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On Ensembles of Low-Density Parity-Check Codes:
Asymptotic Distance Distributions

Simon Litsyn Senior Member, IEEEBNd Viadimir Shevelev

Abstract—We derive expressions for the average distance distri- columns of a parity-check matrix in the ensemble produces an-
butions in several ensembles of regular low-density parity-check other matrix belonging to the same ensemble. The issue of irreg-
codes (LDPC). Among these ensembles are the standard one dey, 5, codes will be dealt with in the future. Also, we are planning

fi i havi i | | . . . :
égﬁg et:jy bn;a;:;?iie: \\;\I/ﬂ% g'i\\ﬁ?] ?:?Jlﬂmﬂ Zﬂ?ngogr Zlf\r,';i g\];eswr?]g ® to elaborate on the obtained bounds by estimating their standard

and an ensemble defined by bipartite graphs. " deviations thus allowing to estimate the probability that a ran-
. N . . domly generated code will have a distance distribution close to
Index Terms—DPistance distributions, low-density parity-check - s .
codes(LDPC). the expected one (for finite and infinitely growing lengths).

I. INTRODUCTION
. ) Il. ENSEMBLES OFLDPC
OW-density parity-check codes (LDPC) attracted a great

deal of attention recently due to their impressive perfor- | et H be a collection of binary parity-check matrices of size

mance under iterative decoding. However, there is no complefex , wherem < n. Every such matrix defines a code of rate
understanding of the structure of LDPC, and knowledge of sugh> 1 — 2 | et} and/ be given numbers, independentof

characteristics as the minimum distance and distance distribuThe following ensembles of codes are considered.

tion could definitely facilitate our analysis of the best possible ) ] ) )
performance of such codes in different channels (see, e.g., [11]," ENsemble A:Matrix H is chosen with uniform proba-
[13]). Moreover, information about the possible distance distri- ~ Pility from the ensemble ofn xn (0, 1)-matrices having
butions provides estimates on the gap between performance of * ones in each row and ones in each column (or, in
these codes under maximum likelihood and iterative decoding ©ther words, having row sums equaand column sums
algorithms. equalf).

In this paper, we solve the problem of estimation of the av- ¢« Ensemble B: The matrix is composed of strips (each
erage distance distribution (or weight enumerator function) in  strip is of size’; x n). The first strip is the:-fold concate-
several ensembles of LDPC. This problem was addressed in nation of the identity matrix; of sizek x k. The other
many papers, starting with Gallager’s original work [5]. How- strips are obtained by permuting at random the columns
ever, the average distance distribution seems to be unknown of the first strip.
even for the ensemble of codes defined by the parity-check ma-« Ensemble C:Matrix H is chosen with uniform proba-

trices having fixed (and equal) number of ones in every column  pjjity from the ensemble ofn x = (0,1)-matrices with
and row. column sums equal
In the paper, we deal with the following cases: classical en- | Ensemble D: Matrix H is generated starting from the
Eem5b le with allbtl:olumnhs a"nd rlows of %l\]{.en(;/velg.hth(sugghestliad all-zero matrix by flipping? bits (not necessarily distinct)
y [5]), ensembles with all co umns of ixed weig L, with a with uniform probability in each column.
columns obtained as a result of fixed times flipping of one of the i _ _ _
¢ Ensemble E: Matrix H is chosen with uniform proba-

coordinates with uniform probability (suggested by [9]), and the - : ;
ensemble derived from bipartite graphs (suggested by [14]). It  Pility from the ensemble ofn x n (0,1)-matrices with

is worth mentioning that we deal in this paper only wiggular row sums equak.

ensembles, in the sense that all columns of the parity-check ma-» Ensemble F: Matrix H is generated starting from the

trix have the same nature. More precisely, any permutation of  all-zero matrix by flippingk bits (not necessarily distinct)
with uniform probability in each row;

. . . .+ Ensemble G:Matrix H is generated starting from the
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[ll. MAIN RESULTS * Ensemble C:
Let {C,,} be an ensemble of codes of lengthdefined by Py = —aln2+ aH(t) + 6¢1n(1 — 2¢) @
matrices of sizen xn. Foracode&’ € C,, we define the distance
distribution as ar{n + 1)-vector wheret is the only root of
B(O):(BO(O):17 BI(O)v 7Bn(0)) (1—2t)1111;t 22% (8)
&
where * Ensemble D:
. . The same as in Ensemble C.
Bi=H{ceCiwt(c)=4}, i=0,1,....,n (1) . Ensemble E:
wherewt(-) is the Hamming weight. The average ensemble dis- N 1+ (1-26)k
tance distribution then is pp = aln <72 ) : 9)
B(Cp) = (Bo(Ca), Bi(Ca), - -, Ba(Cn)) - Ensemble F:
The same as in Ensemble E.
and is defined by e Ensemble G:
1 14+ C—le
BZCn :IBZ‘I— BZC 2 o =l _— ). 1
@) APIRC @ i =an () (10)
e Ensemble H:
Let for @ 0,1 .
etford € [0, 1] The same as in Ensemble A.
H(#) = lim l In < ”) =—0lnf—(1—6)In(1—6) To compare, for the ensemble of random codes defined by
nmeen on the binarym x n matrices without restrictions, we have the
be the natural entropy. well-known normalized binomial distribution
In the following theorem we summarize results of the paper. be = H(6) — aln2. (11)

Theorem 1:Let« := m/n, « € (0, 1). Foré € (0, 1) the

average distance distributions Notice that in all the ensembles whenever wetlet ¢ tend to

oo, the average distance distribution converges to the binomial
1
bg := lim —ln By, := H(0) + pg one.

n—oo 1

in Ensembles A and B are determined by the following expres- V. AVERAGE DISTANCE DISTRIBUTION IN ENSEMBLE A

sions. Consider the ensemble of alk x » (0,1)-matrices with
« Ensemble A: m <n, and having all row sums equablnd column sums equal
Let £. In other words, for every matrid = [a;;], ¢ = 1, ..., m,
] ] j=1,...,n, from this ensemble we have
N (1+t)k+ (1 -t)*
Py = aln < g% ) — akH(8) 3) m
Z ay; =4, foreveryj =1, ..., n
wheret is the only positive root of i=1
(I+t)F 1+ (1 -kt 1 Z ay; =k, foreveryi =1, ..., m.
I+t +(Q -tk ' j=t

Counting the total number of ones in the matrices in two ways

Then, fork even
(by rows and by columns) we conclude that = n/. Let

bo = H(0) + 75 (4)

L
a="=2 0<ac<l (12)

and fork odd nk
: We will denote the described ensemble &y *. Letw = én
(83 k—1 A 1
be = H(O) + 1, it 6 (0, %) (5) 0 < 6 < 1, and denote the subset of the matrices frofn™
—00, otherwise. having an even sum of the firgtelements in every row aﬁsﬁ”g.

« Ensemble B: In other words

The same as in Ensemble A.

In other ensembles > aij€{0,2,4,...}, foreveryi=1,...,m.

j=1
be = H(0) +p§ (6) This condition yields that

andpg is defined as follows. akfn = fw = 0mod 2. (13)



LITSYN AND SHEVELEV: ON ENSEMBLES OF LOW-DENSITY PARITY-CHECK CODES

889

Another possible description of the matrices of this subset is that_et

the componentwise modulbsum of their firstw columns is the

all-zero column vector of sizex (and, thus, the vectar 0"~
is a codeword).

Our problem is to estimate the number of such matrices

A5 -

[12]. LetK = (/%‘1, koy ooy kn), L= (El, by, ..., gn), where
k; and¢; are nonnegative integers, and Jéf: - stand for the
ensemble of squarex n matrices with row suma; and column
sums¢;.

Theorem 2 (O’Neil): Letn — o, and

1 .

A AN 3i—F
llgg(n {ki, 4} < (lnn)s~°, £>0 14)
[{i: k; = 0o0r¢; =0} = O(lun). (15)

Then, foré > 0

2(5+)

(L+o (™). (16)

k, o
An,0

Pk

' (19)

k
An®

We will make an extensive use of the following result due tB€ the proportion of the matrices from the 2t 5 in the en-

sembleAk <,
Theorem 4: Let ¢ be the (only) positive root of

(L) L+ (11—t
(1+t)k +(1-t)*
Then, for0 < 8 < 1 andk even

(= 0o

=1-6.

(20)

1 o
lim —lnPf:’(‘,l =aln

n—oo n 2tk
(21)
Prlf:g :Pr’f,7f;0 (22)
and fork odd
lim l lnP:’(;x
n—co n ;
ol (SHEE=O (1 - gyi—v69)" )
= if0<6< bzt (23)
—00, otherwise

A. Proof of Theorem 4
Let us sketch the proof. The treatment depends on parity of

~ In 1977, Good and Crook [6] demonstrated that Theorem;2 Gjyen a weightu, our goal is to find the number of matrices
is valid even without condition (15). Thus, it is quite straightgqm the ensemble such that the submatrix consisting of the first

forward to generalize it to rectangular matrices. Let addia-
(ki, k2, ooy k) @andL = (41, £, ..., £,), AR L be the en-

m,n

semble of rectangulan x n matricesm < n, with row sums
ki,i=1,2, ..., m,and columnsumsg;, j = 1,2, ..., n.

Theorem 3:Letm — oo, and

max
1<

max k;, max
- a
Then, for§ > 0

<i<m 1<j<n
m
> ki )1
|AI\’,L _ =1

mn| = m n
IT k! T 4!
= =1

i=1

Kj} < (lnn)%_é, e>0. (17)

-1

(4o (n™ ).

Proof: Indeed, assume

X exp <zm: ki(ki—1) zn:&(gi—la

i=1 i=1

(18)

krn-l—l = knl+2 =--.=k,=0.

Then (17) implies (14), (14) implies (16), and (18) follows

therefrom. O

w columns has even row sums. Given the proportions of dif-
ferent row sums in this submatrix (they can be equal only for
0, 2, ..., 2[k/2]) we also know the distribution of the row sums
in the complementary right submatrix. Using the generalization
of the result by O'Neil, it is possible to count the number of ma-
trices having corresponding row sums distributions in the left
and right submatrices. Summing over all possible distributions
we obtain an expression for the total number of the matrices, and
thus an estimate for the sought probability. The proof is accom-
plished by finding the maximizing left row sums distribution.

1) The Case of Evel: Let A € A, 5. For aw, fixed, the
matrix naturally partitions to two submatricee™ and Arish
of sizem x w andm x (n — w) consisting, respectively, of
the firstw columns and the last — w columns ofA. Let m;
be the number of rows int!*®* with sums equal ta, where
i € {0,2,4,...,k} ConsequentlyA 2 hasm, rows with
sumsk — 4, and the following equalities are valid:

Mo +mo +My + - +mMp =an

2mg +4my + - - + kmy, = akbn. (24)

Clearly,m; > 0.
Denote the set of all possible matricak™ by L, § and the
set of all possible matriceg™s" by Rf;"g. Then evidently

) mk)

an

Z <m0, mo, ...

k, o
An, 4

k, o
Ln,@

k, o
Rn, 4

(25)



890 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 4, APRIL 2002

where the sum is taken over all solutiomg, ma, ..., m; of Lemma 1 and (25) imply
(24) and Ao 1 (akbn)l(ak(1 — 6)n)!
an _ (an)! m. ¢ (ak)I
mo, M2, ..., mk> o k/2 . (Oé?’L)'
‘]:[0 ma;! Z mol(0VED™om1(21(k — 2)1)™2 - -y (K101 ™ (31)
. . . - where the summation is over altg, mo, ..., my Satisfying
is a multinomial coefficient. (24)
Lemma 1: The following holds: Lemma 2:
kool (akn)! Y
Lis| = 9 (o @narmegms (26) |Akoo] 2 ko) _ (32)
- (khre(ak)i™
where forn sufficiently large
1 koD - Proof: From Theorem 3, we conclude that for — oo
5677 <gln) <2 7 (27) andé >0
and AR ~ _ (nka)t
™ kEDre(ak)in
o (ak(1 = B)n)! (
? = 2 . .
‘Rn,@ h(n) (ak)!(1_9)n2!nlk*24!"lk—4 . k!"nO ( 8) ) exp<_ (Iﬂ/ 1)(2I$Oé 1)) . (1 + o (nfl-f—é))
where forn sufficiently large
(ko and (32) follows. O
LSS <) < 20 29
2° < hin) < 2¢ (29) Lemma 3:

Proof: To prove (26) and (27) we take into consideration ;. , 1 1 an
that (14) is valid, thus from Theorem 3 it follows that for> 0 Pulo ~ <n/m) Z mo, Ma, - .., My

hel (akn)! nika
n,¢ (ak)!HnQ!nlz4!nl4 A k ma k my Ek M_2 a3
S () () (5 @
vexp| o ka(ka — 1)
2(acktn) where the summation is over alg, mo, ..., m; satisfying
COn(2ms + 12mg + -+ Kk — L), (24).
n(2mg + 12my - E( )mk)> Proof: Follows from (19), and (31), (32). O
(Lo (). Corollary 1:
However, (24) implies that o ln ok
2 TAPESD A (34)
kafn < 2ms + 12ma+ -~ + k(k — Dmy, < kK an. ’ ’
O

Thus, (26) and (27) follow.
To prove (28) and (29), we transform the conditions (24) into By (34), it suffices to accomplish the calculations foe= 1

Mo +ma + -+ + Mp_s + mp =an assuming
kmo + (k — 2)ma + -+ + 2mx_s = k(1 — O)n. (30) Ap =AM AN =AY, Prei=Prg. (35
Then from Theorem 3 fof > 0 Let us estimate the right-hand side of (33). By Stirling
k, o
\Rn,a In <”9kk> ~ knH(6). (36)
_ (ah(1 — B)n)! 7
T (k)1 A=O)nftmo ( — 2)ima L 2lmes Denote
-1 Mk — max < n ) <k> Mo
M ————————————————————————— — p— n70 Channt A
eXp<2(ak(1 — o) ka(ka — 1)(1 —6)n Mo, Mo, - mx ) \2
If my If ML _2 37
-(k(k—l)m0+(k—2)(k—3)m2+---+2mk_2)> g o lilo (37)
. (1 +o (n—1+5)) ) where the maximum is over athg, mo, ..., m; satisfying

—_ (24) withae = 1, i.e.,
However, (30) implies that

ka(1 —0)n < k(k — Dmo+ -+ 2my_o < k?an,
and (28), (29) follow. O

mo+mo+ma+---+mp=n
2my +4my + - - - + kg, = kon. (38)

Forn — oo we use notatiom,, = b, if lna, ~Inb,, and Lemma 4.

say thata,, andb,, are logarithmically equivalent. Pk, 2 exp(—knH(6)) ME . (39)
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Proof: Sincem;’s are at mosth (see the first equation of for anyj € {0, 1, ..., k/2}. In this case
(38)), the number of summands in the sum in the right-hand side K2 K2
of (33) is at mosk. = 1. Each of the summands is at magf ,

. , 19 mo+me+--+mp=(n+1 P — i
and thus the sum is at leasf” , and at mosw s+ M} ,. To o =t l) ; b2 ; !
show the logarithmic equivalence it is left to show th;"e is =n+l1l-1=n

exponential inn. Indeed, since
and (43) holds.

< n ) < <§ n 1>n Recall that the second condition of (38) should hold as well
Mo, M2, «.., ME) in our case. However, in general, it is not true for the numbers
and defined in (44).
k k Let us give an example when the second condition is also
2i) ~— \k/2 valid. Let k be a multiple of4, » + 1 be a multiple of2*—1,
then andf = 1/2. Assume
k k " ma; = (n 4 1)pa; — 6; k/a- (45)
o= ((342) (i) ’
2 k/2 Then, by (42) and (45)
On the other hand, choose, = n/2, and assign to all the re- i k/2 k
mainingm,’s arbitrary values in such away that (38) is satisfied. 211, + dmy + -+ - + kmy, = —= + (n+1) Z 2% %
Then, clearly, 2 i=1 2
/2 kont12 k-1
k k =+ 5 k
M, o2, 20 2L L \2i-1
and we are done. O = _k M .gk=2
2 2k—1
Before we continue the proof of Theorem 4, let us compare nk

the considered distribution with the multinomial one. 2
2) Multinomial Distribution and an ExampleBy Lemmas and the second condition in (38) is valid.

3 and 4, we reduced the problem to computing logarithmical g stituting (45) into (40) (and taking into account (42)), and
asymptotics of

by
! AN .
InMF, =maxln — " k
1 n, 0 HHaxin mo!mg! R mk' <2> m27' 1\“ hl (;3i)1 (7’L + 1) ‘
<I€ my If Mp—2 2
. ‘e 40) k k k
) RN R B NI
) ~(n+1) 2(’3_)1 In 2(’3_)1 +(n+1) 2(’3_)1 ln(n+1)
under conditions (38). By (k)
K\ [k A — i (n+ 1)
o) Tlo)t ) =2
we obtain
we may rewrite (40) as ‘
y (40) . nt1 k/2 I I
§ o(k—1)n In M7 15 ~nlnn—n— ST 9 In 9
In M7 , = maxln o °ps? -t (A1) im0 \** ¢
N molma! - -my! k/2
n—+1 k
where + SET (k—1)In2 Z <2L>
k) k/2 i=0
1=0 Z (k) k
2
Under condition +(n+1) Z Sh—1 10 <2L>
=0
Mo +mo+ - +mi=n (43) ~n(k—1)ln2.
the distribution From Lemmas 3 and 4 (fet = 1 andé = 1/2), we conclude
n! that
Prn,g, Mo, .o, My — 1 1 1 pglopglz o 'pzlk
TMo-TM2: - - 110k lnPff’ 12 ™~ —knln24+ ((k—1In2)n = —nln2

is multinomial. If (n + 1)p; is an integer thetP,.; s .. ma

. . or
attains maximum at

1
8. (44) lim —In Pf:} 12 =—In2. (46)

n—oo 7

mao; = (n + 1)pa; —

2
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This result is a particular case of Theorem 4 sinceffer 1/2, Set

(20) has the unique positive solution= 1. ma_ me _ U (52)
Since the second condition of (38) is in general invalid for mo 4 Mo 6 me o2
the choice ofny;’s given by (44), the numbers,; providing  Then by (50)
maximum toMr’ie are different from (45). ’ LGi-1)
Now we pass to an accomplishment of the proof of Theg: — 2 k—4 2 (Q’“Z) ’
rem 4. P by P Tt ti—2 BT (k)i/(i—l)tl/(i—l)
3) End of the Proof to Theorem 4 fbiEven: Let us exclude 2 2
from (38)mo andmy, = w (53)
ma
M = Pk From (53) we see that
P 2 4 k—2 1(i—1)
=On— oMy — My — = 5 — M2 k =
k k k
mo = o Ci,n = <% t2¢> (54)
_(1_9) _k_2 _k_4 _ _2 (21)
- T Eo L2 does not depend on Therefore,
(47) (%)
ty; = Ci L Az (55)
2 k,n

From (47) we have (’5) :
From (52) and (55) it follows that to solve the system (49) we

k o _
In M, o max{”hm n=poln o+ po—malnme +my o0y findCy ,, andm. Rewriting (51) using (52)

— M4 1117’714 + My — = Mp—2 In mg_o k2 k—2
k 2,4 , k-2 (5)2555Y on 56
+mk_2—uk1nuk+uk+m21n<2> E-l- 4E+-..+ =2 + (k)zé;-izm —m—2 (56)
2

+ myln <k> 4+ 4+ mp_aln < k )} dividing (56) by (53), and taking into account (55) after simpli-
4 k-2 fications, we get

= max{nlnn—uolnuo—mglnmg—m41nm4 kg I b1 .
k/2 - _ - gt _
— =gz lnmp_o — pp In g Chon ; << 2 ) g<2i - 1)) Cin —9=0(7)
k k B
+moln 5 +myln 4 where
k 4
+...+mk_21n<k_2>}. (48) g—m- (58)
Equating the partial derivatives to zero we derive (aftdfOWeVer, itis easy to see that
straightforward simplifications) a system of equations for &-1 k1
Mo, M4,y - ..y Mp—2 < , )a:gi
— 24
2 o —Tums + 2 lujg +1n () =0 - vz
1 fio Mo A 10 fog n 9] = :Tx((\/E—i—l)kil—i—(\/}—l)kil)—xk/Q (59)
b4 1 1 (") = 51
3 n g — 11m4—|—E n g +In 4 =0 2 </€—1> L
x2
- 2 — 1

k—2

2 k
z Inpo —lnmg_s + Inpug +1n <k B 2) =0. (49)

(Ve )+ (va-1" ) =1 (60)

Solving the system of the first arith equation iin i andln ;1o Set

foreveryi =2, 3, ..., k/2 — 1, we find

Lo ) t:=+/Ch n- (61)
——ma+ ——— Myt M2 .

k k k From (57)—(61) it follows that

/(-1 7 N /G- 1 el
: 1 -1
(-t 22 () (50) HEX D= D7) 0 (g
(’5) M; (t+ 1,1 — (¢ + 1)k1 1-46

2m+4er +k—2m Sincek — 1 is odd
TMoe+ Myt T —— M2
k k k (1+ )1 4 (1 — )+t

) k—2i)/2(i—1 k—2)/2(i—1 =1-4. 63
—9n_<@>( . )<m2i>( ey (51) (T+t)k + (1 -t (63)

ma (2) Thus, we arrived at the equation in Theorem 4.
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Now we are in a position to accomplish solution of (49). By 2(1 = O)t*nlnn _ 2(1 = O)t*n
(54) and (61) (1+*L (1 -1 (14+)+1 (1 —t)+—
(k) 1 2(1 — )t* 3 2(1—8O)nlnn
tyy = - 707V (64) D N (e N (e e (e
(2) -1
and since 2 \2i A+ 0L+ (1=t 1
A 1/(i—1) k
(2k) 1 3—1 .
2 = (65) , Ve 2(1 - 6)¢ 21
(B /D=0 T 2 (]) ; o ET = (71)
then by (53) Let us compute the coefficient atlnn in the last expression.
by We have
I </f - 1>t2i (1—6)n ~ 21— 6) - 21— G)tF
tQ(S) —\ 2 Mo (I+t)F L4 (1 —t)k1 (At (1 -k
Alternatively 21 — @ K2 N
1 (1—6) (1+ t)’“‘(1 + (1) k=t -2 <2i)tm
. . - n - .
— () (=) = (66) i=0
22(3) m2 21 — k)2
Thus =1— Z 42
’ (L+t)k=1 4 ( 1—tk1 2
- 2(1-6)(5)t*n 67) o1 =0+t 0 >
(1+1) (1-1) (1414 (1=t
By (52) and (64) However, by (63), the last expression equal&rom this, and
21 9)("‘)t2i as well from the following equalities:
Uyt
;= . 68 E_ ‘
e ©9 Zl <k>t2i _ tk+k§ <k>t2i
Notice also that (52) and (65) yield —~\2i) =\
t/(z—1 1/(e—1 k k—1
() (@) a(3) (5 3)
N ma; e
() ’ ) we conclude
k—2i k—2
@ U () M) o ~— 3(1 O k—1
2 5 ’ (Lt + (1 -1
e oy k/2 2R 2(1-6)
k —1 S\ T ) t211
()" ()") [EC) ettt
= T T k)2
@ t mo; ot k-1 2%
<mQ ) + (klnt) ; o 1) ] (72)
ot T Imy ’
(M owever,
me (2) k/2 L ‘ (1—|—t)k—|—(1—t)k
and thus by (47), (50), (51), (67), (68), we have Z <2i)t2” = 5 (73)
2(1 — O)n o=
R (69) kz/é R T O ) el €D A
2(1 — 0)tkn —\20-1) 2
M= T4 (1= T (70)

Now, by (48) and (67)—(70) after simplifications we have

lnMT’ig

2(1 —6)nlon
I+t +(1 -t
2(1 —6)n
(LR 4 (1 — )L

~nlnn —

Y1
2(1 — )
RG]

_ t)k—l

In M}y ~—(1-6)n <(

and from (72)

1+t +(1 -8
T+t L (1 —t)k1L
2(1— )
DR
(14t — (1 -tk
R e

ktln t) .
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Taking into account (62) and (63) we find

X o 2(1-6)
thn,@ (1 9)71 <1 -9 n (1 + t)k_l + (1 _ t)k—l
6
_ (1 + t)k_l + (1 _ t)k_l
=nln 2(1 — B)tke (79)
And, finally, by (63)
T+t (1 —p)h 1 4 4
(1+7) 1J_Fé S _arrraon
and from (75) we have
langwnln(l—i_t)k—i_(l_t)k (76)

2tk0

From (33)—(39) we finally have (21) of Theorem 4.
4) The Case of Odé: In this subsection, we keep all the

notations of Section IV-Al. Consideng, ms, ..., m;_; Sat-

isfying

under condition (77) or (78), (79) whem = 1. Similarly to
(48), we find

th,’: ¢ = Imax {nlnn — poln pg — molnms

— M4 lnm4 — s = ME—-3 1Ilmk_3

k
— pr—1Inpp_1 +maln 9

gt () £ w( "
M4 11l TMy—2 111
4 4 k—2 k—3

+ pp_1 lnk} . (83)

Equating partial derivatives 1o, after some simplifications we
obtain a system of equations fors, m., ..., mu_3

i 31 | + 2 | +1 K
L fip — 2 k_lnﬂk—l n 9

2

Ink =0
E—1

_5111 —Inmy + 4 In +In K
] Ho 4 1 Hr—1 4

k

Mo+ Mo +mMy+---+mMp_1 =an 4 lnk=0
2my +4dmg + -+ (K — Dymp—1 = akbn. (77) T k-1 =
From (77) we have I o — T s + kE—3 In o k
1 Ho k—3 L1 Hk—1 E—3
Mep—1 = Hk—1
B k 0 2 4 k-3 : 5 Ink = 0.
S R T S -1 - (84)
(78)
mo = o From the first and théth equations we find
—al1o k 0 n_k 3m_k—5m k-3 k-5 2
k—1 =1 o1 oty e
2 i/(i—1)
— = M} _3. (79) k‘ mo
o ARG
Sincemg > 0, then (79) yields LG1)
E—1 . @ Z (85)
0<i< 7 (80) Ma;
2 4 k—3
OtherW|se,P = 0. Restriction (80) is an important distinc- P + T + -+ 71 -3

tion of the case wheh is odd (see (23)). Thus, we assume in
what follows that (80) is valid. As it is easy to check, Lemmas
1-4 hold also for od@’s (with a minor change of notation). For
example, (33) has the following form:

. 1 an
Pk,a 13
n, ¢ <nka> Z Mo, M2, .., Mp_1

nlko

Set

‘ oy N (k=2i—=1)/2(i—1)
= _k On —k (L)
k—1 mo

L\ k926D

24

| = . (86)
< (5) )

k me k my k mE 1 me mEg—3
. . —:t —:t ... :t‘_. 87
<2> <4> <k - 1) - (8 Yomy ma k=3 (87)
Therefore, similarly to above, we have to determine the asymp2eMn: by (85)
totics of L — I — 9 (k)l/(i—l)
m —+t4 +---+tk_3 + 2 :
Ko n! EN™ L — k— E—1 " (k/G=1) 1/(i-1)
In M, 4 = maxln o B <2> (2) to;

.<lz>’"4 . <k f 1>m“ (82)

(EFI.

mo
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From (88) we see that

(k) 1/(i—1)
Ci,n = <ﬁ t2¢> (89)
24
does not depend aon Therefore,
k
t2i — C’z;fl (21) (90)

G

From (87) and (90) it follows that to solve the system (84) it is _tQ(k)
2

left to find Cy, ,, andm,. Rewriting (75) using (76)

LI SR k.
-1 tk—1 MR o1
k—2i—1 k—3
k\ 2 71>t2( 1) ko on
+k(2) — k—1 (91)
(2’&“)2({—1) ma

dividing (91) by (88), and taking into account (90) after simpli-
fications we get an equation &, ,, which is essentially distinct

from the corresponding one (57) in the case of even

(k—3)/2
NN RN DY

j=1
<(h + 1)<2’Z—_11> <k2; 1)) Cl,—k+1=0 (92)

where

hk(k —

1— -6
h=—2= (93)
w1
It is easy to verify that
(k—3)/2 E—1\ .
> [y )
=~
k—1 k—1
_ (1+ve) ‘5(1—\/5) _ 12y (94)
W2 1N
2 lgj)”
=
_ <(1+\F) - ﬁ)) (1)1,
2
(95)
Set
t:=/Chkn- (96)
From (92)—(96) we have
tA+ -1 -0t k-1 8 (97)
I+ L1 (10t  hkt+1 97 1-¢
Again (see (63)) this yields
k—1 k=1
A+t +(1-1) 1. (98)

L+ 0+ (1= of

895

Thus, fork odd we have obtained the same (63) as in Theorem
4. Now we are in a position to accomplish the solution of (84).
By (96) and (90)

k
_ (2_1) £20-1)

ty = 2 (99)
()
and by (88)
1 O k-1, (1- i 0)n
Z J)—t"'=—~———+—_ (100)
i=0 2'[' k — 1 mo

On the other hand

CE? Nk —2i—1 .,
Z tQZ
%) k-1

=0

ED2 N o D % kY
— } t i = } tQZ
; <2'L> P k-1 <2'L>
(k—3)/2 kY o k (k—3)/2 b1
- ; <2i>t ; <2L—1>
:(1+t)"‘42r(1—t> g1
kk1<t((1+t) —(1—) ) = (= 1) 1)
Nk
(by (97))
A+ a0k k6
- 2 C2(k-1)(1-6)
3 ((1+t)k_l+(1—t)k_l)
(by (98))

. - 1 ko
=@+ + (-t )<2(1_9)_2(k—1)(1—9)>
(by (100))

_p F\k=1-%0 n
T A2 kE—1 Mo

and
2(1-6) <I;> t2n
L (1=

which (surprisingly for the authors!) coincides with (67). From
(87) and (99)

(101)

ma =

2(1 - 60)(5)#*n

M2 = T (T (102)
Now from (101) and (102)
o i/(i—=1) (22) 1/(i—1) o
&) () -
and i .
W\ =0 G-1) —
) () - e
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From (78), (79) whernv = 1, (85), (86), and (101)—(104) we However,
find

(k=1)/2 . .
2(1—6)n RN o A+0)*+ (1 —t)
jo = (1+t)"‘£1 +(i e (105) ; <2i>t = . (109)
kth=3 2(1 — O)th—1k (k=1)/2 ., 11 ek
Je1 = (g)m‘z _ (1+f)k_li(1 _?)k_l. (106) 3 <§i_11>t2i _, e : -9 10
=1

Further, f 83) using (101), (102), (105), and (106 de: . . :
dllj(r:e erterrosrgrge 'zr;?sr;grgnatiz)n(s ) (105), and (106) we %omparlson of (108)-(110), (97), (98) with corresponding
(72)—(74), (62), (63) shows that further computations are not

In Mr’:,HN nlnn dependent on the parity &f Thus, for0 < 6 < (k—1)/k we

2(1-6)nlnn have (the same as in Section IV-Al)
I N G 4 (14+t*+ (1 -tk
~ 2(1-6)n . 2(1—6) In M} 4 ~nln T (111)
A+t (1= (AR (1 - ang (23) of Theorem 4 follows. O

2(1—-0)kt*tnlnn 2(1—0)kt*—1n
1+ L+ (1-t)k1 (A4 14(1-t)rL

B. Study of (20)

2(1-6)tk1 2(1 - 6)nlnn Whatis left in the proof is to show that the following equation
R RN L P L PR L e L . .
(k—3)/2 (L4+ 0+ (1 - 1) =1-0 (112)
Z <k>t2i— 2(1—-6)n (1+8)* + (1 —¢t)*
= \Z (I+t)F 14 (1-)k 1 has a unique positive solution. In the subsequent theorem, we
(k—3)/2 not only prove this statement, but also find intervals for the root

)42 !

> <k,>t2iln i(l o)t —. (107) to exist.

2o \2i ()T (1—t)h1

"= Theorem 5:

Let us compute the coefficient atln » in the last expression. a) Fork evenand any € (0, 1], (112) possesses the unique

We have positive rootte such that, € [6/(1—6), 1] foré < 1/2,
1 2(1-96) 21— gkttt andt, € (1, 6/(1— 6)) for 6 > 1/2.
(LTIt (D + (1= b) Fork odd and any € (0, (k—1)/k], (112) possesses the
2(1-19) unique positive root, such that, € [6/(1 — 6), 1] for

T = 6 < 1/2, andts € [8/(1 — ), +oc) for 6 € (1/2, (k —

k12 1)/k].
B Iy Z <2,>t2i Proof: Set
1

i=0 1-1¢
7= — =1-—26.
21— 6) G2 N et 6 (113)
=1- (14 k=1 4 (1 — $)F1 ; <2,L~>t Then the considered equation transforms into
(1-O((1+F+(1 -1k f(z) =azl =2t —z24a=0. (114)

=1-

(1 4+ k=1 4+ (1 —t)*-1
However, by (98) the last expression equalgrom this, as well
as from the following equalities:

(k—3)/2 (k—l)/2 k
1 kL 42
+ 3 (2)

(0

i=1
9 k. i k.— 1 7
21 21 —1

we conclude that

Notice that fort > 0 we have|z| < 1.
a) Letk be even. Assumé < (0, 1/2]. Then from (113) it
follows thata € [0, 1). If z € [0, 1), that corresponds to
t € (0, 1], then
fi(z) =akz* 1 —(k—1)2*2 -1
<k (E-1)F2-1
=2_1<0. (115)

2(1 —6)n
(L)1 4+ (1 — )kt

RN 21— 6)
| ( 2. <2i)t2 P (1

=0

(k—1)/2 =1\
+ (kInt) Y <2i_1>t . (108)

k
lnMnﬂ ~—

Furthermore, sinc¢(0) = ¢ > 0, f(1) =2(a — 1) < 0,
then f(z) has the unique root in the interv@, 1). It is
possible to find more accurately its location if one takes
into account that

fla)=d"*' —a* 1 <0 (116)

and thus it is located if0, a). However, since for =
a = 1— 26 we havet = /(1 — ), the only positive
roottg € [8/(1 — ), 1]. The value of the root = 0
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corresponds t@ = 1/2,« = 0,¢ = 1. If, however, it is sufficient to show that’(z) > 0. Indeed, them\(z)
z € (—1, 0), then denoting := —z € (0, 1), we have is monotonous and varies in the same limitsezad his
F(2) = —abctt — (k= 1P 1 < 0. means that (119) has a unique solution for eweryVe

will prove that
Since f(—-1) = 2(1 +a) > 0, f(0) = a > 0, then Y k 5
f(z) > a > 0. Thus, for|z| < 1 we have the unique root pz) =—N(2)(=" +1)

inthe interval0, a), that corresponds to a unique positive =24 (k-1 = (k-1 -1<0
valuet € [6/(1 — 8), 1]. (z € (-1, 0)).
Now, letd € (1/2, 1], thena € [—1, 0). If z € [0, 1) L -
then Indeed,.(0) = —1, u(—1) = 0, and it is sufficient to
demonstrate that’(z) < 0. We have
fl(2)=ak* "t — (k- 122 -1 < —1. ')
KAz - 9k 2 .
Since f(0) = a < 0, f(1) = 2(a — 1) < 0, then o 1)zis V=2 bk = (k= 2).

f(z) £ a < 0and there are no roots in the interi@l 1).
If = € (—1, 0) then denoting := —=z € (0, 1), we have

Fl(z) =—ak¢P L — (k—1)¢F2 -1

We have(0) = —(k—2), »(—1) = 0, and it is sufficient
to show that forz € (—1, 0), v/(z) < 0. We have

/
<kck—2_(k_1)ck—2_1 %:zk_l+z<—z+z:0.
_ k=2
=" -1<0. Furthermore, the root of (119), < a. Indeed, ifz > q,
Furthermore, sincg(—1) =2(1+a) >0, f(0)=a <0, then, since\'(z) > 0, we have

then f(z) has the unique root in the internat1, 0) that ALy, ghlig

corresponds to a unique valuef> 1. It is possible to 1 > — ) > a. (120)
find its location more accurately if one takes into account % “
that Thus, the root, € [a, 0) corresponds to the unique root
to
fla)=a*t —d*"t >0 (117)
te € [6/(1 —8), +o0). (121)
for a € [-1, 0). Therefore,f(z) has a root ina, 0),
which corresponds € (1, 6/(1 — 6)]. U
b) Letk be Odc:]' Assumé_ < ((l).’dl/2]('j Thena E_[O’ 2' I Remark 1: In the case of odé the valued = (k — 1)/k (or
z € [0, 1), then (115) is valid, and sinc&0) = a 20, _ —(k — 2)/k) corresponds to the limiting case= -1,

f(l). =2(a-1) < .0’ then_f(z) has th_e u_nique rpot in which in turn corresponds to the limiting case: +oc. Indeed,
the intervall0, 1). It is possible to specify its location bY tor odd &

taking into account that
L+ 1+ (1 —o)F ! 2tk 1 1

f(a) = ak+l _ akfl S 0 (118) tl}gloo (1 +t)k T (1 — t)k = tl}gloo 42(kfl)tk—l = E

i.e., it is located in[0, «], which corresponds te, <
[#/(1 — 6), 1]. The value of the root = 0 corresponds
tof =1/2,a =0,t = 1. If, however,z € (-1, 0), then

Analogously, fork even,6 — 1 — 0 (a = —1 + 0) we have
z — —1+4 0, and correspondingly, = +cc.

denoting¢ := —z € (0, 1), we have forf(z) Remark 2: From (20), it follows that folk — oo
f(z)==a¢* = (* 4 (+a R L
:a(l—Ck)+C(1—Ck72)>0- 1+1¢ 1-46

Th 21
Thus, f(z) does not have roots in the interval en by (21)

z € (=1,0). Now, letd € (1/2, (k — 1)/k], then, Hm Tim -~ PP — —aln2.
by (113),a € [—(k — 2)/k, 0). First of all, let us show k—oo noo "¢
that forz € [0, 1), f(2) # 0. Indeed,f(0) = a < 0,

F(1) = 2(a — 1) < 0, and evidently Remark 3: Checking (as in the example of Section 1V-A2)

that the condition (38) holds fdr = 1/2, ¢ = 1. Indeed, from

fl(z) =ak* "t — (k- 1?2 -1< -1 (67), (68), (101), (102) we have
we are done. Lk/2] Lk/2] (k)n
Finally, letz € (—1, 0). Then (114) is equivalent to Z 2img; = Z 2t 22;_1
1, i=1 i=1 ‘
A(z) == T = (119) R Lkz/éJ <k_ 1)
Since 2kl = \2i -1
. T T _onk o nk
A0) =0, A(-1) = ZJH{l+O Az)=—(k—2)/k = 5 287 = o
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Therefore, we have a multinomial distribution with where the summation is over even is, ..., 4,/ €
(k) [0, k] under condition
pQZ_Zkzl, i=1,2 ..., |k/2]. n/k
It is known, see e.g., [2], thats; = npo; provides maximum Z 1; = On. (126)
probability in multinomial distribution. Moreover, these values _ _
provide maximum under an extra condition Proof: The expressions (123) and (124) are proved in a
1%/2) similar way, thus, we will prove only (123). Assumds even.
Z irmg; = ki First of all, notice that
i=1 ‘A’“il/’“‘: n\ fn—Fk\ (n-—2k k
Thus, " k k k k
n!
k (k—1)n =——. (127)
HICI%(EJLXI) M =M, 1) ~2 . (122) ORE

Let, as in Section IV-Alyn; stand for the number of rows in the
Analogously, it is possible to show that the functidff; , i matrix A% with row sums equal, wherei is an even nonneg-
monotonously increasing in the intervl € (0, 1/2] and is  ative number not exceedirg CorrespondinglyA™s® hasm,
monotonously nonincreasing in the interdaf [1/2, 1]. rows with sumsk — 4. Here it is possible to computé’“ 1/k|

Remark 4: Foro = 1/k when? = 1, n is a multiple of |R" 1/"| We have
k, m = n/k. This case is interesting in two ways. First, for ko 1/k
a = 1/k, (33) becomes an exact equality. Secondﬁ’§r1/’“ Ly ‘
there exists an alternative representation. We state these facts atgn> <9n — 2) <9n — 4) <9n —2(my — 1))

a theorem.

2 2 2 2
Theorem 6: <9n—2m2><9n—2m2—4>' N <9n—2m2 —4(m4—1)>
a) For evenk 4 4
Pk,l/k_iz( n/k ) <97‘L—2m2—...—(/€—2)mk_2>
n, 0 (07;) mo, M2, ..., Mg k
me My my_o on — 2m2 — = (If — 2)mk_2 -k
() () () o :
2 4 k-2 /
where the summation is over all nonnegative,, <9n 2me = (k_k2)mk_2_k(mk_1)>
ma, ..., my satisfying (24) fore = 1/k. (6n)!
For oddk = N .
Pl _ 1 Z n/k (2hym2 (4hyma . (k)yme (On—2mo —4dmy—- - - — kmy,)!
n, 9 o (97;) Mo, M2, «.., ME—1 By (24) fOfOé = 1/k
2\ e On — 2my — dmy — -+ — kmy, = 0.
<k> <k> o < k ) (124) n Mo Ty ™M
2 4 k-1 Therefore,
where the summation is over all nonnegativey, Ik 1/k (6n)!
ma, ..., my_y satisfying (77) fore = 1/k. ‘ = @@y (128)
b) For anyk Analogously, see the equation at the bottom of the page. How-
Pl _ 1 Z EN(E\ [k (125) ever, by (30) fore = 1/k
n, 9 o (97;) il ig Ln/k (1—9)71—]67’710—(/6‘—2)7’712— "'—ka_g =0.

‘Rk l/k‘ _ < (1- )n) <( 9/2 )...<(1 —0)n kk(mo - 1))

'<( n—km())( n—kmo—(k—2)>'”"<(1—9)n—km0—(k—2)(m2—1)>

2 k-2
_ <(1 —<9)n — kmo —kmo : Znii)m% _ _47;:1 i)e)n —kmo — - — dmy_y — 2(mp_2 — 1))
] ((1—6n)! ]

B (k= 2)h)me - (202 (1 — O)n — kmo — (k — 2)mg — - — 2mp_2)!
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Therefore, finally we have

1—6n)! K1/ _
Ry /" « . (1290 Py
| = (Rymo ((k = 2)tyme - (2)mes () h+j2+-z+:jn/k:en

Now 7:=0mod 2
k! k! k!

itk = g0 G2tk = 2)! Gyl (k= Ggae)!

s 00 ()

Jitizttin=0n
J:=0mod 2

nd thus we have proved (125). O

A

J 1/k‘ ‘ R l/k‘

k1/k n/k
Pn70 _Z<m07...,mk> ‘Azl/k

where the summation is over ally, ma, ..., my satisfying
(24) fora = 1/k. From (127)—(130), we fmd (131), shown at
the bottom of the page, and (123) follows from (131) by the fird
restriction in (24) whenry = 1/k. Lemma 3 yields the following corollary.
We proceed to prove claim b) of the theorem. Although the

(130)

equivalence of (123) and (124) to (125) is straightforward, in Corollary 2:

what follows we will provide an independent direct proof of phoaln ph Lk (132)
(125). Let there be; ones,;i = 1, 2, ..., n/k, in the firstén 0 nka, 6°

entries and théth row of the considereth x n matrix. Taking 0

into account that in every column there is exactly a unique one,Moreover, by (125) and (132) we have
there are

w1 kN [k k
<9n> <971 - jl) <971 —J1—J2— - — J",f—l) P”::e . (e ) Z <Ll> <L2> <'in/k> =

L J2 In/k where the summation is over

ways to doit. Hergy, jo, ..., j./i are even nonnegative num- o .
bers not exceeding and satisfying 01,82, o5 na €40, 2,0, 2[K/2]}
n/k under condition that
p— 9 B no
; e > ij = Onka. (134)
F=1

Simultaneously, since all the row sums eqéalin the last

(1 — 6)n entries of theith row there arek — j; ones In contrast with the sum appearing in Lemma 3, having order
T L]

0O(1), the order of the sum (133) @(n), which complicates

1 =1,2,... . i [ . . . i . . .
‘ » 2, -+, n/k. Such choice can be done in drastically its study. In particular, it is not logarithmically equiv-
(1=0)n\ /(A -0n—(k-7) alent to its maximal summand (in which, whéhis even;; =
k—j1 k —j2 i = -+ = in, = 6k). Indeed, for instance, whezmn: 1,
A=0)n—(k—j1)—(k — jo)— = (k—jz_1)\ 0= 1/2 k = 0mod 4, the maximal summand i§},)" and,
ways. . k" < MF |, Rok-Dn
By (127), see the second equation at the bottom of the page, k/2 /27
and since ]
since

(1_9)n_(k_jl)_(,5:2‘;1__.‘7?__ {é'—_jﬁgzg <k];2) <= @*@* o <k];z)+"'+ @

1/ nfk (On)((1 — O)n) (kD) *
P:’e ' Z <m0, ey mk> Cnl(ED e ((k — 2)120)me ((k — 4)dl)yma - (21(k — 2))yme— (ke
1 nk (1) /* NSk \™
R (o™ ) (2) () (Ea) sy

on

D S —
" Jr4de i p=bn n! jl!JQ!"'jn/k!(eTL—jl — J2 _"'_jn/k)!
ji=0mod?2
(1 - B)n)!

(k= )Mk = j2)t - (k= G (L= O = (k= a) = (k= j2) = = (k= Jup )V
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However, by Lemmas 3 and 4, (133) with= 1, as well as
from (111) we have the following.

Corollary 3:

2 W66

it
;€{0,2, ..., 2[k/2]}

L+ + (1 —t)F
20k
wheret is the root of (20) in Theorem 4. O

nln

(135)

C. Study ofP};* as a Function o

Let us study
1 .
P(#) = lim —In ey

as a function irf. By Theorem 5, the functiot(#) is invertible.
Assume thaf is even. We have

Tk (0) = d% (1 +6)* + (1 —)%) — 0k Int — kH(0)]
N N A e (e ) L
"“(9‘4( G+oF+a-bF Z)
+ln ﬁ) . (136)

By (63) we have
) e G A L

=- 137
(14+8)*+(1—1¢t)* t (137)
and
Ty +(6) = k1 _b (138)
ROV =R ey
Thus, the functior?(#) has the unique stationary point satis
fying
9 p——
to(1—6)

However, by (62), it is equivalent, whéenis even, to
0/(1—6) (14+te)1 — (1 —tp)*L

te (Ltte) L4 (1—tg) 1

Therefore, in the stationary poitg = 1 andé = 1/2. From
Theorem 5, it follows that i < 1/2 then

_v

te(1—6)
and by (138)I'x,:(#) < 0. Analogously, ford > 1/2

_v

te(1—0)
andT’ ,(8) > 0. This means that fok even

in PO =P (%) =—-aln2.
o PO) =P (3) aln (139)

<1

>1

Let nowk be odd. Then from (98) it again follows that

I+t -1 -tk 0
1+t +@ -0k ¢ (140)
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and

6
Fk,t(e) =kln m

with the only stationary point, = 1, § = 1/2. However, for

6 < 1/2 as well as fo > 1/2 by Theorem 5 we have
_f
te(l—0)

In this case, there is no extremum aR) is everywhere mo-
notonously decreasing. Furthermore

E—1
i ) = AR
06(0,1331—11w P P( k )

In what follows we will prove that

k—1 1 1 1 1
P(—k ) —ak(z ln% + <1_E> 1n<1—E>>—aln2

=o((k—Dln(k—1)— klnk) — aln 2.

<1, Fk,t(e) < 0.

Then

lim min P(6) = —o0.
k—oo 0€(0, (k—1)/K]

We summarize the results in the following theorem.

Theorem 7:1If k& is even then

lim l111 P:’g
n—oo N ?
has the only extremum (minimum) in the intervél 1) até =
1/2, when itis equal to-aIn 2.
If kis odd then this limit is monotonously decreasing and
attains the minimum equatoo. O

_ Remark 5: Actually the last theorem means that in the case
of evenk the distance distribution is always greater than the
distance distribution of a random code (normalized binomial
distribution) but in the poinf = 1/2, where both distributions
coincide. For an odd, the distance distribution is greater than
the binomial one fof < 1/2, and is less than the binomial one
for & > 1/2.1n 8 = 1/2 they coincide. O

Let us further study the concavity &f(#). Since

1-6 1

o; (In(1 — 8));
then from (138) it follows that

6(1—-46) d B 6/t
" Ly +(0) =1+ EEDR (141)
Taking into account (137) and (20), we find that
6/t
(In(1-6))}
2k—2 (1 __ \2k—2
_ (1+2) (1-1) (142)

(142)2k =2 —(1—)2=24-4(k—1)(1—t2)k—2¢
Let k be even. Theiil — #2)*=2 > 0 and (142) yields

6/t
W0y~ "
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Then by (141) we have

d

and the function isJ-concave in all the interved € (0, 1).

Moreover, foré

lim P() =aln lim #*3= = ko lim

t—4oo

By (20)

T+ 8272 - (1— )22 4 4(k — 1)#(1 —

—1—-0,¢t — oo, and
1-6

t—4oo t—4o0

Int

(143)

t?)k—?

o =

((T+ )k + (1 —1t)k)2 (1;14)

Therefore (whert — )

$+2k—3 1
i=o(Gr)=o(w)

(145)

Now, from (143) we have that

Next, whend

lim
t—40

Now, letk be

and from (141)

and whent > 1

Thus, att = 1, corresponding t@ = 1/2, we have the point

lim P(6(t)) =0.

t—4oo

— 40, t — 40, from (144) we find
P6())

—ka lim flnt =0.
t—40
odd. Then from (142) it follows far< 1
6/t

TED) A

6/t
-y <

Fk7 t(9) <0.

de

of change of concavity. Moreover, to the left &f= 1/2 the
function P(8) is U-concave, and to the right ¢f = 1/2 the
functionP(#) is N-concave.

When¢ —

lim P(4(t))

t—4oo

However, by

%—O,t—>+ooand

: -l
:akln((%) <1—%> )—aan
+, ligl alk(1—6))—1)Int
=ak lim 6 ln*t
t——4oo
+al((k—Dn(k—1)—klnk) — aln2.
(144)

$2k—4 1
1=0(a=) =0 (3)
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and

, ligl POE) =a((k—1)In(k—1) — klnk) — oln 2.
Therefore, in this cas€?(8) is monotonously decreasing from
Otoa((k—1)In(k—1)—klnk) —aln2changingat = 1/2
concavity from down to up. Notice also that

Jim i PO = oo

and this accomplishes the proof of Theorem 7 for édd

V. AVERAGE DISTANCE DISTRIBUTION IN ENSEMBLE B

This ensemble was suggested by Gallager in [5] and is defined
as follows. LetA4 be ak-fold concatenation of the x k identity
matrix. Then

A
P (A)
whereF;(4) is a matrix obtained by a random column permuta-
tion of A. Clearly, every such matri€ hask ones in every row
and/ ones in every column, i.e., Ensemble B is a subensemble
of Ensemble A.

Comparison of the final results of the previous section with
[5, Theorem 2.3] shows that they are identical (up to a somewhat
more precise analysis in the case of adslin the previous sec-
tion). Thisis avery surprising (at least for the authors) fact, since
the proof techniques are very different. Moreover, Ensembles A
and B are different in the sense that Ensemble A contains ma-
trices which cannot be derived from a matrix from Ensemble B
using permutations of rows and columns. Indeed, consider, e.g.,
matrices of size x 6 with column sums 2 and row sums 3. By
definition, for every row in a matrix from Ensemble B there is
another row having support nonintersecting with the support of
the initial row. For example, a typical matrix from Ensemble B
is

111 0 0 O
0 0 01 11
1 01 010
01 01 01

However, in the following matrix belonging to Ensemble A
1
1
0
01 0 1 O

the support of each row intersects the supports of all other rows,
and this property is clearly invariant under rows and column
permutations.

11 0 0 0
001 10
01 011

1

VI. AVERAGE DISTANCE DISTRIBUTION IN ENSEMBLE C

Ensemble C is defined by matrices havih@nes in every
column. LetA% < stand for the ensemble of sueh x n ma-
trices witha := m/n. Our goal is to find an expression for the
distance distribution componest, wherew = 0n. Let Af;j
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represent the ensemble of matrices frap® having the prop- Therefore,
erty that, for all rows, the sum of the firgt entries in the row is

- ; m n(1—@)
even (and thus, the vectdt 0™~ is a codeword). Finally, let ‘Aé,a 1 Z m (K(m)( ))
" 2m \ £\ j ¢ ?
N
Prg = (146)  since
~ "
o m
Evidently |Afl | - <£)
By, = <9” )Pﬁ a. (147) We arrive at the claimed conclusion. O
n)

Remark 6: It is known that for an arbitrary polynomigl(z)
For estimation of| "%|, methods standard for the randonof degree at most: one can find the unique expansion in the
walks on hypercube can be applied, see, e.g., [3], [7]. Howeveasis of Krawtchouk polynomials
we will demonstrate how an elementary method of generating

functions gives the sought result. Z &i(f K(m)
We will need the following definition. The binary
Krawtchouk polynomial is In particular
4 m
m fx\[{m—zx 1 m .
k7@ =30 () (00 as wh) =5 3 (7)1
i=0 j=0

It may be defined also by the following generating function: Therefore,

n m —6n
}:zﬁm> =(1—2)*1+2)""  (149) fﬁ3=¢0<@dm)a)<l> . (151)

For a survey Of properties of Krawtchouk polynomials see [8], nq\y et us study the asymptotic behavior of the expression in
and also [1, Sec. 2.3], [10, Sec. 5.7]. Theorem 8 under assumption thatends to infinity,m = an

Theorem 8: for « € (0, 1), and¢ is a constant independent of
. m . _on Under these assumptions
Pho = Cﬂ KM Cﬁ . (150) m (m — 22)" )
6 om ;;j (4 ) ‘ @>@:_7T—+mwl)
Proof: Letw = #n. Assume thatl+ z;) is the generating my ﬂ[ -1
- S . = +O(m ).
function for appearance of one in tli coordinate of a row- l £
vector of sizew. Then Thus,
H (1 +2) + H (1—z) lim = lnPé e
alz) = = = nme
2 = —aln2+ max {aH(n)+0¢1n(l — 21)}. (152)
is the generating function for row-vectors of sizeand even n€l0, 1]

weight (for examplez, 232329 corresponds to the binary vectorDifferentiating inn we have that the maximum is achievedat
having one in the second, third, eighth, and ninth coordinates#tisfying
Theng™(z) is the generating function forn x w matrices with

even row sums. The number of such matrices with column sums (1-2n)ln T % (153)
equal/is represented by the coefficient4ts - - - 2¢,. However, K «
by (149) On the right-hand side of the last expression we have a positive
Lo w i/ w m—j  constant, while on the left-hand side there is a function monot-
Moy m , . onously decreasing fronx at7 = 0to 0 atn = 1/2. Thus,
9"() 2m ]ZZ:O <J> <£[1 (a+ 72)) <£[1 . 7Z)> (153) has a unique solution in the inter¢@) 1/2), and we have
LI, proved the corresponding of Theorem 1.
=— < ) H (14 2)(1—z)"
2 =0 N /G4 VII. A VERAGE DISTANCE DISTRIBUTION IN ENSEMBLE D
L& <m> - Em: K (j)at Recall that Ensemble D is defined by the following proce-
Toom i)\ = ¢ \J)% dure. We start from the all-zero column-vector of size We

. repeat the following operatiofitimes ¢ is a constant indepen-

_ 1 <m> dent ofn): flip one of them coordinates with uniform proba-
= bility. As a result, we have a column-vector of weight at mpst

) . . with the parity of the weight equal to the one ©fGenerating

: ( +( (J )) (751752 T Z'w) +- ) . such vectors independentiytimes yields ann x n matrix H.
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Clearly, the described procedure is equivalent to the folhe probability that the described happensrinindependent
lowing: generate./ column-vectors of size: and of weightl, events isP™, and we arrive at the corresponding claim of The-
Sum up (coordinate-wise modufy) the £ consecutive vectors orem 1.
with numbers1, 2, ..., ¢ £ + 1, ¢ + 2,...,2¢, ..., thus
gettingn column-vectors constituting the parity-check matrix X. AVERAGE DISTANCE DISTRIBUTION IN ENSEMBLE G

o . RecallthatE I
Thus, the problem reduces to estimation of the proportio ecallthat Ensemble G is generatedy n binary matrices

of (0, 1)-matrices of sizan x nf with column sums equal Where each entry iswith probabilitys = & /n. The probability

. . : : that there is an even number of ones in the first #r positions
and having the sum (coordinate-wise mod2)of the firstdns f : nP
L : a row is
columns equal the all-zero vector. This is a particular case of e

problem for Ensemble C. By (150) at{™ (z) = m — 2z, we P= 14+ (2 - 1" (159)
have here 2 '
o 1 I /m j ont Furthermore, ifw is even
Pnk,azﬁz<j><1—2a> (154) . 14 o 2k6
j=0 lim P= — (160)

and we arrive at the

The corresponding expression was earlier derived in [9] usirg . probability of the sought event &
different arguments. corresponding conclusion in Theorem 1.

VIII. A VERAGE DISTANCE DISTRIBUTION IN ENSEMBLE E XI. AVERAGE DISTANCE DISTRIBUTION IN ENSEMBLE H

‘Recall that Ensemble E is defined by binanyx n matrices  Recall that Ensemble H is defined by the following model.
with row sums equal td, wherek is a constant independent; et ¢z be anm x n regular bipartite graph with left degréeand
of n. Con5|d_er the probablllt_y that the firat = n columns of right degree, perhaps with parallel edges. To generate such
such a matrix sum up (coordinate-wise modzlito the all-zero 4r5nh one just enumerates the edges on the left part and on the
vector. The probability that the number of ones is even in t'?tht part of the graph, and connects them randomly (using a

first w positions in a vector of length and weightk is permutation). It is easy to see that this model corresponds to
Lk/2 the following procedure: generate a randsix n/ binary ma-
p_ b Z <w> <n - w) (155) trix with column sums equal and row sums equal; sum up
(Z) =0 2j) \k—2j (regular summation) the consecuti¥eolumns with numbers
) _ 1,2, ...,60+1, 042 ...,2¢, ..., t0 get anm x n matrix
For» tending toco it reduces to H (with entries beind), 1, ..., £); construct a bipartite graph

N from H by putting ¢ parallel edges between thth node on
. T o(l) = 1+(1—26) +o(1). theleftand thejth vertex on the right if and only i, ; = e.
2k — 2j5)! 2 Thus, the problem reduces to estimation of probability that the
(156) first 8¢n columns of a binaryn x £n matrix with row sumsk
and column sumg, sum up (coordinate-wise modu®) to the
To have the desired property we need this event to holekforall-zero column. This is a particular case of the problem con-
rows. Since these events are independent then the sought psidiered in regards to Ensemble A, and a direct check shows that

/2l g2501 _ gyk—2i
P:Ze( 6)k=2i !

=0

ability is the expressions are equivalent.
k, ,
Pl =prm (157) XII. THE DISTANCE DISTRIBUTIONS FORCONSTANT
DISTANCES

and the corresponding claim of Theorem 1 follows. ] o
Theorem 1 provides a classification of Ensembles A-H ac-

cording to the behavior of considered probabitigyfor w = n8

(0 < 8 < 1). The equivalence classes are
Recall that Ensemble F is defined by the following procedure. , A g H

We start from the all-zero vector of sizeand flip one entry with «C. D
uniform probability. Repeating thistimes we obtain avectorof E' =
weight at most:. Now, generatingn such vectors, we compose G,

from them anm x n matrix, In this section, we restrict ourselves to the study of this prob-

Consider the probability that the generated vector has an e\éed?lity for the first ensembles in each group, i.e., A, C, E, and
number of ones in the first = #n coordinates. Since the prob—G whenw is a constant independent of i

ability that flipping happens at the first positions is#, the
sought probability is A. Ensemble A

Lx/2] k Assume
. o 14(1-2
P= E : <k> 6% (1 — 0)F—% = M (158)
=\ 2 akw = 0 mod 2. (161)

IX. AVERAGE DISTANCE DISTRIBUTION IN ENSEMBLE F
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Under this condition, the following analysis does not depend émom (167), (170), and (171) we conclude that
the parity of%, thus we assume, for instance, thas even. The

expression (33) reduces to |A In Z an
e mo, M2, «.., My,
pho® L Z < an ) (fw)! an)" Y
7 (glzﬁ) mo, M2, ..., Mk ) (fl)'wzlmz41m4 oM Y
If mo If my If me_o
() @) ~(5) e 3

2 4 k=2 mol(mo + + My )!
where the summation is over all integral nonnegatiug, | (Lw)l(m, +"'+mw)! <Om>n_w (172)
ma, ..., my, satisfying the conditions (£1ywalmeglms . qplme \ ¢

(163) However, by (169)

Mo+ Mo + -+ mp =an

2ms +4ma + - - - 4+ kmy, = ckw. (164) f<mo+mg+---+m <£_w

- 2
By (164) we have
and we have
kN2 s\ E \Mk—2
()07 G (matmate ) (W) (wlmy++m)_ () (5)
mQ! m4! mk—Q! mk' fro— 1w'7“ (gl)w2lrnz Aima o qptme — 2 )
< Ch,w, o = const(n). (173)
Since the total number of the matrices in the ensemi{&'i§",
Therefore, (162) and (163) yield by (173) we have
1 an —w
P,r’: g In Ai ‘13; e < ) ‘o In o . an amn
(75 2 s e PratEi =) 2y m,) @79
(165)
However, (164) yields Furthermore
k —w
aw <Mmoe+mg+ -+ my < aTw <a;> :O(n—éw)
and, since the number of summandgid ), then we have an — Ot
mo + MMy,
—aw(k—1) k,a —akw
an S e Sent T (166) and we conclude
—L(w—1) < BZ a 71—' 175
B. Ensemble C can Wow S G4 (175)

Let w be even. Similarly to Ensemble A, we partition any
matrix from Ensemble C into two submatrices (left and rightl. Ensemble E

the first one havingu columns. We denote the corresponding
classes by.,; %, RY S S0 that the total number of the matrices,, mber of ones in the first columns is

in the ensemble is

Lk/2)
|An w| — Z <m0, m:’w:L”7 ) |Ln 2w Rf] ?u (167) :(T Z < )( — 2J>

For an arbitrary row the probabiliti that it contains an even

k j=0
where the sum is over all _ % Z <w> <n - w)
() 5=0, 2, 2[k/2] s)\k—s
mo +ma + Myt Ny =an (168) (_) ,
2o + dmy + - - - + wm,, = fw. (169) (2) H n ; z_u t— '
k

t=0
Moreover, as in Lemma 1 L )
Thus, taking into account that the number of rowsis= an,
(fw)! the probability we are interested in is

|Lfl7:O;U| = g(TL) (E!)w2!n124!n14 ..

(170)

Cantma, T
v Pl = okl (k=1)/2) (1 4 o(1)). (176)
Here,g(n) is O(1). Furthermore, evidently
This means that the proportion of words of constant weight
|R[ | _ <om> noe (171) belonging to a code from the ensemble is a constant independent

/ of n.
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Fig. 3. Distance distributions for Ensemble A.
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Fig. 4. Distance distributions for Ensemble C.
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Fig. 5. Distance distributions for Ensembles E.
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Fig. 6. Distance distributions for Ensembles G.
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D. Ensemble G

The probability” that arbitrary row contains an even numb
of ones in the firsty columns is

[w/21 <w> <E>25 <1_E>w25
= 2s n n

cause their matrices have some blank rows, so the code rate is
eslightly higher.
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