ON RAMANUJAN CUBIC POLYNOMIALS

VLADIMIR SHEVELEV

Abstract

A polynomial $x^{3}+p x^{2}+q x+r$ with the condition $p r^{\frac{1}{3}}+$ $3 r^{\frac{2}{3}}+q=0$ we call a Ramanujan cubic polynomial (RCP). We study different interest properties of RCP, in particular, an important role of a parameter $\frac{p q}{r}$. We prove some new beautiful identities containing sums of 6 cubic radicals of values of trigonometrical functions as well.

Paper is deducated to the 120 - th anniversary of Srinivasa Ramanujan.

1. INTRODUCTION

In his second notebook [4], S.Ramanujan proved the following theorem.
Theorem 1. ([4], p.325;[2]). Let α, β and γ denote the roots of the cubic equation

$$
\begin{equation*}
x^{3}-a x^{2}+b x-1=0 . \tag{1}
\end{equation*}
$$

Then, for a suitable determination of roots,

$$
\begin{equation*}
\alpha^{\frac{1}{3}}+\beta^{\frac{1}{3}}+\gamma^{\frac{1}{3}}=(a+6+3 t)^{\frac{1}{3}}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
(\alpha \beta)^{\frac{1}{3}}+(\beta \gamma)^{\frac{1}{3}}+(\gamma \alpha)^{\frac{1}{3}}=(b+6+3 t) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
t^{3}-3(a+b+3) t-(a b+6(a+b)+9)=0 \tag{4}
\end{equation*}
$$

A proof of Theorem 1 can be found in paper [2]. Evidently, the simplest condition for successful application of Theorem 1 is the condition

$$
\begin{equation*}
a+b+3=0 \tag{5}
\end{equation*}
$$

that implies

$$
\begin{equation*}
t=(a b+6(a+b)+9)^{\frac{1}{3}}=(a b-9)^{\frac{1}{3}} . \tag{6}
\end{equation*}
$$

If, for real nonzero r, to consider

$$
\begin{equation*}
x_{1}=-r^{\frac{1}{3}} \alpha, \quad x_{2}=-r^{\frac{1}{3}} \beta, \quad x_{3}=-r^{\frac{1}{3}} \gamma \tag{7}
\end{equation*}
$$

and denote

$$
\begin{equation*}
a r^{\frac{1}{3}}=p, \quad b r^{\frac{2}{3}}=q \tag{8}
\end{equation*}
$$

then in the real case by (1)-(8) we obtain the following result.
Theorem 2. Let $p, q, r, \in \mathbb{R}, \quad r \neq 0$ such that

$$
\begin{equation*}
p r^{\frac{1}{3}}+3 r^{\frac{2}{3}}+q=0 \tag{9}
\end{equation*}
$$

and let the polynomial

$$
\begin{equation*}
x^{3}+p x^{2}+q x+r \tag{10}
\end{equation*}
$$

have real roots x_{1}, x_{2}, x_{3}. Then

$$
\begin{equation*}
x_{1}^{\frac{1}{3}}+x_{2}^{\frac{1}{3}}+x_{3}^{\frac{1}{3}}=\left(-p-6 r^{\frac{1}{3}}+3(9 r-p q)^{\frac{1}{3}}\right)^{\frac{1}{3}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(x_{1} x_{2}\right)^{\frac{1}{3}}+\left(x_{2} x_{3}\right)^{\frac{1}{3}}+\left(x_{3} x_{4}\right)^{\frac{1}{3}}=\left(q+6 r^{\frac{2}{3}}-3\left(9 r^{2}-p q r\right)^{\frac{1}{3}}\right)^{\frac{1}{3}} \tag{12}
\end{equation*}
$$

Notice that Theorem 2 was proved directly in [6]. Notice also, that (12) can be written in the form

$$
\begin{equation*}
x_{1}^{-\frac{1}{3}}+x_{2}^{-\frac{1}{3}}+x_{3}^{-\frac{1}{3}}=r^{-\frac{1}{3}}\left(-q-6 r^{\frac{2}{3}}+3\left(9 r^{2}-p q r\right)^{\frac{1}{3}}\right)^{\frac{1}{3}} . \tag{13}
\end{equation*}
$$

In connection with Theorem 2 we introduce the following definition.

Definition 1. Let $p, q, r \in \mathbb{R}, r \neq 0$. The cubic polynomial (10) is called a Ramanujan polynomial ($R C P$) if it has real roots and the condition (9) is satisfied.

In this paper we study various properties of the RCP and present some new identities.

2. SOME EXAMPLES

Example 1.The polynomial $x^{3}-3 x^{2}-6 x+8$ is an RCP with roots $1,-2,4$. Thus, by (11) we have

$$
1-2^{\frac{1}{3}}+4^{\frac{1}{3}}=\left(-9+9 \cdot 2^{\frac{1}{3}}\right)^{\frac{1}{3}}
$$

and therefore

$$
\begin{equation*}
\left(\frac{1}{9}\right)^{\frac{1}{3}}-\left(\frac{2}{9}\right)^{\frac{1}{3}}+\left(\frac{4}{9}\right)^{\frac{1}{3}}=\left(2^{\frac{1}{3}}-1\right)^{\frac{1}{3}} \tag{14}
\end{equation*}
$$

It is a Ramanujan's original identity (see[5],p.331).
Example 2.Ramanujan ([4], p.326, [1])offers the following identities:

$$
\begin{align*}
& \left(\cos \frac{2 \pi}{7}\right)^{\frac{1}{3}}+\left(\cos \frac{4 \pi}{7}\right)^{\frac{1}{3}}+\left(\cos \frac{8 \pi}{7}\right)^{\frac{1}{3}}=\left(\frac{5-3 \cdot 7^{\frac{1}{3}}}{2}\right)^{\frac{1}{3}} \tag{15}\\
& \left(\cos \frac{2 \pi}{9}\right)^{\frac{1}{3}}+\left(\cos \frac{4 \pi}{9}\right)^{\frac{1}{3}}+\left(\cos \frac{8 \pi}{9}\right)^{\frac{1}{3}}=\left(\frac{3 \cdot 9^{\frac{1}{3}}-6}{2}\right)^{\frac{1}{3}} \tag{16}
\end{align*}
$$

Notice that (sce, e.g., [6])

$$
\begin{gather*}
\left(x-\cos \frac{2 \pi}{7}\right)\left(x-\cos \frac{4 \pi}{7}\right)\left(x-\cos \frac{8 \pi}{7}\right)=x^{3}+\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{1}{8} \tag{17}\\
\left(x-\cos \frac{2 \pi}{9}\right)\left(x-\cos \frac{4 \pi}{9}\right)\left(x-\cos \frac{8 \pi}{9}\right)=x^{3}-\frac{3}{4} x+\frac{1}{8} \tag{18}
\end{gather*}
$$

and both polynomials are $R C P_{s}$. Thus, by (11) we obtain(15) and (16).
Besides, using (13), (17) and (18) we find

$$
\begin{align*}
& \left(\sec \frac{2 \pi}{7}\right)^{\frac{1}{3}}+\left(\sec \frac{4 \pi}{7}\right)^{\frac{1}{3}}+\left(\sec \frac{8 \pi}{7}\right)^{\frac{1}{3}}=\left(8-6 \cdot 7^{\frac{1}{3}}\right)^{\frac{1}{3}} \tag{19}\\
& \left(\sec \frac{2 \pi}{9}\right)^{\frac{1}{3}}+\left(\sec \frac{4 \pi}{9}\right)^{\frac{1}{3}}+\left(\sec \frac{8 \pi}{9}\right)^{\frac{1}{3}}=\left(6\left(9^{\frac{1}{3}}-1\right)\right)^{\frac{1}{3}} \tag{20}
\end{align*}
$$

Example 3. Quite recently R.Witula and D.Slota [7] found, in particular, the following decomposition

$$
\begin{gather*}
x^{3}+105 x^{2}+588 x-343= \\
=\left(x-2 \sin ^{6} \frac{2 \pi}{7} \cos \frac{4 \pi}{7}\right)\left(x-2 \sin ^{6} \frac{4 \pi}{7} \cos \frac{8 \pi}{7}\right)\left(x-2 \sin ^{6} \frac{8 \pi}{7} \cos \frac{2 \pi}{7}\right) \tag{21}
\end{gather*}
$$

This polynomial is an RCP. Therefore by (11) and (13) we obtain the following identities (the first of them is presented in [7])

$$
\begin{align*}
& \sin ^{2} \frac{2 \pi}{7}\left(2 \cos \frac{4 \pi}{7}\right)^{\frac{1}{3}}+\sin ^{2} \frac{4 \pi}{7}\left(2 \cos \frac{8 \pi}{7}\right)^{\frac{1}{3}}+ \\
& +\sin ^{2} \frac{8 \pi}{7}\left(2 \cos \frac{2 \pi}{7}\right)^{\frac{1}{3}}=-\frac{1}{4}\left(63\left(1+7^{\frac{1}{3}}\right)\right)^{\frac{1}{3}} \tag{22}\\
& \csc ^{2} \frac{2 \pi}{7}\left(2 \sec \frac{4 \pi}{7}\right)^{\frac{1}{3}}+\csc ^{2} \frac{4 \pi}{7}\left(2 \sec \frac{8 \pi}{7}\right)^{\frac{1}{3}}+ \\
& +\csc ^{2} \frac{8 \pi}{7}\left(2 \sec \frac{2 \pi}{7}\right)^{\frac{1}{3}}=7\left(441\left(2-7^{\frac{1}{3}}\right)\right)^{\frac{1}{3}} \tag{23}
\end{align*}
$$

3. SOME PROPERTIES OF $R C P_{s}$

Theorem 3. If $x^{3}+p x^{2}+q x+r$ is an $R C P$ with roots x_{1}, x_{2}, x_{3} then

1) For any $a \in \mathbb{R}, \quad a \neq 0$, the polynomial

$$
x^{3}+a p x^{2}+a^{2} q x+a^{3} r
$$

is also an $R C P$ with roots $a x_{1}, a x_{2}, a x_{3}$.
2) The polynomial

$$
x^{3}+q x^{2}+(p r) x+r^{2}
$$

is also an $R C P$ with roots

$$
\left\{\frac{r}{x_{1}}, \frac{r}{x_{2}}, \frac{r}{x_{3}}\right\}
$$

3) The numbers

$$
\left\{\frac{r^{\frac{2}{3}}}{x_{1}}, \frac{r^{\frac{2}{3}}}{x_{2}}, \frac{r^{\frac{2}{3}}}{x_{3}}\right\}
$$

are a permutation of the numbers

$$
\left\{r^{\frac{1}{3}}-x_{1}, r^{\frac{1}{3}}-x_{2}, r^{\frac{1}{3}}-x_{3}\right\}
$$

4) $\frac{p q}{r} \leq \frac{9}{4}$.

Proof.1)-2) Straightforward.
3) Let

$$
\left(x-\left(x_{1}-r^{\frac{1}{3}}\right)\right)\left(x-\left(x_{2}-r^{\frac{1}{3}}\right)\right)\left(x-\left(x_{3}-r^{\frac{1}{3}}\right)\right)=x^{3}+p_{1} x^{2}+q_{1} x+r_{1}
$$

After some simple calculations we have

$$
\begin{gathered}
p_{1}=p+3 r^{\frac{1}{3}} \\
q_{1}=q+2 p r^{\frac{1}{3}}+3 r^{\frac{2}{3}} \\
r_{1}=r+q r^{\frac{1}{3}}+p r^{\frac{2}{3}}+r
\end{gathered}
$$

Using (9) we find

$$
\begin{equation*}
p_{1}=-\frac{q}{r^{\frac{1}{3}}}, q_{1}=p r^{\frac{1}{3}}, r_{1}=-r \tag{24}
\end{equation*}
$$

Now we see that (91) is satisfied for numbers (24):

$$
p_{1} r_{1}^{\frac{1}{3}}+3 r_{1}^{\frac{2}{3}}+q_{1}=0
$$

i.e. the polynomial $x^{3}+p_{1} x^{2}+q_{1} x+r_{1}$ is an RCP with the roots $x_{1}-$ $r^{\frac{1}{3}}, x_{2}-r^{\frac{1}{3}}, x_{3}-r^{\frac{1}{3}}$.

According to 1) for $a=-r^{\frac{1}{3}}$ we notice that polynomial $x^{3}+q x^{2}+(p r) x+r^{2}$ has the roots

$$
\left\{r^{\frac{1}{3}}\left(r^{\frac{1}{3}}-x_{1}\right), r^{\frac{1}{3}}\left(r^{\frac{1}{3}}-x_{2}\right), r^{\frac{1}{3}}\left(r^{\frac{1}{3}}-x_{3}\right)\right\}
$$

On the other hand, by 2) it has the roots $\left\{\frac{r}{x_{1}}, \frac{r}{x_{2}}, \frac{r}{x_{3}}\right\}$ and 3) follows.
4) Notice that, the condition (9) yields

$$
\begin{equation*}
\frac{p q}{r}=-\left(\frac{p}{r^{\frac{1}{3}}}\right)^{2}-3\left(\frac{p}{r^{\frac{1}{3}}}\right) \tag{25}
\end{equation*}
$$

Thus,

$$
\frac{9}{4}-\frac{p q}{r}=\frac{9}{4}+3 \frac{p}{r^{\frac{1}{3}}}+\left(\frac{p}{r^{\frac{1}{3}}}\right)^{2}=\left(\frac{3}{2}+\frac{p}{r^{\frac{1}{3}}}\right)^{2} \geq 0 .
$$

Example 4. By 1) of Theorem 1 together with the RCP (17) we have also the RCP $x^{3}+x^{2}-2 x-1$ with the roots $x_{1}=2 \cos \frac{2 \pi}{7}, x_{2}=2 \cos \frac{4 \pi}{7}, x_{3}=$ $2 \cos \frac{8 \pi}{7}$.

Example 5.For the RCP from Example 4 we have $\frac{r^{\frac{2}{3}}}{x_{1}}=\frac{1}{2} \sec \frac{2 \pi}{7}>0$ while $r^{\frac{1}{3}}-x_{1}=-1-2 \cos \frac{2 \pi}{7}<0$. Therefore, the permutation in 3) of Theorem 1 is not identical. We verity approximately by a pocket calculator the precise equalities

$$
\frac{1}{x_{1}}=1+x_{3}, \frac{1}{x_{2}}=1+x_{1}, \frac{1}{x_{3}}=1+x_{2} .
$$

Example 6. Analogously, by (18) we have the RCP $x^{3}-3 x+1$ with the roots $x_{1}=2 \cos \frac{2 \pi}{9}, x_{2}=2 \cos \frac{4 \pi}{9}, x_{3}=2 \cos \frac{8 \pi}{9}$. Here $\frac{r^{\frac{2}{9}}}{x_{1}}=\frac{1}{2} \csc \frac{2 \pi}{9}>0$ while $r^{\frac{1}{3}}-x_{1}=1-2 \cos \frac{2 \pi}{9}<0$. Therefore, the permutation in

3) of Theorem 1 again is not identical. We verity as above that

$$
\frac{1}{x_{1}}=1-x_{2}, \frac{1}{x_{2}}=1-x_{3}, \frac{1}{x_{3}}=1-x_{1} .
$$

4. A NEW FORMULA AND IDENTITIES

Theorem 4. In the conditions of Theorem 3 the following formula holds

$$
\begin{equation*}
\left(\frac{x_{1}}{x_{2}}\right)^{\frac{1}{3}}+\left(\frac{x_{2}}{x_{1}}\right)^{\frac{1}{3}}+\left(\frac{x_{1}}{x_{3}}\right)^{\frac{1}{3}}+\left(\frac{x_{3}}{x_{1}}\right)^{\frac{1}{3}}+\left(\frac{x_{2}}{x_{3}}\right)^{\frac{1}{3}}+\left(\frac{x_{3}}{x_{2}}\right)^{\frac{1}{3}}=\left(\frac{p q}{r}-9\right)^{\frac{1}{3}} \tag{26}
\end{equation*}
$$

Proof.Denote X the left hand side of (26). Notice that, in [6] it was shown that (91) yields the following identity for the roots of RCP (10):

$$
\begin{equation*}
X=\left(\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{1}}+\frac{x_{1}}{x_{3}}+\frac{x_{3}}{x_{1}}+\frac{x_{2}}{x_{3}}+\frac{x_{3}}{x_{2}}-6\right)^{\frac{1}{3}} . \tag{27}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
X & =\left(-\frac{1}{r}\left(x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+x_{3}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{2}\right)-6\right)^{\frac{1}{3}}= \\
& =\left(-\frac{1}{3 r}\left(\left(x_{1}+x_{2}+x_{3}\right)^{3}-\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)-6 x_{1} x_{2} x_{3}\right)-6\right)^{\frac{1}{3}} . \tag{28}
\end{align*}
$$

As is well known (see, e.g. 3])

$$
\begin{equation*}
x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=\sigma_{1}^{3}-3 \sigma_{1} \sigma_{2}+3 \sigma_{3}, \tag{29}
\end{equation*}
$$

where $\sigma_{i}=\sigma_{i}\left(x_{1}, x_{2}, x_{3}\right), \quad i=1,2,3$, are the elementary symmetric polynomials. For RCP (10) we have

$$
\begin{equation*}
\sigma_{1}=-p, \quad \sigma_{2}=q, \quad \sigma_{3}=-r . \tag{30}
\end{equation*}
$$

Now by (28)-(30) we complete the proof:

$$
X=\left(-\frac{1}{3 r}\left(-p^{3}+p^{3}-3 p q+3 r+6 r\right)-6\right)^{\frac{1}{3}}=\left(\frac{p q}{r}-9\right)^{\frac{1}{3}}
$$

Example 7.Using the RCP (17), (18) by Theorem 4 we find the following identities:

$$
\begin{align*}
\left(\frac{\cos \frac{2 \pi}{7}}{\cos \frac{4 \pi}{7}}\right)^{\frac{1}{3}} & +\left(\frac{\cos \frac{4 \pi}{7}}{\cos \frac{2 \pi}{7}}\right)^{\frac{1}{3}}+\left(\frac{\cos \frac{2 \pi}{7}}{\cos \frac{8 \pi}{7}}\right)^{\frac{1}{3}}+\left(\frac{\cos \frac{8 \pi}{7}}{\cos \frac{2 \pi}{7}}\right)^{\frac{1}{3}}+ \\
& +\left(\frac{\cos \frac{4 \pi}{7}}{\cos \frac{8 \pi}{7}}\right)^{\frac{1}{3}}+\left(\frac{\cos \frac{8 \pi}{7}}{\cos \frac{4 \pi}{7}}\right)^{\frac{1}{3}}=-7^{\frac{1}{3}} \tag{31}\\
\left(\frac{\cos \frac{2 \pi}{9}}{\cos \frac{4 \pi}{9}}\right)^{\frac{1}{3}} & +\left(\frac{\cos \frac{4 \pi}{9}}{\cos \frac{2 \pi}{9}}\right)^{\frac{1}{3}}+\left(\frac{\cos \frac{2 \pi}{9}}{\cos \frac{8 \pi}{9}}\right)^{\frac{1}{3}}+\left(\frac{\cos \frac{8 \pi}{9}}{\cos \frac{2 \pi}{9}}\right)^{\frac{1}{3}}+ \\
& +\left(\frac{\cos \frac{4 \pi}{9}}{\cos \frac{8 \pi}{9}}\right)^{\frac{1}{3}}+\left(\frac{\cos \frac{8 \pi}{9}}{\cos \frac{4 \pi}{9}}\right)^{\frac{1}{3}}=-9^{\frac{1}{3}} \tag{32}
\end{align*}
$$

Example 8.Using RCP(21) we find

$$
\left(\frac{\sin \frac{2 \pi}{7}}{\sin \frac{4 \pi}{7}}\right)^{2}\left(\frac{\cos \frac{4 \pi}{7}}{\cos \frac{8 \pi}{7}}\right)^{\frac{1}{3}}+\left(\frac{\sin \frac{4 \pi}{7}}{\sin \frac{2 \pi}{7}}\right)^{2}\left(\frac{\cos \frac{8 \pi}{7}}{\cos \frac{4 \pi}{7}}\right)^{\frac{1}{3}}+
$$

$$
\begin{aligned}
& +\left(\frac{\sin \frac{2 \pi}{7}}{\sin \frac{8 \pi}{7}}\right)^{2}\left(\frac{\cos \frac{4 \pi}{7}}{\cos \frac{2 \pi}{7}}\right)^{\frac{1}{3}}+\left(\frac{\sin \frac{8 \pi}{7}}{\sin \frac{2 \pi}{7}}\right)^{2}\left(\frac{\cos \frac{2 \pi}{7}}{\cos \frac{4 \pi}{7}}\right)^{\frac{1}{3}}+ \\
& +\left(\frac{\sin \frac{4 \pi}{7}}{\cos \frac{8 \pi}{7}}\right)^{2}\left(\frac{\cos \frac{8 \pi}{7}}{\cos \frac{2 \pi}{7}}\right)^{\frac{1}{3}}+\left(\frac{\sin \frac{8 \pi}{7}}{\sin \frac{4 \pi}{7}}\right)^{2}\left(\frac{\cos \frac{2 \pi}{7}}{\cos \frac{8 \pi}{7}}\right)^{\frac{1}{3}}=-3 \cdot 7^{\frac{1}{3}} . \\
& \text { 5. ON RCP WITH THE SAME VALUE OF } \frac{p q}{r}
\end{aligned}
$$

Theorem 5. If for two $R C P_{s}$

$$
y^{3}+p_{1} y^{2}+q_{1} y+r_{1}, \quad z^{3}+p_{2} z^{2}+q_{2} z+r_{2}
$$

the following condition holds

$$
\frac{p_{1} q_{1}}{r_{1}}=\frac{p_{2} q_{2}}{r_{2}}
$$

then for its roots $y_{1}, y_{2}, y_{3} ; z_{1}, z_{2}, z_{3}$ the numbers

$$
\left\{\frac{y_{1}}{y_{2}}, \frac{y_{2}}{y_{1}}, \frac{y_{1}}{y_{3}}, \frac{y_{3}}{y_{1}}, \frac{y_{2}}{y_{3}}, \frac{y_{3}}{y_{2}}\right\}
$$

are a permutation of the numbers

$$
\left\{\frac{z_{1}}{z_{2}}, \frac{z_{2}}{z_{1}}, \frac{z_{1}}{z_{3}}, \frac{z_{3}}{z_{1}}, \frac{z_{2}}{z_{3}}, \frac{z_{3}}{z_{2}}\right\}
$$

Proof.Evidently, it is sufficient to prove that if x_{1}, x_{2}, x_{3} are roots of RCP (10) then the numbers

$$
\begin{equation*}
\xi_{1}=\frac{x_{1}}{x_{2}}+\left(\frac{x_{1}}{x_{2}}\right)^{-1}, \quad \xi_{2}=\frac{x_{1}}{x_{3}}+\left(\frac{x_{1}}{x_{3}}\right)^{-1}, \quad \xi_{3}=\frac{x_{2}}{x_{3}}+\left(\frac{x_{2}}{x_{3}}\right)^{-1} \tag{34}
\end{equation*}
$$

depend on $\frac{p q}{r}$ only.
For elementary symmetric polynomials of $\xi_{1}, \xi_{2}, \xi_{3}$ we have

$$
\begin{equation*}
\xi_{1}+\xi_{2}+\xi_{3}=-\frac{1}{r}\left(x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+x_{3}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}\right) \tag{35}
\end{equation*}
$$

and as above $((28)-(29))$ we find

$$
\begin{equation*}
\xi_{1}+\xi_{2}+\xi_{3}=\frac{p q}{r}-3 \tag{36}
\end{equation*}
$$

$$
\begin{aligned}
\xi_{1} \xi_{2}+\xi_{1} \xi_{3}+ & \xi_{2} \xi_{3}=\frac{1}{r^{2}}\left(-r\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)+\left(x_{1} x_{2}\right)^{3}+\left(x_{1} x_{3}\right)^{3}+\left(x_{2} x_{3}\right)^{3}-\right. \\
& \left.-r\left(x_{1} x_{2}^{2}+x_{2} x_{1}^{2}+x_{1}^{2} x_{3}+x_{3}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{2}\right)\right) .
\end{aligned}
$$

Using (35)-(36) and taking into account that by (29), (30)

$$
\begin{gathered}
x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=-p^{3}+3 p q-3 r \\
\left(x_{1} x_{2}\right)^{3}+\left(x_{1} x_{3}\right)^{3}+\left(x_{2} x_{3}\right)^{3}=-(p *)^{3}+3 p^{*} q^{*}-3 r^{*}
\end{gathered}
$$

where

$$
\begin{gathered}
p^{*}=-\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)=-q \\
q^{*}=x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}^{2}=x_{1} x_{2} x_{3}\left(x_{1}+x_{2}+x_{3}\right)=p r \\
r^{*}=-\left(x_{1} x_{2} x_{3}\right)^{2}=-r^{2}
\end{gathered}
$$

such that

$$
\left(x_{1} x_{2}\right)^{3}+\left(x_{1} x_{3}\right)^{3}+\left(x_{2} x_{3}\right)^{3}=q^{3}-3 p q r+3 r^{2}
$$

we have

$$
\begin{equation*}
\xi_{1} \xi_{2}+\xi_{1} \xi_{3}+\xi_{2} \xi_{3}=4 \frac{p q}{r}-24 \tag{37}
\end{equation*}
$$

It is interesting that, only for proof that $\xi_{1} \xi_{2} \xi_{3}$ depends on $\frac{p q}{r}$, we use condition (9). Indeed, by (34) we have

$$
\xi_{1} \xi_{2} \xi_{3}=\frac{1}{r^{2}}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\left(\left(x_{1} x_{2}\right)^{2}+\left(x_{1} x_{3}\right)^{2}+\left(x_{2} x_{3}\right)^{2}\right)-1
$$

Taking into account that

$$
\begin{gathered}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=p^{2}-2 q \\
\left(x_{1} x_{2}\right)^{2}+\left(x_{1} x_{3}\right)^{2}+\left(x_{2} x_{3}\right)^{2}=\left(p^{*}\right)^{2}-2 q^{*}=q^{2}-2 p r
\end{gathered}
$$

we find

$$
\begin{equation*}
\xi_{1} \xi_{2} \xi_{3}=\left(\frac{p q}{r}\right)^{2}+4\left(\frac{p q}{r}\right)-1-2 \frac{p^{3} r+q^{3}}{r^{2}} . \tag{38}
\end{equation*}
$$

Since by (9)

$$
p r^{\frac{1}{3}}+q=-3 r^{\frac{2}{3}}
$$

then we have

$$
\begin{gathered}
\frac{p^{3} r+q^{3}}{r^{2}}=\frac{1}{r^{2}}\left(p r^{\frac{1}{3}}+q\right)\left(p^{2} r^{\frac{2}{3}}-p q r^{\frac{1}{3}}+q^{2}\right)= \\
\left.=-\frac{3}{r^{\frac{4}{3}}}\left(p r^{\frac{1}{3}}+q\right)^{2}-3 p q r^{\frac{1}{3}}\right)= \\
=-\frac{3}{r^{\frac{4}{3}}}\left(9 r^{\frac{4}{3}}-3 p q r^{\frac{1}{3}}\right)
\end{gathered}
$$

Now according to (38) we find

$$
\begin{equation*}
\xi_{1} \xi_{2} \xi_{3}=\left(\frac{p q}{r}-7\right)^{2}+4 \tag{39}
\end{equation*}
$$

Thus, by (36), (37) and (39) the numbers $\xi_{1}, \xi_{2}, \xi_{3}$ (34) are the roots of the following polynomial

$$
\begin{equation*}
\xi^{3}-\left(\frac{p q}{r}-3\right) \xi^{2}+4\left(\frac{p q}{r}-6\right) \xi-\left(\left(\frac{p q}{r}-7\right)^{2}+4\right) \tag{40}
\end{equation*}
$$

and, consequently, they depend on $\frac{p q}{r}$ only.
Notice that, using (25) we see that the numbers $\frac{x_{1}}{x_{2}}, \frac{x_{2}}{x_{1}}, \frac{x_{1}}{x_{3}}, \frac{x_{3}}{x_{1}}, \frac{x_{2}}{x_{3}}, \frac{x_{3}}{x_{2}}$ depend even on $\frac{p}{r^{\frac{1}{3}}}$ only.

Example 9. Together with decomposition (17) with $\frac{p q}{r}=2$ in [7] the following decomposition was found:

$$
\begin{gathered}
x^{3}+7 x^{2}-98 x-343= \\
\left(x-128 \cos \frac{2 \pi}{7}\left(\sin \frac{2 \pi}{7} \sin \frac{8 \pi}{7}\right)^{3}\right)\left(x-128 \cos \frac{4 \pi}{7}\left(\sin \frac{2 \pi}{7} \sin \frac{4 \pi}{7}\right)^{3}\right) \times \\
\times\left(x-128 \cos \frac{8 \pi}{7}\left(\sin \frac{4 \pi}{7} \sin \frac{8 \pi}{7}\right)^{3}\right)
\end{gathered}
$$

It is an RCP with also $\frac{p q}{r}=2$. Hence, by Theorem 5 the numbers

$$
\begin{aligned}
& \left\{\frac{\cos \frac{2 \pi}{7}}{\cos \frac{4 \pi}{7}}\left(\frac{\sin \frac{8 \pi}{7}}{\sin \frac{4 \pi}{7}}\right)^{3}, \frac{\cos \frac{4 \pi}{7}}{\cos \frac{2 \pi}{7}}\left(\frac{\sin \frac{4 \pi}{7}}{\sin \frac{8 \pi}{7}}\right)^{3}, \frac{\cos \frac{2 \pi}{7}}{\cos \frac{8 \pi}{7}}\left(\frac{\sin \frac{2 \pi}{7}}{\sin \frac{4 \pi}{7}}\right)^{3},\right. \\
& \left.\frac{\cos \frac{8 \pi}{7}}{\cos \frac{2 \pi}{7}}\left(\frac{\sin \frac{4 \pi}{7}}{\sin \frac{2 \pi}{7}}\right)^{3}, \frac{\cos \frac{4 \pi}{7}}{\cos \frac{8 \pi}{7}}\left(\frac{\sin \frac{2 \pi}{7}}{\sin \frac{8 \pi}{7}}\right)^{3}, \frac{\cos \frac{8 \pi}{7}}{\cos \frac{4 \pi}{7}}\left(\frac{\sin \frac{8 \pi}{7}}{\sin \frac{2 \pi}{7}}\right)^{3}\right\}
\end{aligned}
$$

are a permutation of the numbers

$$
\left\{\begin{array}{llllll}
\frac{\cos \frac{2 \pi}{7}}{\cos \frac{4 \pi}{7}}, & \frac{\cos \frac{4 \pi}{7}}{\cos \frac{2 \pi}{7}}, & \frac{\cos \frac{2 \pi}{7}}{\cos \frac{8 \pi}{7}}, & \frac{\cos \frac{8 \pi}{7}}{\cos \frac{2 \pi}{7}}, & \frac{\cos \frac{4 \pi}{7}}{\cos \frac{8 \pi}{7}}, & \frac{\cos \frac{8 \pi}{7}}{\cos \frac{4 \pi}{7}}
\end{array}\right\} .
$$

To get the corresponding equalities, it is sufficient to verify approximately by a pocket calculator that

$$
\begin{gather*}
\frac{\cos \frac{2 \pi}{7}}{\cos \frac{4 \pi}{7}}\left(\frac{\sin \frac{8 \pi}{7}}{\sin \frac{4 \pi}{7}}\right)^{3}=\frac{\cos \frac{4 \pi}{7}}{\cos \frac{8 \pi}{7}}, \frac{\cos \frac{2 \pi}{7}}{\cos \frac{8 \pi}{7}}\left(\frac{\sin \frac{2 \pi}{7}}{\sin \frac{4 \pi}{7}}\right)^{3}=\frac{\cos \frac{4 \pi}{7}}{\cos \frac{2 \pi}{7}}, \\
\frac{\cos \frac{4 \pi}{7}}{\cos \frac{8 \pi}{7}}\left(\frac{\sin \frac{2 \pi}{7}}{\sin \frac{8 \pi}{7}}\right)^{3}=\frac{\cos \frac{8 \pi}{7}}{\cos \frac{2 \pi}{7}} \tag{41}
\end{gather*}
$$

etc.
Notice that, in [7] R.Witula and D.Slota found some other $R C P_{s}$ with roots which depend on sines or cosines of arguments $\frac{2 \pi}{7}, \frac{4 \pi}{7}, \frac{8 \pi}{7}$. However, it is interesting that, as we verified, for them $\frac{p q}{r}$ assumes only the values $2,-40,-180$.

References

[1] 1. B.C. Berndt,Ramanujan's Notebooks, Part IV,Springer-Verlag, New York,1994.
[2] 2. B.C. Berndt and S. Bhargava, Ramanujan-for Lowbraws, American Mathematical Monthly ,100 (1993),644-656.
[3] 3. A.G. Kurosh. Lectures in General Algebra,Chelsea,1963.
[4] 4. S. Ramanujan, Nitebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, (1957).
[5] 5. S. Ramanujan, Collected Papers, Chelsea,New York,1962.
[6] 6. V.S. Shevelev. Three Ramanujan's Formulas, Kvant 6 ,(1988), 52-55 (in Russian). Translation into English in AMS:Kvant Selecta, Mathem.World,vol. 14 (1999), 139144.
[7] 7. R. Witula and D. Slota, New Ramanujan - Type Formulas and Quasi - Fibonacci Numbers of Order 7, Integer Sequences,10 (2007), Article 07.5.6.

Departments of Mathematics, Ben-Gurion University of the Negev, BeerSheva 84105, Israel. E-mail:Shevelev@bgu.ac.il

