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On Ensembles of Low-Density Parity-Check Codes:
Asymptotic Distance Distributions

Simon Litsyn, Senior Member, IEEE,and Vladimir Shevelev

Abstract—We derive expressions for the average distance distri-
butions in several ensembles of regular low-density parity-check
codes (LDPC). Among these ensembles are the standard one de-
fined by matrices having given column and row sums, ensembles
defined by matrices with given column sums or given row sums,
and an ensemble defined by bipartite graphs.

Index Terms—Distance distributions, low-density parity-check
codes(LDPC).

I. INTRODUCTION

L OW-density parity-check codes (LDPC) attracted a great
deal of attention recently due to their impressive perfor-

mance under iterative decoding. However, there is no complete
understanding of the structure of LDPC, and knowledge of such
characteristics as the minimum distance and distance distribu-
tion could definitely facilitate our analysis of the best possible
performance of such codes in different channels (see, e.g., [11],
[13]). Moreover, information about the possible distance distri-
butions provides estimates on the gap between performance of
these codes under maximum likelihood and iterative decoding
algorithms.

In this paper, we solve the problem of estimation of the av-
erage distance distribution (or weight enumerator function) in
several ensembles of LDPC. This problem was addressed in
many papers, starting with Gallager’s original work [5]. How-
ever, the average distance distribution seems to be unknown
even for the ensemble of codes defined by the parity-check ma-
trices having fixed (and equal) number of ones in every column
and row.

In the paper, we deal with the following cases: classical en-
semble with all columns and rows of given weight (suggested
by [5]), ensembles with all columns of fixed weight, with all
columns obtained as a result of fixed times flipping of one of the
coordinates with uniform probability (suggested by [9]), and the
ensemble derived from bipartite graphs (suggested by [14]). It
is worth mentioning that we deal in this paper only withregular
ensembles, in the sense that all columns of the parity-check ma-
trix have the same nature. More precisely, any permutation of
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columns of a parity-check matrix in the ensemble produces an-
other matrix belonging to the same ensemble. The issue of irreg-
ular codes will be dealt with in the future. Also, we are planning
to elaborate on the obtained bounds by estimating their standard
deviations thus allowing to estimate the probability that a ran-
domly generated code will have a distance distribution close to
the expected one (for finite and infinitely growing lengths).

II. ENSEMBLES OFLDPC

Let be a collection of binary parity-check matrices of size
, where . Every such matrix defines a code of rate

. Let and be given numbers, independent of.
The following ensembles of codes are considered.

• Ensemble A: Matrix is chosen with uniform proba-
bility from the ensemble of -matrices having

ones in each row and ones in each column (or, in
other words, having row sums equaland column sums
equal ).

• Ensemble B: The matrix is composed of strips (each
strip is of size ). The first strip is the -fold concate-
nation of the identity matrix of size . The other
strips are obtained by permuting at random the columns
of the first strip.

• Ensemble C: Matrix is chosen with uniform proba-
bility from the ensemble of -matrices with
column sums equal.

• Ensemble D: Matrix is generated starting from the
all-zero matrix by flipping bits (not necessarily distinct)
with uniform probability in each column.

• Ensemble E: Matrix is chosen with uniform proba-
bility from the ensemble of -matrices with
row sums equal .

• Ensemble F: Matrix is generated starting from the
all-zero matrix by flipping bits (not necessarily distinct)
with uniform probability in each row;

• Ensemble G: Matrix is generated starting from the
all-zero matrix by flipping each entry with probability

.

• Ensemble H:Matrix is generated using a random reg-
ular bipartite graph (perhaps with parallel edges)
with left degree and right degree, such that if
there are edges connecting theth left node with the th
right node, otherwise .

0018-9448/02$17.00 © 2002 IEEE
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III. M AIN RESULTS

Let be an ensemble of codes of lengthdefined by
matrices of size . For a code we define the distance
distribution as an -vector

where

(1)

where is the Hamming weight. The average ensemble dis-
tance distribution then is

and is defined by

(2)

Let for

be the natural entropy.
In the following theorem we summarize results of the paper.

Theorem 1: Let , . For the
average distance distributions

in Ensembles A and B are determined by the following expres-
sions.

• Ensemble A:
Let

(3)

where is the only positive root of

Then, for even

(4)

and for odd

if

otherwise.
(5)

• Ensemble B:
The same as in Ensemble A.

In other ensembles

(6)

and is defined as follows.

• Ensemble C:

(7)

where is the only root of

(8)

• Ensemble D:
The same as in Ensemble C.

• Ensemble E:

(9)

• Ensemble F:
The same as in Ensemble E.

• Ensemble G:

(10)

• Ensemble H:
The same as in Ensemble A.

To compare, for the ensemble of random codes defined by
the binary matrices without restrictions, we have the
well-known normalized binomial distribution

(11)

Notice that in all the ensembles whenever we letor tend to
, the average distance distribution converges to the binomial

one.

IV. A VERAGE DISTANCE DISTRIBUTION IN ENSEMBLE A

Consider the ensemble of all -matrices with
, and having all row sums equaland column sums equal

. In other words, for every matrix , ,
from this ensemble we have

for every

for every

Counting the total number of ones in the matrices in two ways
(by rows and by columns) we conclude that . Let

(12)

We will denote the described ensemble by . Let ,
, and denote the subset of the matrices from

having an even sum of the firstelements in every row as .
In other words

for every

This condition yields that

(13)
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Another possible description of the matrices of this subset is that
the componentwise modulo-sum of their first columns is the
all-zero column vector of size (and, thus, the vector
is a codeword).

Our problem is to estimate the number of such matrices
.

We will make an extensive use of the following result due to
[12]. Let , , where

and are nonnegative integers, and let stand for the
ensemble of square matrices with row sums and column
sums .

Theorem 2 (O’Neil): Let , and

(14)

or (15)

Then, for

(16)

In 1977, Good and Crook [6] demonstrated that Theorem 2
is valid even without condition (15). Thus, it is quite straight-
forward to generalize it to rectangular matrices. Let again

and , be the en-
semble of rectangular matrices , with row sums

, , and column sums , .

Theorem 3: Let , and

(17)

Then, for

(18)

Proof: Indeed, assume

Then (17) implies (14), (14) implies (16), and (18) follows
therefrom.

Let

(19)

be the proportion of the matrices from the set in the en-
semble .

Theorem 4: Let be the (only) positive root of

(20)

Then, for and even

(21)

(22)

and for odd

if

otherwise

(23)

A. Proof of Theorem 4

Let us sketch the proof. The treatment depends on parity of
. Given a weight , our goal is to find the number of matrices

from the ensemble such that the submatrix consisting of the first
columns has even row sums. Given the proportions of dif-

ferent row sums in this submatrix (they can be equal only for
) we also know the distribution of the row sums

in the complementary right submatrix. Using the generalization
of the result by O’Neil, it is possible to count the number of ma-
trices having corresponding row sums distributions in the left
and right submatrices. Summing over all possible distributions
we obtain an expression for the total number of the matrices, and
thus an estimate for the sought probability. The proof is accom-
plished by finding the maximizing left row sums distribution.

1) The Case of Even: Let . For a , fixed, the
matrix naturally partitions to two submatrices and
of size and consisting, respectively, of
the first columns and the last columns of . Let
be the number of rows in with sums equal to, where

. Consequently, has rows with
sums , and the following equalities are valid:

(24)

Clearly, .
Denote the set of all possible matrices by and the

set of all possible matrices by . Then evidently

(25)
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where the sum is taken over all solutions of
(24) and

is a multinomial coefficient.

Lemma 1: The following holds:

(26)

where for sufficiently large

(27)

and

(28)

where for sufficiently large

(29)

Proof: To prove (26) and (27) we take into consideration
that (14) is valid, thus from Theorem 3 it follows that for

However, (24) implies that

Thus, (26) and (27) follow.
To prove (28) and (29), we transform the conditions (24) into

(30)

Then from Theorem 3 for

However, (30) implies that

and (28), (29) follow.

For we use notation if , and
say that and are logarithmically equivalent.

Lemma 1 and (25) imply

(31)

where the summation is over all satisfying
(24).

Lemma 2:

(32)

Proof: From Theorem 3, we conclude that for
and

and (32) follows.

Lemma 3:

(33)

where the summation is over all satisfying
(24).

Proof: Follows from (19), and (31), (32).

Corollary 1:

(34)

By (34), it suffices to accomplish the calculations for
assuming

(35)

Let us estimate the right-hand side of (33). By Stirling

(36)

Denote

(37)

where the maximum is over all satisfying
(24) with , i.e.,

(38)

Lemma 4:

(39)
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Proof: Since ’s are at most (see the first equation of
(38)), the number of summands in the sum in the right-hand side
of (33) is at most . Each of the summands is at most ,

and thus the sum is at least and at most . To
show the logarithmic equivalence it is left to show that is
exponential in . Indeed, since

and

then

On the other hand, choose , and assign to all the re-
maining ’s arbitrary values in such a way that (38) is satisfied.
Then, clearly,

and we are done.

Before we continue the proof of Theorem 4, let us compare
the considered distribution with the multinomial one.

2) Multinomial Distribution and an Example:By Lemmas
3 and 4, we reduced the problem to computing logarithmical
asymptotics of

(40)

under conditions (38). By

we may rewrite (40) as

(41)

where

(42)

Under condition

(43)

the distribution

is multinomial. If is an integer then
attains maximum at

(44)

for any . In this case

and (43) holds.
Recall that the second condition of (38) should hold as well

in our case. However, in general, it is not true for the numbers
defined in (44).

Let us give an example when the second condition is also
valid. Let be a multiple of , be a multiple of ,
and . Assume

(45)

Then, by (42) and (45)

and the second condition in (38) is valid.
Substituting (45) into (40) (and taking into account (42)), and

by

we obtain

From Lemmas 3 and 4 (for and ), we conclude
that

or

(46)
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This result is a particular case of Theorem 4 since for ,
(20) has the unique positive solution .

Since the second condition of (38) is in general invalid for
the choice of ’s given by (44), the numbers providing
maximum to are different from (45).

Now we pass to an accomplishment of the proof of Theo-
rem 4.

3) End of the Proof to Theorem 4 forEven: Let us exclude
from (38) and

(47)

From (47) we have

(48)

Equating the partial derivatives to zero we derive (after
straightforward simplifications) a system of equations for

(49)

Solving the system of the first andth equation in and
for every , we find

(50)

(51)

Set

(52)

Then, by (50)

(53)

From (53) we see that

(54)

does not depend on. Therefore,

(55)

From (52) and (55) it follows that to solve the system (49) we
need to find and . Rewriting (51) using (52)

(56)

dividing (56) by (53), and taking into account (55) after simpli-
fications, we get

(57)

where

(58)

However, it is easy to see that

(59)

(60)

Set

(61)

From (57)–(61) it follows that

(62)

Since is odd

(63)

Thus, we arrived at the equation in Theorem 4.
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Now we are in a position to accomplish solution of (49). By
(54) and (61)

(64)

and since

(65)

then by (53)

Alternatively

(66)

Thus,

(67)

By (52) and (64)

(68)

Notice also that (52) and (65) yield

and thus by (47), (50), (51), (67), (68), we have

(69)

(70)

Now, by (48) and (67)–(70) after simplifications we have

(71)

Let us compute the coefficient at in the last expression.
We have

However, by (63), the last expression equals. From this, and
as well from the following equalities:

we conclude

(72)

However,

(73)

(74)

and from (72)
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Taking into account (62) and (63) we find

(75)

And, finally, by (63)

and from (75) we have

(76)

From (33)–(39) we finally have (21) of Theorem 4.
4) The Case of Odd: In this subsection, we keep all the

notations of Section IV-A1. Consider sat-
isfying

(77)

From (77) we have

(78)

(79)

Since , then (79) yields

(80)

Otherwise, . Restriction (80) is an important distinc-
tion of the case when is odd (see (23)). Thus, we assume in
what follows that (80) is valid. As it is easy to check, Lemmas
1–4 hold also for odd’s (with a minor change of notation). For
example, (33) has the following form:

(81)

Therefore, similarly to above, we have to determine the asymp-
totics of

(82)

under condition (77) or (78), (79) when . Similarly to
(48), we find

(83)

Equating partial derivatives to, after some simplifications we
obtain a system of equations for

(84)

From the first and theth equations we find

(85)

(86)

Set

(87)

Then, by (85)

(88)
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From (88) we see that

(89)

does not depend on. Therefore,

(90)

From (87) and (90) it follows that to solve the system (84) it is
left to find and . Rewriting (75) using (76)

(91)

dividing (91) by (88), and taking into account (90) after simpli-
fications we get an equation in which is essentially distinct
from the corresponding one (57) in the case of even

(92)

where

(93)

It is easy to verify that

(94)

(95)

Set

(96)

From (92)–(96) we have

(97)

Again (see (63)) this yields

(98)

Thus, for odd we have obtained the same (63) as in Theorem
4. Now we are in a position to accomplish the solution of (84).
By (96) and (90)

(99)

and by (88)

(100)

On the other hand

(by (97))

(by (98))

(by (100))

and

(101)

which (surprisingly for the authors!) coincides with (67). From
(87) and (99)

(102)

Now from (101) and (102)

(103)

and

(104)
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From (78), (79) when , (85), (86), and (101)–(104) we
find

(105)

(106)

Further, from (83) using (101), (102), (105), and (106) we de-
duce after some transformations

(107)

Let us compute the coefficient at in the last expression.
We have

However, by (98) the last expression equals. From this, as well
as from the following equalities:

we conclude that

(108)

However,

(109)

(110)

Comparison of (108)–(110), (97), (98) with corresponding
(72)–(74), (62), (63) shows that further computations are not
dependent on the parity of. Thus, for we
have (the same as in Section IV-A1)

(111)

and (23) of Theorem 4 follows.

B. Study of (20)

What is left in the proof is to show that the following equation

(112)

has a unique positive solution. In the subsequent theorem, we
not only prove this statement, but also find intervals for the root
to exist.

Theorem 5:
a) For even and any , (112) possesses the unique

positive root such that for ,
and for .

b) For odd and any , (112) possesses the
unique positive root such that for

, and for
.

Proof: Set

(113)

Then the considered equation transforms into

(114)

Notice that for we have .

a) Let be even. Assume . Then from (113) it
follows that . If , that corresponds to

, then

(115)

Furthermore, since , ,
then has the unique root in the interval . It is
possible to find more accurately its location if one takes
into account that

(116)

and thus it is located in . However, since for
we have , the only positive

root . The value of the root
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corresponds to , , . If, however,
, then denoting , we have

Since , , then
. Thus, for we have the unique root

in the interval , that corresponds to a unique positive
value .

Now, let , then . If
then

Since , , then
and there are no roots in the interval .

If then denoting , we have

Furthermore, since ,
then has the unique root in the interval that
corresponds to a unique value of . It is possible to
find its location more accurately if one takes into account
that

(117)

for . Therefore, has a root in ,
which corresponds .

b) Let be odd. Assume . Then . If
, then (115) is valid, and since ,

, then has the unique root in
the interval . It is possible to specify its location by
taking into account that

(118)

i.e., it is located in , which corresponds to
. The value of the root corresponds

to , , . If, however, , then
denoting , we have for

Thus, does not have roots in the interval
. Now, let , then,

by (113), . First of all, let us show
that for , . Indeed, ,

, and evidently

we are done.
Finally, let . Then (114) is equivalent to

(119)

Since

it is sufficient to show that . Indeed, then
is monotonous and varies in the same limits as. This
means that (119) has a unique solution for every. We
will prove that

Indeed, , , and it is sufficient to
demonstrate that . We have

We have , , and it is sufficient
to show that for , . We have

Furthermore, the root of (119) . Indeed, if ,
then, since , we have

(120)

Thus, the root corresponds to the unique root

(121)

Remark 1: In the case of odd the value (or
) corresponds to the limiting case ,

which in turn corresponds to the limiting case . Indeed,
for odd

Analogously, for even, we have
, and correspondingly, .

Remark 2: From (20), it follows that for

Then by (21)

Remark 3: Checking (as in the example of Section IV-A2)
that the condition (38) holds for , . Indeed, from
(67), (68), (101), (102) we have
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Therefore, we have a multinomial distribution with

It is known, see e.g., [2], that provides maximum
probability in multinomial distribution. Moreover, these values
provide maximum under an extra condition

Thus,

(122)

Analogously, it is possible to show that the function is
monotonously increasing in the interval and is
monotonously nonincreasing in the interval .

Remark 4: For when , is a multiple of
, . This case is interesting in two ways. First, for

, (33) becomes an exact equality. Second, for
there exists an alternative representation. We state these facts as
a theorem.

Theorem 6:

a) For even

(123)

where the summation is over all nonnegative
satisfying (24) for .

For odd

(124)

where the summation is over all nonnegative
satisfying (77) for .

b) For any

(125)

where the summation is over even
under condition

(126)

Proof: The expressions (123) and (124) are proved in a
similar way, thus, we will prove only (123). Assumeis even.
First of all, notice that

(127)

Let, as in Section IV-A1, stand for the number of rows in the
matrix with row sums equal, where is an even nonneg-
ative number not exceeding. Correspondingly, has
rows with sums . Here it is possible to compute ,

. We have

By (24) for

Therefore,

(128)

Analogously, see the equation at the bottom of the page. How-
ever, by (30) for
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Therefore,

(129)

Now

(130)

where the summation is over all satisfying
(24) for . From (127)–(130), we find (131), shown at
the bottom of the page, and (123) follows from (131) by the first
restriction in (24) when .

We proceed to prove claim b) of the theorem. Although the
equivalence of (123) and (124) to (125) is straightforward, in
what follows we will provide an independent direct proof of
(125). Let there be ones, , in the first
entries and theth row of the considered matrix. Taking
into account that in every column there is exactly a unique one,
there are

ways to do it. Here are even nonnegative num-
bers not exceeding and satisfying

Simultaneously, since all the row sums equal, in the last
entries of the th row there are ones,

. Such choice can be done in

ways.
By (127), see the second equation at the bottom of the page,

and since

finally we have

and thus we have proved (125).

Lemma 3 yields the following corollary.

Corollary 2:

(132)

Moreover, by (125) and (132) we have

(133)

where the summation is over

under condition that

(134)

In contrast with the sum appearing in Lemma 3, having order
, the order of the sum (133) is , which complicates

drastically its study. In particular, it is not logarithmically equiv-
alent to its maximal summand (in which, whenis even,

). Indeed, for instance, when ,
, , the maximal summand is and,

by (122)

since

(131)
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However, by Lemmas 3 and 4, (133) with , as well as
from (111) we have the following.

Corollary 3:

(135)

where is the root of (20) in Theorem 4.

C. Study of as a Function of

Let us study

as a function in . By Theorem 5, the function is invertible.
Assume that is even. We have

(136)

By (63) we have

(137)

and

(138)

Thus, the function has the unique stationary point satis-
fying

However, by (62), it is equivalent, whenis even, to

Therefore, in the stationary point and . From
Theorem 5, it follows that if then

and by (138), . Analogously, for

and . This means that for even

(139)

Let now be odd. Then from (98) it again follows that

(140)

and

with the only stationary point , . However, for
as well as for by Theorem 5 we have

In this case, there is no extremum and is everywhere mo-
notonously decreasing. Furthermore

In what follows we will prove that

Then

We summarize the results in the following theorem.

Theorem 7: If is even then

has the only extremum (minimum) in the interval at
, when it is equal to .

If is odd then this limit is monotonously decreasing and
attains the minimum equal .

Remark 5: Actually the last theorem means that in the case
of even the distance distribution is always greater than the
distance distribution of a random code (normalized binomial
distribution) but in the point , where both distributions
coincide. For an odd, the distance distribution is greater than
the binomial one for , and is less than the binomial one
for . In they coincide.

Let us further study the concavity of . Since

then from (138) it follows that

(141)

Taking into account (137) and (20), we find that

(142)

Let be even. Then and (142) yields
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Then by (141) we have

and the function is -concave in all the interval .
Moreover, for , , and

(143)

By (20)

(144)
Therefore (when )

(145)

Now, from (143) we have that

Next, when , , from (144) we find

Now, let be odd. Then from (142) it follows for

and from (141)

and when

Thus, at , corresponding to , we have the point
of change of concavity. Moreover, to the left of the
function is -concave, and to the right of the
function is -concave.

When , and

However, by (144)

and

Therefore, in this case, is monotonously decreasing from
to changing at

concavity from down to up. Notice also that

and this accomplishes the proof of Theorem 7 for odd.

V. AVERAGE DISTANCE DISTRIBUTION IN ENSEMBLE B

This ensemble was suggested by Gallager in [5] and is defined
as follows. Let be a -fold concatenation of the identity
matrix. Then

where is a matrix obtained by a random column permuta-
tion of . Clearly, every such matrix has ones in every row
and ones in every column, i.e., Ensemble B is a subensemble
of Ensemble A.

Comparison of the final results of the previous section with
[5, Theorem 2.3] shows that they are identical (up to a somewhat
more precise analysis in the case of odd’s in the previous sec-
tion). This is a very surprising (at least for the authors) fact, since
the proof techniques are very different. Moreover, Ensembles A
and B are different in the sense that Ensemble A contains ma-
trices which cannot be derived from a matrix from Ensemble B
using permutations of rows and columns. Indeed, consider, e.g.,
matrices of size with column sums 2 and row sums 3. By
definition, for every row in a matrix from Ensemble B there is
another row having support nonintersecting with the support of
the initial row. For example, a typical matrix from Ensemble B
is

However, in the following matrix belonging to Ensemble A

the support of each row intersects the supports of all other rows,
and this property is clearly invariant under rows and column
permutations.

VI. A VERAGE DISTANCE DISTRIBUTION IN ENSEMBLE C

Ensemble C is defined by matrices havingones in every
column. Let stand for the ensemble of such ma-
trices with . Our goal is to find an expression for the
distance distribution component where . Let
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represent the ensemble of matrices from having the prop-
erty that, for all rows, the sum of the first entries in the row is
even (and thus, the vector is a codeword). Finally, let

(146)

Evidently

(147)

For estimation of , methods standard for the random
walks on hypercube can be applied, see, e.g., [3], [7]. However,
we will demonstrate how an elementary method of generating
functions gives the sought result.

We will need the following definition. The binary
Krawtchouk polynomial is

(148)

It may be defined also by the following generating function:

(149)

For a survey of properties of Krawtchouk polynomials see [8],
and also [1, Sec. 2.3], [10, Sec. 5.7].

Theorem 8:

(150)

Proof: Let . Assume that is the generating
function for appearance of one in theth coordinate of a row-
vector of size . Then

is the generating function for row-vectors of sizeand even
weight (for example, corresponds to the binary vector
having one in the second, third, eighth, and ninth coordinates).
Then is the generating function for matrices with
even row sums. The number of such matrices with column sums
equal is represented by the coefficient at . However,
by (149)

Therefore,

Since

we arrive at the claimed conclusion.

Remark 6: It is known that for an arbitrary polynomial
of degree at most one can find the unique expansion in the
basis of Krawtchouk polynomials

In particular

Therefore,

(151)

Now let us study the asymptotic behavior of the expression in
Theorem 8 under assumption thattends to infinity,
for , and is a constant independent of.

Under these assumptions

Thus,

(152)

Differentiating in we have that the maximum is achieved at
satisfying

(153)

On the right-hand side of the last expression we have a positive
constant, while on the left-hand side there is a function monot-
onously decreasing from at to at . Thus,
(153) has a unique solution in the interval , and we have
proved the corresponding of Theorem 1.

VII. A VERAGE DISTANCE DISTRIBUTION IN ENSEMBLE D

Recall that Ensemble D is defined by the following proce-
dure. We start from the all-zero column-vector of size. We
repeat the following operationtimes ( is a constant indepen-
dent of ): flip one of the coordinates with uniform proba-
bility. As a result, we have a column-vector of weight at most
with the parity of the weight equal to the one of. Generating
such vectors independentlytimes yields an matrix .
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Clearly, the described procedure is equivalent to the fol-
lowing: generate column-vectors of size and of weight ,
Sum up (coordinate-wise modulo) the consecutive vectors
with numbers ; ; , thus
getting column-vectors constituting the parity-check matrix

.
Thus, the problem reduces to estimation of the proportion

of -matrices of size with column sums equal
and having the sum (coordinate-wise modulo) of the first
columns equal the all-zero vector. This is a particular case of the
problem for Ensemble C. By (150) and , we
have here

(154)

The corresponding expression was earlier derived in [9] using
different arguments.

VIII. A VERAGE DISTANCE DISTRIBUTION IN ENSEMBLE E

Recall that Ensemble E is defined by binary matrices
with row sums equal to , where is a constant independent
of . Consider the probability that the first columns of
such a matrix sum up (coordinate-wise modulo) to the all-zero
vector. The probability that the number of ones is even in the
first positions in a vector of length and weight is

(155)

For tending to it reduces to

(156)

To have the desired property we need this event to hold for
rows. Since these events are independent then the sought prob-
ability is

(157)

and the corresponding claim of Theorem 1 follows.

IX. A VERAGE DISTANCE DISTRIBUTION IN ENSEMBLE F

Recall that Ensemble F is defined by the following procedure.
We start from the all-zero vector of sizeand flip one entry with
uniform probability. Repeating thistimes we obtain a vector of
weight at most . Now, generating such vectors, we compose
from them an matrix.

Consider the probability that the generated vector has an even
number of ones in the first coordinates. Since the prob-
ability that flipping happens at the first positions is , the
sought probability is

(158)

The probability that the described happens inindependent
events is , and we arrive at the corresponding claim of The-
orem 1.

X. AVERAGE DISTANCE DISTRIBUTION IN ENSEMBLE G

Recall that Ensemble G is generated by binary matrices
where each entry iswith probability . The probability
that there is an even number of ones in the first positions
of a row is

(159)

Furthermore, if is even

(160)

The probability of the sought event is , and we arrive at the
corresponding conclusion in Theorem 1.

XI. A VERAGE DISTANCE DISTRIBUTION IN ENSEMBLE H

Recall that Ensemble H is defined by the following model.
Let be an regular bipartite graph with left degreeand
right degree , perhaps with parallel edges. To generate such
graph, one just enumerates the edges on the left part and on the
right part of the graph, and connects them randomly (using a
permutation). It is easy to see that this model corresponds to
the following procedure: generate a random binary ma-
trix with column sums equal and row sums equal; sum up
(regular summation) the consecutivecolumns with numbers

; , , to get an matrix
(with entries being ); construct a bipartite graph

from by putting parallel edges between theth node on
the left and the th vertex on the right if and only if .
Thus, the problem reduces to estimation of probability that the
first columns of a binary matrix with row sums
and column sums, sum up (coordinate-wise modulo) to the
all-zero column. This is a particular case of the problem con-
sidered in regards to Ensemble A, and a direct check shows that
the expressions are equivalent.

XII. T HE DISTANCE DISTRIBUTIONS FORCONSTANT

DISTANCES

Theorem 1 provides a classification of Ensembles A–H ac-
cording to the behavior of considered probabilityfor

). The equivalence classes are

• A, B, H
• C, D
• E, F
• G

In this section, we restrict ourselves to the study of this prob-
ability for the first ensembles in each group, i.e., A, C, E, and
G, when is a constant independent of.

A. Ensemble A

Assume

(161)
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Under this condition, the following analysis does not depend on
the parity of , thus we assume, for instance, thatis even. The
expression (33) reduces to

(162)

where the summation is over all integral nonnegative
, satisfying the conditions

(163)

(164)

By (164) we have

Therefore, (162) and (163) yield

(165)
However, (164) yields

and, since the number of summands is , then we have

(166)

B. Ensemble C

Let be even. Similarly to Ensemble A, we partition any
matrix from Ensemble C into two submatrices (left and right),
the first one having columns. We denote the corresponding
classes by , , so that the total number of the matrices
in the ensemble is

(167)

where the sum is over all

(168)

(169)

Moreover, as in Lemma 1

(170)

Here, is . Furthermore, evidently

(171)

From (167), (170), and (171) we conclude that

(172)

However, by (169)

and we have

(173)
Since the total number of the matrices in the ensemble is ,
by (173) we have

(174)

Furthermore

and we conclude

(175)

C. Ensemble E

For an arbitrary row the probability that it contains an even
number of ones in the first columns is

Thus, taking into account that the number of rows is ,
the probability we are interested in is

(176)

This means that the proportion of words of constant weight
belonging to a code from the ensemble is a constant independent
of .
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Fig. 1. Distance distributions for(`; k) = (3; 6).

Fig. 2. Distance distributions for(`; k) = (4; 8).
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Fig. 3. Distance distributions for Ensemble A.

Fig. 4. Distance distributions for Ensemble C.
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Fig. 5. Distance distributions for Ensembles E.

Fig. 6. Distance distributions for Ensembles G.
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D. Ensemble G

The probability that arbitrary row contains an even number
of ones in the first columns is

for even

for odd.

Raising it to power we have

for even

for odd.
(177)

XIII. D ISCUSSION

In the paper, we derived expressions for the distance distribu-
tions in several ensembles of LDPC. The ensembles are defined
in Section II. As it can be seen from the main theorem (Theorem
1), essentially there are four distinct ensembles of the codes, rep-
resented by Ensembles A, C, E, and G. In Figs. 1 and 2, we give
graphs of the (normalized) distance distributions in the four en-
sembles of rate for , and .
In Figs. 3–6, we demonstrate dependence of the behavior of
the distance distributions in the ensembles of codes of rate
when – – .

Ensembles A and C have the minimum distance growing lin-
early in , while Ensembles E and G have relative distance
tending to when grows. Ensembles E and G both have worse
minimum distance than Ensembles A and C, because it is in-
evitable that these ensembles will make columns with no’s in
them, so the code will have codewords of weight. Ensembles
G and C have slightly higher peaks at relative distancebe-

cause their matrices have some blank rows, so the code rate is
slightly higher.
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