A Problem of Enumeration of Two-color Bracelets with Several Variations

Vladimir Shevelev

Abstract

We consider the problem of enumeration of incongruent two-color bracelets of n beads, k of which are black, and study several natural variations of this problem. We also give recursion formulas for enumeration of t-color bracelets, $t \geq 3$.

1. Introduction

Professor Richard H. Reis (South-East University of Massachusetts, USA) in 1978 put the problem: "Let a circumference is split by the same n parts. It is required to find the number $R(n, k)$ of the incongruent convex k-gons, which could be obtained by connection of some k from n dividing points. Two k-gons are considered congruent if they are coincided at the rotation of one relatively other along the circumference and (or) by reflection of one of the k-gons relatively some diameter".

In 1979 Hansraj Gupta [1] gave the solution of the Reis problem.

Theorem 1 (H. Gupta).

$$
\begin{equation*}
R(n, k)=\frac{1}{2}\left(\binom{\left.\frac{n-h_{k}}{2}\right\rfloor}{\left\lfloor\frac{k}{2}\right\rfloor}+\frac{1}{k} \sum_{d \mid(k, n)} \varphi(d)\binom{\frac{n}{d}-1}{\frac{k}{d}-1}\right), \tag{1.1}
\end{equation*}
$$

where $h_{k} \equiv k(\bmod 2), h_{k}=0$ or $1,(n, k)$ is $\operatorname{gcd}(n, k), \varphi(n)-$ the Euler function.
Consider some convex polygon with the tops in the circumference splitting points, " 1 " or " 0 " is put in accordance to each splitting point depending on whether a top of the polygon is in the point. Thus, there is the mutual one-to-one correspondence between the set of convex polygons with the tops in the circumference splitting points and the set of all (0,1)-configurations with the elements in these points.

[^0]
[^0]: 2010 Mathematics Subject Classification. 05A15.
 Key words and phrases. Two-color and multi-color bracelets; Convex k-gons; Generalized Fibonacci numbers.

