 4.
Again put i = 6. We have

30 —7 30 —12

s = | 27| P02y
Case 3.n =23 a>1, 6> 1.
Distinguish between two subcases:
3(a) a>1, 8 >2. Puti= 15 We have

2930 — 16 14 2937 — 30
A 1 =|l— | - |=| - |—| =1
oo, 15,3) = | ZEI - | | 2R
3(b) B=1, a >4 (since n > 32). Put i = 10. We have
293 — 11 293 — 20
A 10,2) = — =1.
4(n’0’){16__16J O

Lemma 11. Ifn=2%pa---pg, D<p1 <pa<---<pg, k>1, andn > 32 then
n is not a binomial prime.

Proof. Denote P = pips - - - pr. We distinguish between: o > 3, a =1, a = 2.
(1) > 3. Put i = 6. we have

As(n,6,2) = {MJ - {ﬂJ —1

8 8
(2) @ = 1. Distinguish two subcases: 2(a) P =1 (mod4) and 2(b) P =3 (mod4).
2(a) Let P =4t + 1. Since n = 2P > 32 we conclude that ¢t > 4. Put i = 6. We

have
As(n.6,2) LSt_E)J B {St—loJ .

8 3
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2(b) Let P =4t + 3, t > 2. Put i = 4. In this case evidently

A7) =3

(3) o = 2. Again distinguish the same subcases:
3(a) P =1 (mod4) and
3(b) P =3 (mod4).
3(a) Let P =4t+1, t > 3 (since n = 4P > 32 and P is not divisible by 3)
Notice that in this case

"> 197, if 7] P.
— 152, else
Put

54, iftiseven,t > 10
1=418, iftisodd,t>3

14, ift = 4;6.
Notice that i < & and (i, P) = 1.
We have
16t — 51 16t — 104
As(n,54,2) = 6 > J rﬁJ { 6 0 J
= _%J -1 \‘%J =1, iftiseven > 10.
16t — 15 16t — 32
A 18,2) = -
5(”; 87 ) i 32 J \‘ 32 J
_ EJ - {ﬂJ — 1, iffisodd > 3.
|2 2
16t — 11 16t — 24
A 14.2) = — =1, ift=4;6.
4(7’1, ’ ) i 16 J \‘ 16 J ’ it ¢ 76

3(b) Let P =4t+ 3, t > 2. Put

i 8, if ¢ is even,
T | 24, iftis odd.

In the case of t = 2j, j > 1, it is easy to verify directly that

n—9 325+ 3 .
= €. By
8‘( - ) ( 7 ), ie.8 € B,

in the case of t = 2j+1, j > 1, as well it is easy to verify directly that

n—25\  [32j+3\ . ) .
8‘( 93 )—( 93 ), le.24 € Bysince (n,3) =1. 4



Int. J. Number Theory 2007.03:119-139. Downloaded from www.worldscientific.com
by BEN GURION UNIVERSITY OF THE NEGEV ARANNE LIBRARY on 09/08/12. For personal use only.

On Divisibility of (”.—i—l

What is left is to consider n of the form
n=2%3pipa--pr, k>1, 5<pr <ps<--- < pg.

Denote P = 3p1p2 . . . p.-

Lemma 12. Ifn=2%P, « > 3, then n is not a binomial prime.

Proof. Put

2P —2), ifP=4t+1,
2P —4), if P=4t+3.
Notice that (i, P) = 1 and ¢ = 8¢ — 2. We have

2P —8t+1 o |8t+2) 29P — 16t +4
8 8 8

AB (TL, i7 2) = \\
Lemma 13. Ifn = 2P > 32, then n is not a binomial prime.

Proof. Distinguish two cases:

Case 1. P=4t+1, t > 5.
Put

i—1

|-t

)byi 129

1= 2(% —12). Then i < % and (i, P) = 1. Notice that ¢ has the form 37 +2, 7> 1.

Therefore P = 127 + 9 and ¢ = 87 — 18. Now we have by (2)

As(n,i,2) = {

8 3 3

Case 2. P=4t+ 3, t > 6.
Put 7 = 4. Evidently in this case

4 2P -5\ [(8t+1
3 B 3
Lemma 14. Ifn = 4P > 32, then n is not a binomial prime.

Proof. Denote Py = %P. Thus n = 3Py, where
Po=4dpip2---pe, S5<p1<pa<---<pp, k=1
We split the proof in six cases modulo 9:

(1) =1,
(2) P =2,
(3) P =4,
(4) P =5,
(5) =71,
(6) Py =8.

16T+35J B L87—19J B L87+54J 1
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In each case we indicate i < % such that 3||i, (i, ) = 1 and Az(n,4,3) = 1,
except of n = 84, Py = 28 in Case 1. For this number, put i = 21. It is easy to
verify that 21|<84 e 1) = (62). Therefore in Case 1 we consider n > 84.

21 -1 20

Case 1. Let Py =9t + 1, t > 3.

Notice that Py = 8a + 4. Consequently, 9¢ = 8a + 3 and a = 3b, whence 3t =
8b + 1. This implies that b has the form 3¢ + 1 and therefore ¢ = 8c + 3. Thus
Py="T2c+ 28, c > 1. Put

(Po +36), if ¢is odd,

N
|
0l w oo w

(Py — 36), if cis even,

or

_ {27c+24, if ¢ is odd,

27c— 3, if ¢ is even.

Now for even ¢ > 2 we have

189c+59 | |27¢+23| | 162c+ 36 .
27 27 27 B

As(n,i,3) = {

As well for odd ¢, we have

1896+86J _ {270—4J _ {1620—|—90J _q

As(n,i,3) =
3(n, ,3) { 27 27 27

Case 2. Let Py =9t + 2 = 8a + 4.
Consequently, a = 9¢ + 2 and Py = 72¢+ 20, ¢ > 0.
Put

(Py —36), if ¢is odd,

(Py 4+ 36), if cis even,

| w ool w

or

27¢ — 6, if ¢ is odd,
27c+ 21, if cis even.

Now for even ¢ we have:

Bafrnsi.3) = |

189c+38| |27¢+20| |162c+18 .
27 27 27 o

As well for odd ¢, we have

. 189¢ + 65 27c—T7 162¢ 4 72
s [ |Teot| |
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Case 3. Let Py =9t + 4 = 8a + 4.
We conclude that a = 9¢, t = 8c and Py = 72c¢+4, ¢ > 1. Put
3

g(PO —12), if ¢ is even,

i= %(5P0+36), femdj—1j>1,

%(5]%—108), ife=4j+152>0,
or
27c — 3, if ¢ is even,
1=4270j —57, ifc=45—1,
2705 4+ 51, ife=4j+1.

Now for even ¢, we have

n—i—1
i—1

L,

)byi 131

. 189¢ + 10 27c — 4 162c+ 18
As(n,i,3) = { 27 J B { 27 J a {TJ B
forc=4j—-1,
. 5945 — 148 2705 — 58 3245 — 90
A3(”’Z’3):{ 27 J_{ 27 J_{ 27 J:L

and for ¢ =45 + 1,

45 —2 2704 245 —
Ag(n,i,g)sz 56J_{70J+58J_{3 j — 306

27 27 27

Case 4. Let Py =9t + 5 = 8a + 4.
Consequently, t = 8c+ 7, Py = 72c+ 68, ¢ > 0. Put

S(Po —36), if ¢is odd,

3
g(PO +36), if cis even,

or

) 27c¢+ 12, if ¢ is odd,
1 =
27c+ 39, if cis even.

Now for even ¢, we have

Bafnsi.3) = |

27 27 27

As well for odd ¢, we have

27 27

A3(7L,i,3) = { 27

-1

189¢c + 164J B L27c+38J - {1620—# 126J 1

1896+191J B {270—# 11J - {1620—# 180J 1
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Case 5. Let Py = 9t+7 = 8a+4. Consequently, a = 3b and 3t = 8 — 1. This implies
that b has the form 3¢+ 2 and therefore ¢t = 8¢+ 5. Thus Py = 72¢+52, ¢ > 0. Put
3

g(PO —12), if ¢ is even,

. 3
i={<G(5Py+36), ife=4j+1j>0,

%(5]%—108), ife=4j—-14+152>1,
or
27c¢+ 15, if ¢ is even,
1=4270j —12, ifc=45+1,
2705 + 96, ifc=4j—1.

Now for even ¢, we have

. 189¢ + 140 27c+ 14 162c + 126
s | ] | s,

for c =45 +1,

N {594; +383J B {2703 - 13J B {324; +396J _,

27 27 27
and for c =45 — 1,

oy | 9945 — 157 2705 + 95 3245 — 252
Ag(n,i,3) = { 27 J { 27 J { 27 =1
Case 6. Let Py = 9t + 8 = 8a + 4. Consequently, t = 8c+ 4, Py = 72c+ 44, ¢ > 0.

Put

g(PO +12), if ¢ is even,

3
T5 (B 108), ifc=4j+ 1,5 >0,

3
16

(5P —36), ifc=4j—-1,75>1,
or
27c+ 21, if ¢ is even,
1=1¢270j — 129, ifc=4j+1,
2705 — 33, ifc=45—1.
Now for even ¢, we have

189¢c + 110J - {270+20J - {1620+90J 1

Asln,i,3) = { 27 27 27
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forc=4j+1,
oy | 9945 + 218 2705 + 128 3245+90|
As(n,i,3) = { 27 J { 27 J { o |k
forc=4j -1,
. 5945 — 52 2705 — 34 3245 — 18
A = — — =1
3(n, 4, 3) { 27 J { 27 J { 27

This completes the proof of Lemma 14 and at the same time the proof of
Theorem 1. O

3. Proof of Theorem 2

For a prime p > 5 and an odd number A from the interval [1, p —4], such that 2p—h
is a prime, let us consider n = p(2p — h). At first we show that for every number
I,1<I< %, the number i :p(p%h’ +1) € By.

Indeed,
n—i—1 i—1 n—2i
A= | J_LPQJ_{I?QJ
p—nh p—h
p P P
3 h p—h p—h—-2
p———1-1 -1
o128 7 R __{p-—ZlJ
- p p p
h —h—2
p———1-1 §p———’l—————1
_ |20 2 > (20 2 2 1
p p

Thus, i € B, and b(n) > % Let us show further that indeed we already
have found all the elements of B,,.
Notice that for elements i € B,, of the form i = p(% + l) we have

p—nh n_p
<plE—Z < —=Z(2p-
p_p( 5 +O__2 2(p h),
whence
_p-h=2 _,_p-1
2 )

We distinguish between the rest of three cases:
Case 1. —p_—g_z <1<0,

p—h p—1
Case 2. 5= < < F=
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Case 3. i = (2p — h)j, where 1 < j < 251,
Case 1. Consider for i = p(% +1),

Au(n,i,p) = n—i—lJ _ V—l_ _ {n—Qz’J

p' p' P’
3 h p—nh
- pt—1 o pt—1 o pt—1 |-
Notice that for t =1 and ¢ > 3, A; = 0. For ¢t = 2, we have:
3 h 3 h
-p———1—-1 -p———1—-1
A, = 2P 73 _{p—%J: 2P 73 1
p p p
3 h »p
p—-+z—-1 oy _ h _
< 2 2 2 | _q_ T —1=0.
p p
Case 2. Again fort =1and t > 3, A; =0.
For t = 2, we have
3 h p—nh 3 h
—-p——=—1—-1 e N | —-p——=—1—-1
A - |22 2 |2 _ 2P 3
p p p
3 h p—nh
S |
<20 2 "9 —0
- p

Case 3. We have

&mm%—M={éﬁﬁfﬁ—h@fng—hj:ﬁ1]

Again for t =1 and t > 3, A; = 0. For t = 2, we have

Cp—g—t| |i=1| |p-2%]_
AQ_{ 2p—h J {ZP—hJ bp—hJ -

Thus, b(n) = p7}2172 = 452 — 1, where ¢ = 2p — h is a prime. Notice that for h =

1,3,...,p—4, the prime ¢ assumes all values of primes for which p+4 < ¢ <2p—1.
Let us consider the equation b(n) = a, n € N. We conclude that at least in the
case 2(a+1) = g—p for p > 2a+ 3, this equation has a solution of the form: n = pg.

In this case p and ¢ are (a + 1)-twins. It is well known [10], that the number of
(a + 1)-twin pairs not exceeding z for a < m, except, perhaps, of O(W)
from them, where « is an arbitrary small constant and N is an arbitrary large
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constant, is the magnitude of the order Caﬁrx, where C, = Cy, H3<p|(a+1) f}%é

and Cy,, = 2Hp23(1 — ﬁ) = 1,32032362.. .. Hence, for a fixed number a, the

number of solutions n < x of the form n = pq, where p, ¢ are (a + 1)-twin primes,
has the order C’a%. It is a lower bound for the number of all the solutions not
exceeding x of the equation b(n) = a for “almost all” a.

4. Proof of Theorem 3

Let for a prime ¢ the number p = 29 —1 is a Mersenne prime. Notice that if i € Bo),
then ¢ has the form

1=2%, 1<a<gq-—1, jisodd, (4)
such that 4 < ¢ < 27 — 4. Suppose that
-l <j<2b 3<bh<qg-—1. (5)

In the supposition (5) we have in (4): a < b — 1.
Notice that, for real positive numbers «, 3, we have:|a + 3| — || — |B] =1 if
and only if {a} + {#} > 1. It immediately follows from the equality

la+ 8] = la) = 18] = {a} + {8} — {a + 5}

In connection with (2) denote

st {5 {5 ©

We distinguish three cases in (6):

Casea.a=1, j=20"1—1,
Case b.a=1, j <21 -1,
Case c. a > 2.

Case a. According to (6), consider

20— 3 201 — 21 4 9
6,(2911 —2, 2 — 2, 2):{ 5 }+{ 5t + } t=1,2,...,q.
We have evidently
! t=1
2) - )
q+1 b 2' -1
5t(2 _272_272): ot 2<tSba
2t — 201 1 9
T2 obi1<t<g
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Thus, §;(2¢71 -2, 2> — 2, 2) < 1 and i ¢ Ba,.

Case b.i=2j, 22 4+1<j <201 3 b>4.
By (7), consider for t = b,

, 2j —1 20+l 2 45
5p(2771 — 2, 25, 2) = { 5% }+{ 5% :

Notice that

Ml 41<2j—1<2°—7, b>4, (7)
consequently,
{2j — 1} 25 —1
20 [ 2b
Further,
2° 46 <45 +2 <20t —10.
Therefore,

2071 — 2 — 45\ 22T — (45 +2)
20 B 2b
Thus, using (7) we have
2t —2j-3 2°+3

(2111 =2, 2j, 2) = >~ — > 1,

and we conclude that i € By,.

Case c. i = 2%, a > 2.
Here we prove that 2% | (2” S ! ) To do this, we must find a values of ¢ for which
5:(29tt — 2, i,2) > 1. Show that they are t =2,3,...,a + 1. At first, let 2 <t < a.

We have
) 2045 — 1 2a+L _gatly _ 9
it 2, 2, ) = { F G (T2 ®)
20—1 2t—2 3 5
=t ——=2—— > -
2 o 2t = 4 ©)
Now let t = a + 1. Notice that
20 -1 j—1 201
9a+1 - 2 + 2a+1 7
thus
20j —1)  2¢—1
2a+1 T 9a+1
Therefore, since a > 2, we have
20 —1 2¢tl_29 2¢ —3
Sar1 (277 =2, 2%, 2) = + =1+ > 1.

2a+1 2a+1 2a+1
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Hence, we conclude that 2% | (2”.%;1), and by Lemma 1, ¢ € Byp. In all,

i —

we proved that in the segment [1,p], all the even numbers belong to Bsp,

except the numbers of the form ¢ = 28 — 2, &k > 2. This means, that
b(2p) = B —logy(p + 1). Since ¢(2p) = p — 1, this completes the proof.
O

5. Numerical Results
1. Below we show all n, 1 < n <100, with given binomial index.
b(n)=0.n=1,2,3,4,5,6,7,8,9,10,11,12,13,15,17,19, 20, 21, 23, 24,
25,29, 31,33, 35,37,41,43,47,49,53,59,61,67,71,73,79, 83,89, 97.

b(n) = 1.n = 14,16, 18, 22,27, 28, 39, 55, 65, 77, 85.
b(n) = 2.n = 26,30, 36, 40, 42, 44, 95.

b(n) = 3.n = 32,38,45,51,52, 54, 56, 57,63, 69, 87, 91.
b(n) = 4.1 = 34,68,75, 84, 93.

b(n) = 5.n = 46, 48, 60, 76, 81.

b(n) = 6.1 = 50, 88, 99.

b(n)="7.n="172,80

b(n) = 8.n = 58,64,66,74,78,92.

b(n) = 9.n = 70, 86.

b(n) = 10.7n = 82,90, 100.

b(n) = 11.n = 62,96

b(n) =15.n=94

b(n) =16.n =98

2. Here we describe the sets B,, for n < 100, that are not binomial primes.
By = {4}, B1s = {6}, B1s = {6}, Bag = {4}, Bas = {6,8}, Boy = {6},
Bog = {10}, B3y = {4, 8}, Bs2 = {6,10,14}, Bsy = {6,10,12,14},

Bss = {14,15}, Bss = {4,12,14}, Bsg = {6}, By = {6, 14}, B = {8,9},
Bus = {8,10}, Bys = {6,12,15}, Bys = {4,8,10,12, 20},

Bus = {10,12,14,15,22}, Bso = {6,12,14,15,16, 22},

Bs1 = {15,18,21}, Bsy = {12,14,18}, Bsy = {4,14,15},

Bss = {20}, Bsg = {6,18,22}, Bs; = {18,21,24},
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Bss = {6,8,14,16, 18,20, 22,24},

Beo = {10,18,21,22,26}, Bgy, = {4,8,10,12,16, 18,20, 22, 24, 26, 28},

Bgs = {6,15,24},

Bgy = {6, 10,14, 18,22, 26, 28,30}, Bgs = {10},

Bes = {9, 10,14, 20, 21, 24, 26, 28},

Bgs = {14,22,28,30}, Bgo = {9,12,24}, By = {4,12,14, 15,20, 22, 24, 26, 30},
By = {6,14,15,22, 26, 28,33}, Bry = {6,8,14,22,24,26,28, 30},

Brs = {12, 15, 18,20},

Bre = {8,10,24,26,30}, Byr = {21}, Brs = {4,8,10,15,20, 21,26, 28},

Bgo = {6,12,14,22, 26, 28,38}, Bs; = {6,15,21, 24, 33},

Bso = {4,6,10,12,14, 16, 22,26, 28,30}, Bss = {16,18,21,28}, Bss = {20},
Bsg = {4,12,14,16,18,20, 28, 30,36}, Bsy = {18,21,24},

Bss = {6, 14, 18,20, 30, 38},

By = {6,8,14,16,21,22, 24, 33, 35,38}, By = {28, 35,42},

Bgy = {10, 16,18, 20, 22, 24, 26, 42},

Bos = {9,21,24,36}, Boy = {4,8,10,12,16, 18,20, 22, 24, 26, 28, 36, 40, 42, 44},
Bgs = {15,40}, Bog = {9,10,14,20,21, 22,26, 28, 38, 39, 46},

Bos = {6,10,12,14, 18, 20,22, 24, 26, 28, 30, 32, 38, 42, 44, 46},

Bgg = {6,12,15,24,39, 42}, Bigo = {14, 15,20, 22, 24, 26, 28, 34, 45, 46}
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