ON RAMANUJAN CUBIC POLYNOMIALS

VLADIMIR SHEVELEV

ABSTRACT. A polynomial $x^3 + px^2 + qx + r$ with the condition $pr^{\frac{1}{3}} + 3r^{\frac{2}{3}} + q = 0$ we call a Ramanujan cubic polynomial (RCP). We study different interest properties of RCP, in particular, an important role of a parameter $\frac{pq}{r}$. We prove some new beautiful identities containing sums of 6 cubic radicals of values of trigonometrical functions as well.

Paper is deducated to the 120 - th anniversary of Srinivasa Ramanujan.

1. INTRODUCTION

In his second notebook [4], S.Ramanujan proved the following theorem.

Theorem 1. ([4], p.325;[2]). Let α, β and γ denote the roots of the cubic equation

(1)
$$x^3 - ax^2 + bx - 1 = 0.$$

Then, for a suitable determination of roots,

(2)
$$\alpha^{\frac{1}{3}} + \beta^{\frac{1}{3}} + \gamma^{\frac{1}{3}} = (a+6+3t)^{\frac{1}{3}},$$

and

3)
$$(\alpha\beta)^{\frac{1}{3}} + (\beta\gamma)^{\frac{1}{3}} + (\gamma\alpha)^{\frac{1}{3}} = (b+6+3t),$$

where

(4)
$$t^{3} - 3(a+b+3)t - (ab+6(a+b)+9) = 0.$$

A proof of Theorem 1 can be found in paper [2]. Evidently, the simplest condition for successful application of Theorem 1 is the condition

that implies

(6)
$$t = (ab + 6(a + b) + 9)^{\frac{1}{3}} = (ab - 9)^{\frac{1}{3}}.$$

If, for real nonzero r, to consider

(7)
$$x_1 = -r^{\frac{1}{3}}\alpha, \ x_2 = -r^{\frac{1}{3}}\beta, \ x_3 = -r^{\frac{1}{3}}\gamma$$

and denote

(8)
$$ar^{\frac{1}{3}} = p, \ br^{\frac{2}{3}} = q$$

then in the real case by (1)-(8) we obtain the following result.

Theorem 2. Let $p, q, r, \in \mathbb{R}$, $r \neq 0$ such that

(9)
$$pr^{\frac{1}{3}} + 3r^{\frac{2}{3}} + q = 0.$$

and let the polynomial

$$(10) x^3 + px^2 + qx + r$$

have real roots x_1, x_2, x_3 . Then

(11)
$$x_1^{\frac{1}{3}} + x_2^{\frac{1}{3}} + x_3^{\frac{1}{3}} = (-p - 6r^{\frac{1}{3}} + 3(9r - pq)^{\frac{1}{3}})^{\frac{1}{3}},$$

and

(12)
$$(x_1x_2)^{\frac{1}{3}} + (x_2x_3)^{\frac{1}{3}} + (x_3x_4)^{\frac{1}{3}} = (q + 6r^{\frac{2}{3}} - 3(9r^2 - pqr)^{\frac{1}{3}})^{\frac{1}{3}},$$

Notice that Theorem 2 was proved directly in [6]. Notice also, that (12) can be written in the form

(13)
$$x_1^{-\frac{1}{3}} + x_2^{-\frac{1}{3}} + x_3^{-\frac{1}{3}} = r^{-\frac{1}{3}}(-q - 6r^{\frac{2}{3}} + 3(9r^2 - pqr)^{\frac{1}{3}})^{\frac{1}{3}}.$$

In connection with Theorem 2 we introduce the following definition.

Definition 1. Let $p, q, r \in \mathbb{R}$, $r \neq 0$. The cubic polynomial (10) is called a Ramanujan polynomial (RCP) if it has real roots and the condition (9) is satisfied.

In this paper we study various properties of the RCP and present some new identities.

2. SOME EXAMPLES

Example 1.The polynomial $x^3 - 3x^2 - 6x + 8$ is an RCP with roots 1, -2, 4. Thus, by (11) we have

$$1 - 2^{\frac{1}{3}} + 4^{\frac{1}{3}} = (-9 + 9 \cdot 2^{\frac{1}{3}})^{\frac{1}{3}}$$

and therefore

(14)
$$\left(\frac{1}{9}\right)^{\frac{1}{3}} - \left(\frac{2}{9}\right)^{\frac{1}{3}} + \left(\frac{4}{9}\right)^{\frac{1}{3}} = (2^{\frac{1}{3}} - 1)^{\frac{1}{3}}.$$

It is a Ramanujan's original identity (see[5],p.331).

Example 2.Ramanujan ([4], p.326, [1]) offers the following identities:

(15)
$$\left(\cos\frac{2\pi}{7}\right)^{\frac{1}{3}} + \left(\cos\frac{4\pi}{7}\right)^{\frac{1}{3}} + \left(\cos\frac{8\pi}{7}\right)^{\frac{1}{3}} = \left(\frac{5-3\cdot7^{\frac{1}{3}}}{2}\right)^{\frac{1}{3}}$$

(16)
$$\left(\cos\frac{2\pi}{9}\right)^{\frac{1}{3}} + \left(\cos\frac{4\pi}{9}\right)^{\frac{1}{3}} + \left(\cos\frac{8\pi}{9}\right)^{\frac{1}{3}} = \left(\frac{3\cdot9^{\frac{1}{3}}-6}{2}\right)^{\frac{1}{3}}$$

Notice that (sce, e.g., [6])

(17)
$$\left(x - \cos\frac{2\pi}{7}\right)\left(x - \cos\frac{4\pi}{7}\right)\left(x - \cos\frac{8\pi}{7}\right) = x^3 + \frac{1}{2}x^2 - \frac{1}{2}x - \frac{1}{8}x^3 + \frac{1}{2}x^2 - \frac{1}{2}x - \frac{1}{8}x^3 + \frac{1}{2}x^2 - \frac{1}{2}x - \frac{1}{8}x^3 + \frac{1}{2}x^2 - \frac{1}{8}x^3 + \frac{1}{8}x^3 + \frac{1}{8}x^3 - \frac{1}{8}x^3 + \frac{1}{8}x^$$

(18)
$$\left(x - \cos\frac{2\pi}{9}\right)\left(x - \cos\frac{4\pi}{9}\right)\left(x - \cos\frac{8\pi}{9}\right) = x^3 - \frac{3}{4}x + \frac{1}{8}$$

and both polynomials are RCP_s . Thus, by (11) we obtain (15) and (16). Besides, using (13), (17) and (18) we find

(19)
$$\left(\sec\frac{2\pi}{7}\right)^{\frac{1}{3}} + \left(\sec\frac{4\pi}{7}\right)^{\frac{1}{3}} + \left(\sec\frac{8\pi}{7}\right)^{\frac{1}{3}} = \left(8 - 6 \cdot 7^{\frac{1}{3}}\right)^{\frac{1}{3}}$$

(20)
$$\left(\sec\frac{2\pi}{9}\right)^{\frac{1}{3}} + \left(\sec\frac{4\pi}{9}\right)^{\frac{1}{3}} + \left(\sec\frac{8\pi}{9}\right)^{\frac{1}{3}} = \left(6(9^{\frac{1}{3}}-1)\right)^{\frac{1}{3}}$$

Example 3. Quite recently R.Witula and D.Slota [7] found, in particular, the following decomposition

$$x^{3} + 105x^{2} + 588x - 343 =$$

$$(21) = (x - 2\sin^{6}\frac{2\pi}{7}\cos\frac{4\pi}{7})(x - 2\sin^{6}\frac{4\pi}{7}\cos\frac{8\pi}{7})(x - 2\sin^{6}\frac{8\pi}{7}\cos\frac{2\pi}{7})$$

This polynomial is an RCP. Therefore by (11) and (13) we obtain the following identities (the first of them is presented in [7])

(22)

$$\sin^{2} \frac{2\pi}{7} \left(2 \cos \frac{4\pi}{7} \right)^{\frac{1}{3}} + \sin^{2} \frac{4\pi}{7} \left(2 \cos \frac{8\pi}{7} \right)^{\frac{1}{3}} + \sin^{2} \frac{2\pi}{7} \left(2 \cos \frac{2\pi}{7} \right)^{\frac{1}{3}} = -\frac{1}{4} \left(63(1+7^{\frac{1}{3}}) \right)^{\frac{1}{3}};$$

$$\csc^{2} \frac{2\pi}{7} \left(2 \sec \frac{4\pi}{7} \right)^{\frac{1}{3}} + \csc^{2} \frac{4\pi}{7} \left(2 \sec \frac{8\pi}{7} \right)^{\frac{1}{3}} + \csc^{2} \frac{8\pi}{7} \left(2 \sec \frac{8\pi}{7} \right)^{\frac{1}{3}} + \csc^{2} \frac{8\pi}{7} \left(2 \sec \frac{2\pi}{7} \right)^{\frac{1}{3}} = 7 \left(441(2-7^{\frac{1}{3}}) \right)^{\frac{1}{3}}$$

$$3. \text{ SOME PROPERTIES OF } RCP_{s}$$

Theorem 3. If $x^3 + px^2 + qx + r$ is an RCP with roots x_1, x_2, x_3 then 1) For any $a \in \mathbb{R}$, $a \neq 0$, the polynomial

$$x^3 + apx^2 + a^2qx + a^3r$$

is also an RCP with roots ax_1, ax_2, ax_3 . 2) The polynomial

$$x^{3} + qx^{2} + (pr)x + r^{2}$$

is also an RCP with roots

$$\left\{\frac{r}{x_1}, \frac{r}{x_2}, \frac{r}{x_3}\right\}.$$

3) The numbers

$$\left\{\frac{r^{\frac{2}{3}}}{x_1}, \frac{r^{\frac{2}{3}}}{x_2}, \frac{r^{\frac{2}{3}}}{x_3}\right\}$$

are a permutation of the numbers

$$\left\{r^{\frac{1}{3}} - x_1, \ r^{\frac{1}{3}} - x_2, \ r^{\frac{1}{3}} - x_3\right\}.$$

4) $\frac{pq}{r} \leq \frac{9}{4}$.

Proof.1)-2) Straightforward.

3) Let

$$(x - (x_1 - r^{\frac{1}{3}}))(x - (x_2 - r^{\frac{1}{3}}))(x - (x_3 - r^{\frac{1}{3}})) = x^3 + p_1 x^2 + q_1 x + r_1$$

After some simple calculations we have

$$p_1 = p + 3r^{\frac{1}{3}}$$

$$q_1 = q + 2pr^{\frac{1}{3}} + 3r^{\frac{2}{3}}$$

$$r_1 = r + qr^{\frac{1}{3}} + pr^{\frac{2}{3}} + r.$$

Using (9) we find

(24)
$$p_1 = -\frac{q}{r^{\frac{1}{3}}}, \ q_1 = pr^{\frac{1}{3}}, \ r_1 = -r$$

Now we see that (9) is satisfied for numbers (24):

$$p_1 r_1^{\frac{1}{3}} + 3r_1^{\frac{2}{3}} + q_1 = 0.$$

i.e. the polynomial $x^3 + p_1 x^2 + q_1 x + r_1$ is an RCP with the roots $x_1 - r^{\frac{1}{3}}$, $x_2 - r^{\frac{1}{3}}$, $x_3 - r^{\frac{1}{3}}$.

According to 1) for $a = -r^{\frac{1}{3}}$ we notice that polynomial $x^3 + qx^2 + (pr)x + r^2$ has the roots

$$\left\{r^{\frac{1}{3}}(r^{\frac{1}{3}}-x_1), r^{\frac{1}{3}}(r^{\frac{1}{3}}-x_2), r^{\frac{1}{3}}(r^{\frac{1}{3}}-x_3)\right\}.$$

On the other hand, by 2) it has the roots $\left\{\frac{r}{x_1}, \frac{r}{x_2}, \frac{r}{x_3}\right\}$ and 3) follows.

4) Notice that, the condition (9) yields

(25)
$$\frac{pq}{r} = -\left(\frac{p}{r^{\frac{1}{3}}}\right)^2 - 3\left(\frac{p}{r^{\frac{1}{3}}}\right)$$

Thus,

$$\frac{9}{4} - \frac{pq}{r} = \frac{9}{4} + 3\frac{p}{r^{\frac{1}{3}}} + \left(\frac{p}{r^{\frac{1}{3}}}\right)^2 = \left(\frac{3}{2} + \frac{p}{r^{\frac{1}{3}}}\right)^2 \ge 0.\blacksquare$$

Example 4. By 1) of Theorem 1 together with the RCP (17) we have also the RCP $x^3 + x^2 - 2x - 1$ with the roots $x_1 = 2\cos\frac{2\pi}{7}$, $x_2 = 2\cos\frac{4\pi}{7}$, $x_3 = 2\cos\frac{8\pi}{7}$.

Example 5.For the RCP from Example 4 we have $\frac{r^2}{x_1} = \frac{1}{2}\sec\frac{2\pi}{7} > 0$ while $r^{\frac{1}{3}} - x_1 = -1 - 2\cos\frac{2\pi}{7} < 0$. Therefore, the permutation in 3) of Theorem 1 is not identical. We verity approximately by a pocket calculator the precise equalities

$$\frac{1}{x_1} = 1 + x_3, \ \frac{1}{x_2} = 1 + x_1, \ \frac{1}{x_3} = 1 + x_2.$$

Example 6. Analogously, by (18) we have the RCP $x^3 - 3x + 1$ with the roots $x_1 = 2\cos\frac{2\pi}{9}$, $x_2 = 2\cos\frac{4\pi}{9}$, $x_3 = 2\cos\frac{8\pi}{9}$. Here $\frac{r^3}{x_1} = \frac{1}{2}\csc\frac{2\pi}{9} > 0$ while $r^{\frac{1}{3}} - x_1 = 1 - 2\cos\frac{2\pi}{9} < 0$. Therefore, the permutation in

3) of Theorem 1 again is not identical. We verity as above that

$$\frac{1}{x_1} = 1 - x_2, \ \frac{1}{x_2} = 1 - x_3, \ \frac{1}{x_3} = 1 - x_1.$$

4. A NEW FORMULA AND IDENTITIES

Theorem 4. In the conditions of Theorem 3 the following formula holds

$$(26) \quad \left(\frac{x_1}{x_2}\right)^{\frac{1}{3}} + \left(\frac{x_2}{x_1}\right)^{\frac{1}{3}} + \left(\frac{x_1}{x_3}\right)^{\frac{1}{3}} + \left(\frac{x_3}{x_1}\right)^{\frac{1}{3}} + \left(\frac{x_2}{x_3}\right)^{\frac{1}{3}} + \left(\frac{x_3}{x_2}\right)^{\frac{1}{3}} = \left(\frac{pq}{r} - 9\right)^{\frac{1}{3}}$$

Proof.Denote X the left hand side of (26). Notice that, in [6] it was shown that (9) yields the following identity for the roots of RCP (10):

(27)
$$X = \left(\frac{x_1}{x_2} + \frac{x_2}{x_1} + \frac{x_1}{x_3} + \frac{x_3}{x_1} + \frac{x_2}{x_3} + \frac{x_3}{x_2} - 6\right)^{\frac{1}{3}}.$$

Thus, we have

(28)
$$X = \left(-\frac{1}{r}\left(x_1^2x_2 + x_2^2x_1 + x_1^2x_3 + x_3^2x_1 + x_2^2x_3 + x_3^2x_2\right) - 6\right)^{\frac{1}{3}} = \left(-\frac{1}{3r}\left((x_1 + x_2 + x_3)^3 - (x_1^3 + x_2^3 + x_3^3) - 6x_1x_2x_3) - 6\right)^{\frac{1}{3}}.$$

As is well known (see, e.g. [3])

(29)
$$x_1^3 + x_2^3 + x_3^3 = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3,$$

where $\sigma_i = \sigma_i(x_1, x_2, x_3)$, i = 1, 2, 3, are the elementary symmetric polynomials. For RCP (10) we have

(30)
$$\sigma_1 = -p, \ \sigma_2 = q, \ \sigma_3 = -r.$$

Now by (28)-(30) we complete the proof:

$$X = \left(-\frac{1}{3r}(-p^3 + p^3 - 3pq + 3r + 6r) - 6\right)^{\frac{1}{3}} = \left(\frac{pq}{r} - 9\right)^{\frac{1}{3}}.$$

Example 7. Using the RCP (17), (18) by Theorem 4 we find the following identities:

(31)
$$\begin{pmatrix} \frac{\cos\frac{2\pi}{7}}{\cos\frac{4\pi}{7}} \end{pmatrix}^{\frac{1}{3}} + \begin{pmatrix} \frac{\cos\frac{4\pi}{7}}{\cos\frac{2\pi}{7}} \end{pmatrix}^{\frac{1}{3}} + \begin{pmatrix} \frac{\cos\frac{2\pi}{7}}{\cos\frac{8\pi}{7}} \end{pmatrix}^{\frac{1}{3}} + \begin{pmatrix} \frac{\cos\frac{8\pi}{7}}{\cos\frac{2\pi}{7}} \end{pmatrix}^{\frac{1}{3}} + \\ \begin{pmatrix} \frac{\cos\frac{4\pi}{7}}{\cos\frac{8\pi}{7}} \end{pmatrix}^{\frac{1}{3}} + \begin{pmatrix} \frac{\cos\frac{8\pi}{7}}{\cos\frac{4\pi}{7}} \end{pmatrix}^{\frac{1}{3}} = -7^{\frac{1}{3}}; \\ \begin{pmatrix} \frac{\cos\frac{2\pi}{9}}{\cos\frac{4\pi}{9}} \end{pmatrix}^{\frac{1}{3}} + \begin{pmatrix} \frac{\cos\frac{4\pi}{9}}{\cos\frac{2\pi}{9}} \end{pmatrix}^{\frac{1}{3}} + \begin{pmatrix} \frac{\cos\frac{8\pi}{9}}{\cos\frac{8\pi}{9}} \end{pmatrix}^{\frac{1}{3}} + \begin{pmatrix} \frac{\cos\frac{8\pi}{9}}{\cos\frac{2\pi}{9}} \end{pmatrix}^{\frac{1}{3}} + \\ \begin{pmatrix} \frac{\cos\frac{4\pi}{9}}{\cos\frac{8\pi}{9}} \end{pmatrix}^{\frac{1}{3}} + \begin{pmatrix} \frac{\cos\frac{8\pi}{9}}{\cos\frac{8\pi}{9}} \end{pmatrix}^{\frac{1}{3}} + \begin{pmatrix} \frac{\cos\frac{8\pi}{9}}{\cos\frac{4\pi}{9}} \end{pmatrix}^{\frac{1}{3}} + \\ \begin{pmatrix} \frac{\cos\frac{4\pi}{9}}{\cos\frac{8\pi}{9}} \end{pmatrix}^{\frac{1}{3}} + \begin{pmatrix} \frac{\cos\frac{8\pi}{9}}{\cos\frac{4\pi}{9}} \end{pmatrix}^{\frac{1}{3}} = -9^{\frac{1}{3}}. \end{cases}$$

Example 8. Using RCP(21) we find

$$\left(\frac{\sin\frac{2\pi}{7}}{\sin\frac{4\pi}{7}}\right)^2 \left(\frac{\cos\frac{4\pi}{7}}{\cos\frac{8\pi}{7}}\right)^{\frac{1}{3}} + \left(\frac{\sin\frac{4\pi}{7}}{\sin\frac{2\pi}{7}}\right)^2 \left(\frac{\cos\frac{8\pi}{7}}{\cos\frac{4\pi}{7}}\right)^{\frac{1}{3}} +$$

$$+\left(\frac{\sin\frac{2\pi}{7}}{\sin\frac{8\pi}{7}}\right)^{2}\left(\frac{\cos\frac{4\pi}{7}}{\cos\frac{2\pi}{7}}\right)^{\frac{1}{3}} + \left(\frac{\sin\frac{8\pi}{7}}{\sin\frac{2\pi}{7}}\right)^{2}\left(\frac{\cos\frac{2\pi}{7}}{\cos\frac{4\pi}{7}}\right)^{\frac{1}{3}} + \left(\frac{\sin\frac{4\pi}{7}}{\cos\frac{8\pi}{7}}\right)^{2}\left(\frac{\cos\frac{8\pi}{7}}{\cos\frac{2\pi}{7}}\right)^{\frac{1}{3}} + \left(\frac{\sin\frac{8\pi}{7}}{\sin\frac{4\pi}{7}}\right)^{2}\left(\frac{\cos\frac{2\pi}{7}}{\cos\frac{8\pi}{7}}\right)^{\frac{1}{3}} = -3 \cdot 7^{\frac{1}{3}}.$$

5. ON RCP WITH THE SAME VALUE OF $\frac{pq}{r}$

Theorem 5. If for two RCP_s

$$y^{3} + p_{1}y^{2} + q_{1}y + r_{1}, \quad z^{3} + p_{2}z^{2} + q_{2}z + r_{2}$$

the following condition holds

$$\frac{p_1q_1}{2} = \frac{p_2q_2}{2}$$

 $\frac{p_1q_1}{r_1} = \frac{p_2q_2}{r_2}$ then for its roots y_1, y_2, y_3 ; z_1, z_2, z_3 the numbers

$$\left\{\frac{y_1}{y_2}, \frac{y_2}{y_1}, \frac{y_1}{y_3}, \frac{y_3}{y_1}, \frac{y_2}{y_3}, \frac{y_3}{y_2}\right\}$$

are a permutation of the numbers

$$\left\{\frac{z_1}{z_2}, \frac{z_2}{z_1}, \frac{z_1}{z_3}, \frac{z_3}{z_1}, \frac{z_2}{z_3}, \frac{z_3}{z_2}\right\}$$

Proof. Evidently, it is sufficient to prove that if x_1, x_2, x_3 are roots of RCP (10) then the numbers

(34)
$$\xi_1 = \frac{x_1}{x_2} + (\frac{x_1}{x_2})^{-1}, \quad \xi_2 = \frac{x_1}{x_3} + (\frac{x_1}{x_3})^{-1}, \quad \xi_3 = \frac{x_2}{x_3} + (\frac{x_2}{x_3})^{-1}$$

depend on $\frac{pq}{r}$ only.

For elementary symmetric polynomials of ξ_1, ξ_2, ξ_3 we have

(35)
$$\xi_1 + \xi_2 + \xi_3 = -\frac{1}{r} (x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + x_3^2 x_1 + x_2^2 x_3 + x_3^2 x_1)$$

and as above ((28)-(29)) we find

(36)
$$\xi_1 + \xi_2 + \xi_3 = \frac{pq}{r} - 3.$$

1

$$\xi_1\xi_2 + \xi_1\xi_3 + \xi_2\xi_3 = \frac{1}{r^2}(-r(x_1^3 + x_2^3 + x_3^3) + (x_1x_2)^3 + (x_1x_3)^3 + (x_2x_3)^3 - r(x_1x_2^2 + x_2x_1^2 + x_1^2x_3 + x_3^2x_1 + x_2^2x_3 + x_3^2x_2)).$$

Using (35)-(36) and taking into account that by (29),(30)

$$x_1^3 + x_2^3 + x_3^3 = -p^3 + 3pq - 3r,$$

$$(x_1x_2)^3 + (x_1x_3)^3 + (x_2x_3)^3 = -(p*)^3 + 3p^*q^* - 3r^*,$$

where

$$p^* = -(x_1x_2 + x_1x_3 + x_2x_3) = -q,$$

$$q^* = x_1^2x_2x_3 + x_1x_2^2x_3 + x_1x_2x_3^2 = x_1x_2x_3(x_1 + x_2 + x_3) = pr,$$

$$r^* = -(x_1x_2x_3)^2 = -r^2,$$

such that

$$(x_1x_2)^3 + (x_1x_3)^3 + (x_2x_3)^3 = q^3 - 3pqr + 3r^2,$$

we have

(37)
$$\xi_1\xi_2 + \xi_1\xi_3 + \xi_2\xi_3 = 4\frac{pq}{r} - 24.$$

It is interesting that, only for proof that $\xi_1\xi_2\xi_3$ depends on $\frac{pq}{r}$, we use condition (9). Indeed, by (34) we have

$$\xi_1\xi_2\xi_3 = \frac{1}{r^2}(x_1^2 + x_2^2 + x_3^2)((x_1x_2)^2 + (x_1x_3)^2 + (x_2x_3)^2) - 1.$$

Taking into account that

$$x_1^2 + x_2^2 + x_3^2 = p^2 - 2q$$

$$(x_1x_2)^2 + (x_1x_3)^2 + (x_2x_3)^2 = (p^*)^2 - 2q^* = q^2 - 2pr$$

we find

(38)
$$\xi_1 \xi_2 \xi_3 = \left(\frac{pq}{r}\right)^2 + 4\left(\frac{pq}{r}\right) - 1 - 2\frac{p^3 r + q^3}{r^2}.$$

Since by (9)

$$pr^{\frac{1}{3}} + q = -3r^{\frac{2}{3}}$$

then we have

$$\frac{p^{3}r+q^{3}}{r^{2}} = \frac{1}{r^{2}}(pr^{\frac{1}{3}}+q)(p^{2}r^{\frac{2}{3}}-pqr^{\frac{1}{3}}+q^{2}) =$$
$$= -\frac{3}{r^{\frac{4}{3}}}(pr^{\frac{1}{3}}+q)^{2}-3pqr^{\frac{1}{3}}) =$$
$$= -\frac{3}{r^{\frac{4}{3}}}(9r^{\frac{4}{3}}-3pqr^{\frac{1}{3}}).$$

Now according to (38) we find

(39)
$$\xi_1 \xi_2 \xi_3 = \left(\frac{pq}{r} - 7\right)^2 + 4.$$

Thus, by (36), (37) and (39) the numbers ξ_1, ξ_2, ξ_3 (34) are the roots of the following polynomial

(40)
$$\xi^{3} - \left(\frac{pq}{r} - 3\right)\xi^{2} + 4\left(\frac{pq}{r} - 6\right)\xi - \left(\left(\frac{pq}{r} - 7\right)^{2} + 4\right)$$

and, consequently, they depend on $\frac{pq}{r}$ only. \blacksquare

Notice that, using (25) we see that the numbers $\frac{x_1}{x_2}, \frac{x_2}{x_1}, \frac{x_1}{x_3}, \frac{x_3}{x_1}, \frac{x_2}{x_3}, \frac{x_3}{x_2}$ de-

pend even on $\frac{p}{r^{\frac{1}{3}}}$ only. **Example 9.** Together with decomposition (17) with $\frac{pq}{r} = 2$ in [7] the following decomposition was found:

$$x^{3} + 7x^{2} - 98x - 343 = \left(x - 128\cos\frac{2\pi}{7}\left(\sin\frac{2\pi}{7}\sin\frac{8\pi}{7}\right)^{3}\right)\left(x - 128\cos\frac{4\pi}{7}\left(\sin\frac{2\pi}{7}\sin\frac{4\pi}{7}\right)^{3}\right) \times \left(x - 128\cos\frac{8\pi}{7}\left(\sin\frac{4\pi}{7}\sin\frac{8\pi}{7}\right)^{3}\right).$$

It is an RCP with also $\frac{pq}{r} = 2$. Hence, by Theorem 5 the numbers

$$\begin{cases} \frac{\cos\frac{2\pi}{7}}{\cos\frac{4\pi}{7}} \left(\frac{\sin\frac{8\pi}{7}}{\sin\frac{4\pi}{7}}\right)^3, & \frac{\cos\frac{4\pi}{7}}{\cos\frac{2\pi}{7}} \left(\frac{\sin\frac{4\pi}{7}}{\sin\frac{8\pi}{7}}\right)^3, & \frac{\cos\frac{2\pi}{7}}{\cos\frac{8\pi}{7}} \left(\frac{\sin\frac{2\pi}{7}}{\sin\frac{4\pi}{7}}\right)^3, \\ \frac{\cos\frac{8\pi}{7}}{\cos\frac{2\pi}{7}} \left(\frac{\sin\frac{4\pi}{7}}{\sin\frac{2\pi}{7}}\right)^3, & \frac{\cos\frac{4\pi}{7}}{\cos\frac{8\pi}{7}} \left(\frac{\sin\frac{2\pi}{7}}{\sin\frac{8\pi}{7}}\right)^3, & \frac{\cos\frac{8\pi}{7}}{\cos\frac{4\pi}{7}} \left(\frac{\sin\frac{2\pi}{7}}{\sin\frac{2\pi}{7}}\right)^3, \\ parameters$$

are a permutation of the numbers

$$\left\{\frac{\cos\frac{2\pi}{7}}{\cos\frac{4\pi}{7}}, \quad \frac{\cos\frac{4\pi}{7}}{\cos\frac{2\pi}{7}}, \quad \frac{\cos\frac{2\pi}{7}}{\cos\frac{8\pi}{7}}, \quad \frac{\cos\frac{8\pi}{7}}{\cos\frac{2\pi}{7}}, \quad \frac{\cos\frac{4\pi}{7}}{\cos\frac{8\pi}{7}}, \quad \frac{\cos\frac{8\pi}{7}}{\cos\frac{4\pi}{7}}\right\}.$$

To get the corresponding equalities, it is sufficient to verify *approximately* by a pocket calculator that

(41)
$$\frac{\cos\frac{2\pi}{7}}{\cos\frac{4\pi}{7}} \left(\frac{\sin\frac{8\pi}{7}}{\sin\frac{4\pi}{7}}\right)^3 = \frac{\cos\frac{4\pi}{7}}{\cos\frac{8\pi}{7}}, \quad \frac{\cos\frac{2\pi}{7}}{\cos\frac{8\pi}{7}} \left(\frac{\sin\frac{2\pi}{7}}{\sin\frac{4\pi}{7}}\right)^3 = \frac{\cos\frac{4\pi}{7}}{\cos\frac{2\pi}{7}} \left(\frac{\sin\frac{2\pi}{7}}{\sin\frac{8\pi}{7}}\right)^3 = \frac{\cos\frac{4\pi}{7}}{\cos\frac{2\pi}{7}},$$

etc.

Notice that, in [7] R.Witula and D.Slota found some other RCP_s with roots which depend on sines or cosines of arguments $\frac{2\pi}{7}$, $\frac{4\pi}{7}$, $\frac{8\pi}{7}$. However, it is interesting that, as we verified, for them $\frac{pq}{r}$ assumes *only* the values 2, -40, -180.

References

- [1] 1. B.C. Berndt, Ramanujan's Notebooks, Part IV, Springer-Verlag, New York, 1994.
- [2] 2. B.C. Berndt and S. Bhargava, Ramanujan-for Lowbraws, American Mathematical Monthly, 100 (1993),644-656.
- [3] 3. A.G. Kurosh. Lectures in General Algebra, Chelsea, 1963.
- [4] 4. S. Ramanujan, Nitebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, (1957).
- [5] 5. S. Ramanujan, Collected Papers, Chelsea, New York, 1962.
- [6] 6. V.S. Shevelev. Three Ramanujan's Formulas, Kvant 6, (1988), 52-55 (in Russian). Translation into English in AMS:Kvant Selecta, Mathem.World,vol.14 (1999), 139-144.
- [7] 7. R. Witula and D. Slota, New Ramanujan Type Formulas and Quasi Fibonacci Numbers of Order 7, Integer Sequences, 10 (2007), Article 07.5.6.

DEPARTMENTS OF MATHEMATICS, BEN-GURION UNIVERSITY OF THE NEGEV, BEER-SHEVA 84105, ISRAEL. E-MAIL:SHEVELEV@BGU.AC.IL