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Distance Distributions in Ensembles of Irregular
Low-Density Parity-Check Codes

Simon Litsyn Senior Member, IEEEBNd Viadimir Shevelev

Abstract—We derive asymptotic expressions for the average dis- Subsequently, we show how the previous result can be used
tance distributions in ensembles of irregular low-density parity- for the general problem. Optimization of parameters in the
check (LDPC) codes. The ensembles are defined by matrices with e riyed expression accomplishes the proof. We conclude with a
given profiles of column and row sums. discussion on the number of solutions to a system of equations

Index Terms—Distance distributions, low-density parity-check appearing in the optimization problem, and provide some
(LDPC) codes. evidence for a conjecture that the system possesses at most

three solutions.
|. INTRODUCTION

HE low-density parity-check (LDPC) codes are famous Il ENSEMBLE OF IRREGULAR CODES

because of their performance in the vicinity of the Shannon We consider the following ensemilg, ,, of irregular codes

limit under iterative decoding of modest complexity. Howevegssociated with ensemblé,, ,, of parity-check matrices. The
this phenomenon is still far from being completely understoododes are defined by x n matrices front,,, ,,, and thus have
One of the important parameters helping in analysis of codegtel? atleastl — . Leth, g, andry, 72, ..., 74, 51,52, ., 8
performance under maximum-likelihood decoding is their di$e nonnegative integers independent.of
tance distribution. Such estimates are important in analyzing
achievable limits of performance of LDPC codes, and optimiza-
tion of their parameters.

The problem of estimation distance distribution of regular
codes (i.e., codes defined by parity-check matrices with fixed V1 Vs, ... vy €(0,1], Z v =1. @)
column and row sums) was addressed in many papers, starting

77177727-~-777}L€(0,1]7 anzl (1)

1=1
with the original Gallager’'s work [2], see for most general re- )
sults [5]. Use of such estimates to bounding performance '§ereover, assume that the numbers: fori = 1,..., ¢ and
LDPC codes was discussed in [2], [7], [9], [13]. nyn forj =1,..., hareintegral. Let the following intervals of

Recently, it was found that irregular LDPC codes (i.e., codé¥€ger numbers be defined:
defined by parity-check matrices with several possible values i1 i
of cqu_mn a.nd row su_ms) perform better than the regular codes 7, —[1 + Z vem, Z vemn), i=1,..., g (3)
under iterative decoding [6], [11], [12], [14]. =1 =

In this paper, we solve the problem of estimation of the j—1 j
average distance distribution in ensembles of irregular LDPC Ji=[1+ me Zan j=1,...,h. 4)
codes. This question was addressed independently in [4], where =1 =1
an implicit expression for such distributions was given. Here _
we give an explicit formula describing the average distance”N 77 X  matrix i = (h; ;) belongs to the ensemblé,., ,
distributions. iffor everyi € I,

The paper is organized as follows. We start by defining the n
considered ensemble of irregular codes, and define the average Z hij=m¢ (5)
distance distribution in this ensemble. Then we count the j=1
number of matrices belonging to the ensemble of special sha| ed f .
yielding that the defined codes contain the word having ongg oreveryj € Je
on the firstw positions and zeros on the remaining positions.

m
Z h,;,j = S¢. (6)
i=1
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Given the parity-check matri¥/, a wordwv belongs to the .
code ifHv™ = 0, i.e., if all the row sums of the submatrix &F Z zis; =0s. 14
consisting of the columns corresponding to the nonzero places '
in v are even. Then if
Let @ be a number in the intervéd, 1). Given a matrixd € p
Hum.n, we may find the number of submatrices consisting of S w(rs)
fn columns ofH having even row sums. Clearly, it is equal to <1- =t (15)
the number of codewords of weight in the code defined by i ri
the matrixH . Let us define a class of matrices,, ,, 0 C Hm.n =
consisting of all matrices such that the sum of the firséntries
in each row is even. .
Given a specific matrix, it seems to be a generally mtractabTéa = 1 otherwise, then

T

wherer(a) is the parity functions(a) = 0 if a is even, and

problem for modestly large sizes of the matrix. However, the
problem becomes simpler if we aim at determining the averabe= max { — sH )+ Z vilnp., (t) —yIn2
of this number in the ensemblg, ,,. Let us define er
be = L 1n By, ) ﬂMM+2Mm<ﬂ)}(m)
n P i
where ) If (15) does not hold then
Bgnzrczn—| > JerceCowt(e)=0n|  (8) b(8) = —oo. -
M oeCn,n
andwt (c) is the Hamming weight of vectar. Let Note that the system (13), (14) is of polynomial type. There
H(z)=—zlnz — (1-2)In(l - ) 9) is numerical_ evidencg that the number of positive sglutions to
the system, i.e., the size ®f does not exceetl We conjecture
be the natural entropy function. it always to be true. In the generalized regular cases(alare
The main result of the paper is as follows. equal) we have only one solution.
Theorem 1:Letd € (0,1), r1,79,...,74, S1,52,. .., Si, b€
positive integersy =", vy, va, ..., Vg, 11, 712, - - - , 1ln, b€ NUM- Ill. PROOF OFTHEOREM 1
bers from(0, 1), such that Let us sketch the main steps of the proof of Theorem 1. We
9 , start in Section IlI-A from considering a subclasstof, ,, de-
Z vi =1, Zﬁh -1 noted’,, ¢ in the case when all the horizontal blocks have
P = equal sizes. Using a technical lemma in Section 1lI-B, we find
the proportionP of the matrices fron,, .. ¢ within the class
and let Hom . The expression faP is given in the form of a finite sum
h which is logarithmically equivalent to its maximum summand.
s = Zmé’u Furthermore, in Sections IlI-C-lll-E, we compute the asymp-
i=1 totics for P (the main obstacle is overcome in Section III-D,
Go1_2 zg: . pri—1(%) (10) where we solve a system of equations in respect to parameters
gt ) corresponding to the maximal summand). In Section llI-F, we

establish two lemmas allowing generalization of the obtained
where result to the case of arbitrary sizes of horizontal blocks. In Sec-
tion 111-G, we find the asymptotics foP in the general case. In
Section IlI-H, we prove the unigqueness of the positive solution
Let to an equation appearmg in the proof. Further, in Section IlI-I,
‘ we studylim,, o0 + —In P as a function in a special paramefier

x; = x;(t,8) = S (11) depending or. In Section 1lI-J, we maximize the sum of two
’ components of the distribution, namely,andC depending on
where partition of # within the vertical blocks. This accomplishes the
proof of Theorem 1.

=N

= —. (12)
t(1—6) A. Counting Matrices of Given Profile

Let a finite discrete sef’ = {t,, ...} be the set of positive first ~We start .with.a lemma allowing estimqtion of the number of
components of solutiong;, ¢;) to the system matrices with given row and column profiles.

Lemma 1: Let M,, be an ensemble ofi x n binary matrices

h
> wi=0 (13)
iz m=vn, 0<y<1 a7
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|Aleft| In (n(s1m +same+-- '+3q—1774—1+5q(9—771—772—' ~=1g1)))! (31!7)171 o Sq_l!nq_msq!(%m7---7nq_1)n>_1 (26)
g ()
H (2!m 4|m (7'1 _ 7r(m))l ry—w(r; ))
i=1
|Aright| m (n((n1+ -+ g — 0)sq + Sq1ng41 + -+ + Sn7n))! (s (mtetng—O)ng | yngpin shmhn)_l (27)
g 5 (i) q: q+1: e .
TL (G (= 27 (2 )
In (n(ms1 4+ m2s2 + -+ +1psn))!
|H’nl,’n| S1 !'qln . sh!'qhnrl!’rn/g . ,rg!m/g (28)
such that their row sum&?, i = 1,..., m, and column sums B. Counting Matrices Front{,, ,, ¢ for the Case of Horizontal
s, j =1,..., n, satisfy Blocks of Equal Sizes
1) All +(¥’s ands)’s are bounded, i.e., there exists a pos- We deal with the ensembf,,, ,, defined in the previous sec-
itive constantc bounding from above all the row andtion. Consider first the case = v = --- = v, = 1/g. The
column sums. following balance identity holds:

2) All column sums are strictly positive. Then

g h
m
<§r(i)>! ;;m—n;nﬁj. (22)

M| = i=1 18
| M| ~ m n (18) Let for a matrixA € H,, », the following extra condition holds:
(H r(z’)!) (H s(J’)!) the sum of the firsty = 6n, 0 < 6 < 1, entries in each row is
= j=1 even In this case, we write that

wherea,, S b,, means that A€ Hmmno-
‘m Ina, -1 The matrixA is comprised of; horizontal blocks and vertical
n—oo In b, ’ blocks, such that the row sums in each horizontal block and
Proof: According to a modification [5] for rectangularcolumn sums in each vertical block are the same for all the rows
matrices of a theorem due to O’Neil [10] and for all the columns. Givethwe may determing such that
(gjr(i)>! O€lm+mnt-+ng1,m+m+-+ng) (22)
M| ~ i=1 (in casey = 1 we assume the left sum to be equab}oSuppose
P T that among the rows of thi&h horizontal block there are”)
,1:[17" ) 1:[ s rows such that the sum of their first entries equaly, v =
1= 7j=1
0,2,...,r; —w(r;), w is the parity function
1 mo no r(a) = 0, a is even
xexp|————— D rP @ -1 |13 sV (D —1)]|. 11, otherwise.
2(2 T(i)>2 i=1 =1 The matrix A is thus partitioned into two partsd'® and
=t Aright - containing correspondingly the first and the last
(19)
- n — w columns ofA. Let
By (17) and the conditions of the lemma Aleft — A left ( (1)_ o 7mgi)7 o 7m7(ﬂi)_7r(m. o 7mrgg_ﬁ(rg))
Z Z ) > p (20) be the ensemble of all possible matricés™. Analogously, we
i=1 define ensembld*ieht, The probability that an arbitrary matrix
and picked from the ensembl¥,,, ,, belongs tdH,,, » ¢ iS
g
n m/g left right
O () _ ) (500) _ > <H (0 ) JIAFTIA |>
<Z 1 ) Zsl (sl 1) p— i=1 0 Mg oM ) (23)
2 <Z 7“(’)> J=1 [Honn
=t 4 9 where the summation is over atl'), v = 0,2, ..., 7; — w(r;),
e ci. 1=1,2,...,¢, satisfying the following conditions:
Thus, the exponent in (19) is between two constants, and1. Z o™ =3 t=12,....9 (24)
Itis left to prove tha{.M,, | tends to infinity withn. This easily ~ v=0.2-ri =7 (1)
follows since by (17) and (20 g ,
y(,rn ) ( ) Z Z 'Ums,l) — n(81771+82772+"'+sq—177q—1
<Z r(‘)) ! | i=1v=0,2,...,r; —m(7;)
=1 i O +8q(0—m—n2—---—n4-1)). (25)

m n - ' 1+7)n ’ . -
<H T(i)!) I] s el By (18), we have (26)-(28) at the top of this page, and, finally,
i j=1 by (23), (24), and (26)—(28) we get the expression (29) at the
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pln < n(nisy + -+ Mnsn) )1
n(msy 4+ -+ ng—15q—1 + 5¢(0 —m1 — -+ —1g-1))
m @ £l forpm ()
9 (mgi),mgi),.../,gm(i.), ( .))r’i! 0 B rimrr)
X Z H (i) } (;) m(?)
i=1 (01(r )™ " (21(r; = 2))™2" .. (1 — w(r)) (7 (7)) i)
= ( n(msy+ - 4 nnsn) >_1
n(nisy + - +1Mg-15¢-1+ 540 —m — - —1-1))
g m/g m(;) my)
T T
X i i i
) (RN [V R V)
md md
T’i ry—m(r;)—2 Ti r;—m(7r;

8 <n —7(r;) — 2) (Ti - W(?‘i)) @9
top of the page, where the summation is over all numbéfé Thus, (35) yields the expression at the bottom of the page and
satisfying (24) and (25). the equality

Set 9 @
> mg’ (ri = w(ri))
st=181 4 -+ Mk (30) i1
0 77131+"'+nq—15q—1+5q(9_771 _"'_nq—l) 9
f:= . i
s =-> > ((rs = m(rs)) — v)m{?
(31) i=1v=24,. . ,r;—m(r;)—2
g
Evidently m 5
+ — r; —m(r;)) — nsh
) P ;( (ri))
0<f <l (32) follows. Thus, only if allr;'s are even there is no essential re-
Furthermore, str|gtlon oné.
Since
Inf ns -t g
P~ <ne> 21 (33) S m (v = w(rs)) 2 0

whereY;; is the sum from (29). then, necessarily
From (24) and (25), or, in the new notations (30) and (31), the

conditions become m i(” — w(ri)) > ns
> mO =" i=1,2,....9 (34) or i
v=0,2, i = (ro) g
; () s 0< -3 (ri = w(ri). @37
Z Z vmy” =nsb. (35) T sy o ‘ ‘

i=1 v=24,. . r;,—7w(r;)

Notice that forP > 0, the following upper bound is valid for However, by (30) and (21

9 (and, therefore, by (31), fah): s= 1 i - (38)
g 93
i 2 m(ri) and, finally, (38) and (37) yield (36).
0<1—-——. (36)  Denote
> g
=1 My =max{ [] < @, @) o (i) )
|ndeed, by (34), i=1 0 »P2 > » 0 —m(rs)

()

(i) (1)
(4) _m () (n)m2 <rl> M4 < i )mw—wm)
m = my'’.
i —m(rs) E v X e (39)
9 v=0,2,...,r; —m(r;)—2 2 4 Ti — ’/T(?"i)

Z ( Z om + (r; — 7(r;)) (% - Z m@)) = nsf
. y_2

=1 \v=24,. . ,ri—m(r;)—2 v=0,2,...,r; —7(r;
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where the maximum is taken over ail’” satisfying (34) and By (39) and (34) we get (47) at the bottom of the page.

(35). Equating to zero the partlal derlvatlvesmnzv, v=12...,
Since) ", in (33) contains a number of summands that i&; — 7(r;))/2,¢ = 1,2,..., g, of the sum from (47) (deriva-
polynomial inn, we have tives in all butm(g) (r )) From (44) and (46) we find the

following denvatlves

In ~
P~ exp(—nsH(0))M,,¢. 40
<P (6)) Moo (40) 1) in ZU,':L..../g—l,v:1,2,...,(ri—7r(m))/2

Moreover, the asymptotics fa¥/, ¢ is calculated under condi-

tions (34), (35). In £ —Inm$) + - _2; Gy _2; oy R
g.sy?pet(isg%aiem of Equations for Computing the +ln <2U> _ - 2;(rg) In (Tg _T;(Tg)> —0; (48)
By (34) and (35) 2)inm$, v =1,2,....(ry — x(r,y))/2
mgi):%_mgn_... fflw(m i=1,2,...,9-1 O+ 2v hngr(l_ 20 )hl%ég)
. (41) ) Tg — ”(r;l :g —7(rg)
i 4 ey =y s = o (ﬁ) Tl ™ (rg - 7gr(7“g)> =0 49

(42) This is the sought system for computing, 4.
(rg = m(r))m”__, |

g1 D. Solution of the Basic System
= nsf — (Z > (3)> msy We prove in this subsection the following result.
=1 v=2idsenrs ”(”() : Theorem 2: The system (48)—(49) has the unique solution
— = (rg = 7(ry) — Q)WTZ_w(rg)—z- (43) given by
Notice that by (34)7, > n(r,). Thus, we assume in what fol- @ _ 2y (5e)e2
lows thatr, # 1. Therefore, by (43) M = AR O + (L= D) (50)
TLSé
ii)_w(m kg = T_iw(r) wherev = 071,...7“_’;(“), i = 1,2,...,g9, andt is the
g 7 unique positive root of
Z Z €)) 9 (1 + t)ﬁ'—l + (1 _ t)Ti—l .9
vm
- v i =(1-19 i 51
™ ’I"g (] lv=2,4,. . ,r;—7(r;) ) ; " (1 + t)Ti + (1 — t)Tz' ( ) ; " ( )
- #mé") — Proof: Pluggingv = 1 into (48), multiplying it byv and
g = ”ETQ; ) subtracting from (48) for arbitrary > 2, we get
’I"g — T ’I"g — (g) .
- mr —m(rg)— (44) i o
rg = m(rg) a7 (1_v>1mgz>+1n% =0 (52)
() _ 5l ™ nst msy ('3)
my = -
0 g Tg— 7r(rg) or
1 . , (D) 72y (i) 5T
s Z Y um) o) = (mi)) 1 (2¢) i (53)
-7 j=lv=24,..r;—7(r;) (m2L)0—1 (7’21)0—1
2
+ <— - 1) m$? + ... wherey = 2,3,..., =220 i — 1,2 g1,
rg = m(ry) ) Analogously, from (49) we get
+ <w _ 1> m1(~g)—7r(r )_2 (45) (g) Uzl vy ﬁ
Tg — W(Tg) ¥ ¥ I’%g — (m2 ) (Z'U) (54)
m® = 0 . m m® @ 0 (m(g))vi1 (rg 55
0 0 - 9 2 UCAEYRY 2v 2
i=1,...,9—1.  (46) wherev =2,3,..., e2(a),
In M), g ~ max {Z < ln — m((]i) In mgi) — mg) In mg) - E’?—w(n) In mfi)_ﬂ(”)
=1

-I-méz) In <2L> + mgli) In <7;1L> Tt ms)—ﬂ(h) In <T‘ —r;r(r)>> } . ‘0
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Notice that (44) and (45) yield
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However, by (53)

1

- m i 7 v—1
Ky + R = i my? —m{? ..~ m,(nf:)_z_w(rg). (55) <m) Ky _ ( m{ )( v)) (66)
2),,@ () (ri ’
Moreover, by (46) we can rewrite (48) and (49) (for= 1) M2 ma ('5)
in the fO”OWing way: Now, by (66) and (65) we have )
_ -1 rey \ 2=
E‘,(g) rg—m(rg) ,rg > ﬁg (7') (2)
Tg 0 — 5 = | K2y 77 (67)
mo o6 <(’“9”(’"9>) "o ) <7“g —m(rg)) &) ( " (3.)
gn® Ha rimm(r) () Therefore, by (64) and (67) we get
(56) _ e . ra—r(rg)
where Tg > 15 () (my?) 7= o (5) ) 7
- v _ 2v (r; ‘
m(L) Tg — W(Tg) 9 (r2g) -1 (mg.:lj)) L (Zv)
G =—2 (57) (68)
my From (55) and (57) it follows that
) . ~(9)
wherev = 1,2,...,%(”), i=1,2,...,9. )\gL) + )\ff) S+ /\ff)_ﬁ(r e o E:)Hg =— (69)
Assume as well my gmy
) On the other hand, by (64) and (68) and taking into account
iy Mg,
)\év) _ %Z) (58) (57) and (58) we find N
my ~(g) + Ky _ 1 (21;)( (9))1/ v—1
wherev = 1,2, ..., 5720 G =12 . g. m$) mg’) (") "m&)

Substitutev = 1 into (48) muItlpIy byv and then subtract

the result from (49). We get

—lnmg 9 _4ln ,‘i(l) + vlnm(l)—i—

+lnm(g) +In <2> —vln <r21> =0. (59)
v

From (59) and (54) for > 2 we obtain

rg—=(rg)

. ) 3(v—1)

|1 (L ren) (“gi“) &

N
(3) 25,

(1) r (9) r ; ri .2(7v—1.)
(2) _ (2”) (60) x |1+ < 9 ) (Név) (m))
mé“ (5 )mé%) rg = 7(rg) (2.)
Comparing (60) with (53) we conclude (70)
(;Z)még) B (5 )m$ () ©1) (F)inall;(@)from (69) E’:md (70) we get
(i~ (k] A N
rg—m(rg)
In the previously introduced notation we have v Ay 32 (T 2(v=1)
Ty (7) + (2u v ( (27)) 1 1+< "o > lj’gv) (rzz)
( ) Mgl) — ( ) )‘2?1 ] (62) 5 ()\Z/U)Ufl 7"g_ﬂ-("ﬂg) (211)
G T G w1, 2
D|V|de(53)b () B (i)’ t=1,4,...,9 ( )
yms’. By (46) and (57) we have gmy
1 Taking into account (67) set
PRI G +L N oy oo
T () T () Fi= " A N\ (Lo (5)
2 2v T - - H’Qv T
m rg —m(rg) i) (2 )
=5 (63) 0 " (12
Notice that by (54) gmm2 and noticing that this yields
otice that by -
(1) _ po—1 (2:)) _ Ty — W(Ti)
Tg Lll - IJ'U_F I 7}_1727"'7— (73)
~(!]) ( ) ( (g)) B v=12.3. ... 'f'g_ﬂ'('f'g). 2 (21) 2
() 7T (m&P) st T2 we find from (63) that

(64) 1 T Ti 9 T ri—m(ri)
Thus, the right-hand S|deof(64) |saconstant|ndependezmof ( ) 1+ 9 F+ 4 Fo- -+ F~=
2

Dividing (46) bym2 , by (57) from (56) we find

i lﬁg) _ Tq @ ”9*"(”9)
2 méi) — \\rg = 7(rg)/ Ky .

r; — w(r;)

(65) :
where: = 1,2,...,4.
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Furthermore, by (64) and (58)
~(g) (Tg)ﬁ()\é%ﬂl

_ 2w
o ()08
Denote
o mgg)
(Tf)kgg)

By (75) and (58)

_ ((Tf)ASi))ﬁ
(52)28
Then, (72), (77), and (62) yield
G=F
and, therefore
A0 = {8) -1y
(%)
By (71) and (75)
A A0 4400

rj—2—m(ry)

~(g) T
Ko Tg (1) (2)
+—m |1+ < > Koy 77
mg’) Tg — W(Tg) < 2 (2:,)
m
~ g
By (72)

)\gb) + )\(Z) T+ )\r —2—mn(ry)

m

“gmg)”

However, by (76) and (78)
F71 K’E]g) Tg
gg) 2

il 1

and

Multiplying both sides of the last equation by

0 ms”
2 (@)
my
we obtain
O F(3)

~(9) -
EIRES
m2 rg —m(rg)
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(75)

(76)

(77)

(78)

(79)

Thus, by (80) we arrive at the following identity:

;P 1 ( _TQ ) rg—m(rg)
)\(1) <1 + - 4 Tg :(Tg) FT_1>
’ (F ()

AP A0 4

Q) m

=2 (81
rg—2—m(r 7
(rs) gmg)

Comparing (81) with (74), and using (79), we conclude with
(82) at the bottom of the page. From an easy identity

o <§>$+ <Z>x2+"'+ (k-i(k))"’#

G NG e

and denoting
t:=VF (84)
we get

(5) A+ + @ -t

A = .
2 () (L4 t)ra + (L —t)"s

(85)

To derive an equation farlet us return to the expressions for
kg, (44) and (68). By (72) and (75)

1
g _ (52) A5\ ( Ty )F_rg;'(rg)
ma; (s ) /\g) g —(ry)

2 v
/\< ) (27}) )\éz) vl_l( Tg )Frg;"(rg)
)\ ()8 rg —m(rg)
(86)
(by (77))
)\(l) T’g rg—m(rg) "(’“g)
N (T;) (rg - 7r(rg))G R
(by (78))

(29) Tg —(Tg)

ro—m(rg)

Therefore, from (44) multiplied by— (57), (58), and
(86) we have
rg =7 (rg) =2 (i)
2 )‘rg—ﬂ(v’g)—Z

—7(ri) (@)

i Ti
+3N’é)+'“+ 2 Fo—x(ry)

A+ 2P 3

+1+ 2;1(1)
(v, 7))

rg+m(ry) —1

- nsé 1 iy () 87

= m - W Z Z AL (87)

2m, My j=1j#iv=24,. . r;—7(r;)

rg—m(rg)—2
2

A

FHE )P

+( r )Frif"zl’(v‘i)

ri—m(r;)

(%) L+ () F+ () F2+ -+ (

rg—2—m(ry

e = (82)
Tg ))FgT(l)_l + ( Tg )FT

rg—m(rg)
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or, taking into account (73) and (79), after multiplication by Let us use (85) fon . After multiplication of (93) by~ 2t

() () we obtain
() () #2(0)r=3()r+
(e () (D) reals) -

— -2 rg—m(rg)—4
+7"g 7(rg) < Tg )Ff
2 rg —m(rg) — 2

>

J=Liiv=24,...,r;—m(r;

vmqgj)) . (88)
)

Notice, that by (83)

() )
(12 (e () (o))

= 4\/’ (L4 V)t = (1= Va)t ). (89)

Assuming in (88)F = t, by (89) we have
’I"g 1 r;—1 _ r;—1
() g (as o -

() r 1 ro—
+ X5 rg<2g>4t((1+t) (1

_6) <9
2my

_ t)rg—l)
g—1

> X

- om{) | .
J=1, v=2,4,..r;—7(r;)

(90)

Moreover, taking into account (79), after multiplication of

(81) by ("s) F we get

O (") (") P 0 Y
& <+<2> +<4 L rg —m(rg) 2

yn Tg
NG <2>F (01)

gm
or, by (83), and having in ming/F = t, we derive
(%)
e ra-om =5 (T)e e
gmy
Dividing (90) by (92) we have
ri(’s) g (L+ 0" -1 -p")
A (L4875 + (L= t)r)
(3 E (0 - -

(L+t)s+(1—t)

g (r\[s0 1 - )
_ﬁ 9 7—7—,’1 Z ’Um,u .

j=lj#iv=24,..,r;—m(r;)
(93)
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(%)
we get
ri—1 _ _ 4\ri—
m(l—}—t) (L)t
(T4t 4+ (1 —t)r
(1+t)r971 ( )rgfl
+ 7yt
T (T by
s6 1 = !
=9\~ Z Z om{) (94)
v v J=15#iv=24,..., T 7r(7‘j)
wherei = 1,...,9 — 1.

By (62), (79) forF = ¢2, and (57) we find

(i) _ 42v-2 @m(i)

e ()"

Substitute it into the right-hand side of (94). Solving it for the
double sum we have

Z m])

J 1,j#4

(95)

Zﬂmg

(14—t — (=gt
+ (1 —t)m
_t)’r_q—l
_t)r_q

_gs
vy (L4
(1+pmt-(1
(IT+t)+(1
wherei = 1,2,...,9 — 1.
Notice that due to (89) (when = t?) the left-hand side of
(96) is

—rgt

(96)

g-1 (J)
> (L+0 = (1=t (97)
ynt 4~ r;— ri—1
J=1,5#i
Multiply (96) by 7, and set
(4)
m _ o
j.:—il((1+t)'v —@=-nmh (98)
]
< orgy, (L) — (1 - t)r9_1>
d(t) =t -2 99
R G e e
. 7‘»;—1 _ _ ’I“i—l
() = 2 LED T — 20 (100)
g I+ + (1=t
Then (96) can be rewritten in the following way:
g—1
> wj=dt)-bi(t), i=1,...,9—1. (101
j=1,j#i
Let us now return to (87). Moving
(i) ri = m(ri) ()
L4+ 2py" + -+ 2 ri—m(r:)
into the double sum (under assumptibr= ¢2) we have
YRS VLT SY RTINS At W(;g) "2
(Tg_;(Tg)) /\(i)trg —7(rg)—2
2
Tg +m(rg) — 1
nsf 1
=—5 - Z Z Umgj). (102)

2my J=1v=24,..,rj—7(r;)
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Furthermore, in the left-hand side of (90) the first summaritherefore, we have

vanishes. Thus, dividing both parts ) we obtain g 1 =1 4 (1 — gyri-1 9
o 1 . . Zri( (J;?t)m I El — gm =(1-6)> r. (112
Ay m (Tt ==t ) i=1 ' i=1
(Tg Let us continue the proof of Theorem 2. By (107) and (100)
= 2 — (]) ri—1 _ _ 4 \ri—1
¢ <nse Z > vm ) . (103) o LA+ ‘ (1—1t) | (113)
j=lv=24,..r;—7(r;) g (1 + t)"‘1 + (1 — t)T1
Multiply (103) by 22, and divide the result by (92). We get  From (98) and (113) we get
, f(l + t)rg_l — (1 — t)rg—l m(z) _ :Ci(Ti — 1)
T (A4t 4+ (1 —t) 2 (L)l — (1=l
i) 42
s 12 p _ 2yn (2)t
h (7 P> ”mg)> - 09 g Gror a9
I=L =2y = (r;) wherei = 1,2,...,g — 1. Therefore, by (95),
Solving (104) for the double sum and taking into account (95) i\ 120
(@) _ 2 (32)¢
and (97) we have My, = (115)
0 g T+t +(1-D"
gt . A+t t—(1—-tpm ) Wherev:1,2,...,%(”),2':172,...79—1.M0re0ver, by
T T (58) and (92) it follows that
s0 T4t)s =t — (1 —t)s! . o) 2
— o A0t —UZDR - 0s) mg =2 (3) REETS
(14+t)rs + (L —1t)rs g (148" + (1 —1)

Multiplying by 2 and using notation from (98) and (99) Werpep from (79) and (84) after multiplying by and taking

find into account (58) we obtain
g r;
S ay = d(). (106) md?) = %t%—%gﬂ% (117)
1 2

Comparing it with (101) we conclude that By (116) and (117) ) )
’I‘g t v

i = bi(t) (107) m(®) = 2 (55

118
_ g (1+8)s+(1—1¢) ( )
and thus from (106) it follows that o — () —2
g wherev = 1,2,. .., ===,
— Z bi(t) =0 (108) What is left is to flndmig),mg )i =1,2,...,9—1, and
‘ ' (9)
mo .
Substitutingd; (t) andb; () by their expressions (99) and (100) By (86) with (84) and (58)
we derive the sought equationin (9)
N (9) — _my Tg trg—fr(rg)—Z 119
g 1 t ri—1 1—t¢ r;—1 0 m"'.q =Ry = Tg — ’ ( )
> U A= sbg (g0 (3) \rg = m(ry)
(L4 + (1 —t)r gl By (119) and (116)
This equatlon can be written in an alternative form. From (109) ( g )trg—fr(rg)
: (@) _ 2 \ry—n(r,
it follows that m? = — (120)
T Ayl — (1 gyt g (L=t
_ it - Furthermore, from (34) and (115) for=1,2,...,9 — 1
r1+ 1o+ + 1y ;T T+ + (1) f ,r),) (115) g
L= B rg—mrg) , %
s _ ™ ZM ( ")t
:7”1“”2"'“"9_97 =Ty Z (1+1)r 1—t)“
or n(ry)
g — — g 1 n 2
(L4l — (1= pnt g0 My < >t2”
1 — = = - T — )79
;r ( v orra—on ;T ~ 9 A+ + A=t o
Thus, By (83), whenz = t? andk = r;
9 ri—1 ri—1 9 ) ri—m(ry)
I+ 4+ (1=t Z gsb - v v
>ori — — =Y -2 (110 i\ g (L4 B)7 — (1= b)m
D R I P > (o) =

By (30) and balance (21) it follows that =1
and therefore,

g9
_7 i 29n 1
=N (111) G0 _ 2
9 Z o g (L+t)mi+(1L—t) (121)
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wherei = 1,2,..., g — 1. Analogously, from (34), (118), and or, taking into account (38)
(120) we have

g .
(141 11—t
9 1 lnMn9~—< antZrl—l—Zln + ( ) )
ml = % . (122)
g (L+8)" +(1—1t) (128)
Then, by (40) and (38
Comparing (115), (118), (120)—(122) we conclude that a uni- en yg ) and (38)
~ ~ T+8)i4(1—t)
form expression is valid L Z(—H(ﬂ)n—ﬁn It L0 -2F( ) >
Ti v 9 i=
o_2m ) (123) 1 (129)
Yog (1=t Thus, we have the following result.
. Theorem 3: If
wherev = 0,1,...,——5-,i=1,2,...,9 .
Theorem 2 is proved up to unigueness of the positive root to S w(r)
(51). This will be done in Section IlI-H for a more general case. ] =1 (130)
O g9
> Ti
=1
E. Calculation of Asymptotics fa¥/,,  and P then
Substltutmgm“) from (123) into (47) we have (124) at thep i 1 P
bottom of the page. By (83) - nLHolo o
ri—(r) _ Z —GrInt+1n (1+8)" +(1- t)m)
- L+t)" + (1 —t)m < ‘
=\ 2 (131)
By (89) wheret is the unique positive root of (112), otherwise
rizr(ri) . ) P(l) = —o0. O
ri\ oo (LD - (1)
ZO 2 (2v>t =it B - (126) £ | emmas of Equivalence and Gluing
To scrutinize the more general case we will need the fol-
By (124)-(126) lowing lemmas.
T4+t — (1 =)t Lemma 2: The maximum of the product (39) will not alter if
1nMn9:— tIn tz ,,
, (L) +(1—t) some ofr;’s are equal to each other.
g Proof: It is easy to check using Stirling approximation.
2 We omit the details. O
+ Z In .
s (14t)" 4+ (1 —t)m .
i=1 The lemma shows that we are allowed to glue blocks with
Using (109) we obtain equal row sums into one common block, anck versasplit a
block to several blocks having the same row sums.
In M, ¢ ~ o _gst, . n ngln (T+)" + (1=t Lemma 3: Let in a matrix fromH,,, ,, » Some of the blocks
g vy ~ 2 have lengthm; = o(m), j € {1,...,g}. Thenlnmax M, ¢

(127) (see (39)) asymptotically does not dependoyis.

ry=m(r;) .
(4)

In M,, o NZ TWI M Z mgv) In WE“
i=1 9 9 =0 (2'17)

2yn 2 75\ o 29n 2
=7nl In—- — 2010 [ 222
=gnlnn +yn Ilg Z ((1+t)“ (l—t)“) ; <2U> n< p (1+t)’"i +(1—t)“

2yn (g g L -
_2n(9, I _
g <2 R z:: 1+t“ 1_’5)“

K2

2yn 2 Ti\ 20 - Ti\, 20
'<(lng((1+t)m+(1—t)m)>' Z <2v>t +(Int) > 2v(2v>t )) (124)

v=0
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Proof: It is enough to prove the lemma for two blocks, Thus,

one having lengthn; ~ m, and the second one being of length
mgy = o(m). Moreover, assume that all the column sums equgl 7 ~ (

s. Then the product (39) assumes form

= 1 1 1
m®,m®, om0

X ( ma )
m® m® L m®

(1) (1)
1

m m m(l)
r\"2 fr\ ™ r—m(r1)
X ..
2 4 r1 —7(ry)

(2) (2)

(2)
ro\ "2 [y ™ To My —n(rg)
132
()0 ) e

under conditions

m®

ri—m(ry) —

-+ m(2)

T — 7'r(’!‘2) -
o an P+ e

(2

ro—m(ra)

. R C S —

m® 4 m® 4. -

= sfn.

(133)

+om$ +amP- -+ (ro—7(r2))m

ro\ 2 /[/ro\ * 9 ro—m(r2)
() () )

m§2)+m§2)+---+m(2) mao
= <’I"2—7T(’I"2) )
2

rog—m(ra)

Moreover, by Stirling

2 2 2
mlg )mé )7 R 5-2) 7r(r2)

m-
In moy 2

() )

(2)

(2) Moy —m(ra) .
) (m’l"g 771’(7‘2))

(135)
Therefore, by (133) and (134)
m(®) (2)
(e e )G (1)
2 2
m((]), é):-“: £)) 7(r2) 2 4
LS
Ty ro — (1
. =o(mlnm
(7"2 —m(r2) ( )
while

InIl ~Cmlnm

for a constantC' > 0.

(1) (1)

D) (3) ()
mgl), m§1)7 ey Moy () 2 4
1 ms‘ll)*""("‘l)
' <7“1 - W(?"l)) '

G. Asymptotics oP in the General Case of Arbitrary Sizes of
Horizontal Blocks

Now we are ready to accomplish the proof. Consider a more
general (than the previous) case when theregah®rizontal
blocks of (perhaps different) lengths,, ms, ..., m

By Lemma 3, we may assume thatail;'s are proportional
to m, and

myp =vim,my = V2M,...Mg = Vg

myvi+va+ - vy =1 (137)

Using the "gluing lemma” (Lemma 2) and (112) we arrive at
the following equation irt:
14+t —gri-t

Z”m I+ 6+ (1—t)"

and (111) reduces to

g
=(1-60)) wir; (138)

=1

g
s= Z ViT;. (139)
i=1
Thus, Theorem 3 reduces to the following.
Theorem 4: If
g
) 3 (i)
h<1-=— (140)
DT
=1
then
P(f) = lim Lip (141)
n—oo M
(I+t)" i +(1—2)"
- 2l 1 ' 2 1
72( 0V viri—0(In t)vir;+v; n< 5

= —sH(0)—=s0(nt)+y ) viln <(1 + 1) ; (1- t)’“‘)

wheret is the unique positive root of (138), adds defined in
(31); otherwise

P(f) = —cc. O

H. The Uniqueness of the Positive Solution to (138)

We prove now that (138) always possesses a positive solution,
and, moreover, this solution turns out to be unique. Indeed, set,
fort > 0

11—t
1+t

_1—z
T 142z

(142)
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Then
L+ P+ (1—)m" 1 14zt
(I+t)ri+(1—t) 14+t 14z

24+ 11421 1 14272
= = — (14 z2——m—
2 14+ 27 2 1+ 27

and (138) reduces to

J 142" o
=z Z Viti— e =(1-20) ; viri.  (143)
Let
z4zmi 1
(z)= 22— 144
hE) = (144)
and notice that
Vi(2) = (142") "2 (1—(ri—1) 2" H(ri—1) 2" 22" 72), (145)
Since, by (142)z2 < 1, then
2T < g
and by (145)
Pi(z) > 0. (146)
ThenU(z) is monotonously increasing from
1+ Zm—?
U(_l) = z—}urll-} U Z ViTq hIEl W
and up toU (1) = Y°9_, v;r,;. However,
y 142772 (1, if r; is even
ATy T =2 otherwise.
Thus,
g g
- Z vir; + 22 vm(r;)
=1 =1
Since
g
Z m(rs)
gelo1- =
Z VT

the right-hand side of (143) belongs to

E Vﬂ”z"‘?E v (ri), E VT

=1 1=1
This means that (143) always has a unique solutica z
in the interval[—1, 1], and our claim follows. Moreover, #, €
[-1,0] thent, € [1,00], and ifz € [0, 1] thent, € [0, 1].

Notice also that from (143) and the fact tha(~) monoto-

3151

2) For evenmin r;, P(f) possesses minimum at= 1/2,
which is the absolute minimum if atl’s are even, and is a local
one otherwise.

3) For oddminr;, § = 1/2 is not an extremal point, and

21/1 (2)

mm’P =—v <Z I/ZTL) H|ll-———
’ Z Vit

4) The same expression is valid for 2) when not all the sums
r; are even. ThefP(f) has at least one local maximum for>
1/2.

5) Fort > 1, all the stationary points of the functidi(6(¢))
are roots of the equation

Z I/m (¢ 1" =0.

yri(t+ i 4+ (t— 1)
Proof:

1) From the above arguments it follows that the functi(ﬁj
is invertible. By (141) we have (149) at the top of the following
page. Notice that by (38), (109) becomes

1+t~ —(1—t)i=t <
ZVLTL =7 ;wm. (150)

(L+t)m 4 (1 —t)
From (149) and (150) we find

(147)

(148)

. 7l g ]
NOE Z T
Thus, the stationary points f(4) satisfy
0(t)
1—6(t) (152)
or
~ t

For these points by (150) we have

R R
Z Vm =117+ Z vir;. (154)

(L4t) + (1 —t)m
The equation has rodt = 1, which, by (152) corresponds to
§ = 3. Let us show that to the left from the poitit= 1 (or,
wh|ch is the samd] € (0, )) there are no stationary points of
P(6). Indeed, by (143), f09 < 3,2z > 0, and, therefore, by
(142),0 < t < 1. Thus,

nously grows it follows thafl(z) monotonously decreases, and@nd (154) is not valid. By (150)

therefore, by (142&(16) is monotonously increasing.
. Study ofP(#) := limy oo L In P
In this subsection we establish the following result.

Theorem 5: :
1) For0 < 6 < 1/2,P(#) is monotonously decreasing.

T+t — (1=t ! 1
(L+t) 4+ (1L —t)r 1+¢
AP S S
t 1+t 1—-9
and therefore,
— <1
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o P 149
(0) = —=P(O ) 149
:’VZVii (_TiH(g) —fOriInt+In((1+6)" + (1 — t)m-))
- 4
- 0 g (1 + t)”_l — (1 _ t)Ti—l
= i | 1 _ — - — v_ .
Wéw (n1—9 i\t @+ At
By (151) However, assuming that ali;'s are distinct (see the "gluing
1 lemma”), we have
P(6) <0,  0e(0,3).

Thus, P(6) monotonously decreases down to the var(g ).

By (141)
PEy = 2
2/ = T
2) and 3) Assume now thét > 1.
andt € (1,00). Then
I+t ==t 1
(4 )7 + (1 =t) L4t
(l—l—t)hil (1 )rlfl 1
A+ + (-t 140

By (150), we have

(155)

Then, by (143)z < 0,

r;,=0mod 2 (156)

;=1 mod 2. (157)

5o R (L4 )mi—t—(
D DR B (e I

1—t)ri—t
1—t)m
IR AR il o Vil G Vs
‘Z”( (E+ D7+ (=D (=D

(t + 1)“—1> 1 <
- - + Zl/ﬂ”i
: t 1

(t+1)

vir; (t — 1)”_1

2
ot +1 (ngZﬁ;ven
- >
i<girodd

t+1z””‘

With the help of (158) we will studyP (¢ ) in a (small) right
(or in a right vicinity oft = 1).

vicinity of § =

(t+1)r + (¢ — 1)

llqu,;(t — 1)”_1 )

t+ 1) — (t— 1)

(158)

Sett =1+ At, At > 0, and notice that

(At)ri—t
2+ Aty £ (A

(At)ri—t
2mi

(At —0). (159)

A r—1
T ~ vy (=1)" <7t>

where; is the index of the minimum;

(160)

r; = min r;.
1<i<g

From (160) it follows that if; is even then fot belonging to
a small enough right vicinity of, = 1, by (150) and (158)

0 o1
t 1+t
and thus
. _
—>t+1l, —>1
1-4 (1 - 8)
However, ifr; is odd, for the same values of
b < L d <
t 1+t ¢(1-6)
In the first caseP(6) attains minimum af = 1, and the min-
imum is
min 'P(é) = —vIn2. (161)
4

In the second cas@)(f) continues decreasing in at least small
vicinity of 6 = 3.
Let us show, moreover, that

g
Z v;m(r;)
lim f(t) =1—- = — (162)
t—o0 9
> vir
i=1

i.e., the equality in (36) corresponds to the limit casé of cc.
Indeed, for an oda and¢ tending to infinity

A+t)'—@1-t~t (r-11
I+tyr+1—tr ¢ (163)
For evenr
1+t t-—@a-tr1t 1
A+t +0-tr & (164)

Therefore, the positivity of the difference in (158) depends dasing these relations along with (150), we find

the positivity of

g r;—1
T = Z(—l)rilji’ri <%) .

=1

G 9 g
@ Z VT ~ %Z vi(r; —

i=1 i=1

and (162) follows.

m(ri))
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It follows from (162) that ifr; is odd then
g9

> vim(ri)
min P(6) =P [ 1 - =% (165)
b E ViT;
=1
Let us show that
g
Z 7 (7)
ngn’P =—x (Z I/Z’l“l) H|1- =i— (166)

Notice that for growing:

In (146" ; (1=t ~ (r; —m(r;)) Int.
From (141), we find
g
Z vim(r;) Z v (r;)
P 1——1:1g Zyﬂ", H|1-= lg
Z ViT; =1 Vil
i=1
g
g Yovim(ri))
+(Z Vﬂ"i>tlim l—zzlgi —60(t)|Int. (167)
=1 e E VT
=1
By L'Hopital's rule
g
2 vim(r;)
tlim 1— Lzlg— —0(t) [ Int = Tlim (QN'(t)tln2 t) .
i=1
(168)
By (138)

)

g V‘r‘(1+t)2ri—2_(1 )2r1—2+4(7,L_1) (1 f2)r1—2
v (Lt (1t )?

1
-0 =

Finally, (167) and (169) yield (166). .
4) Using again (158) we will studP(6) in a small (left)

(169)

3153

5) From (152), (150), and (138) when> 1 we have

6
t=——
1-46
9 ri—1 _ _o4\ri—1
_ Zl/m<1 +1) , (1—-1%) ,
pr RN T
—1
1 —i—t r;—1 +( )rl—l
ZVLTZ
T+t 4+ (1 —t)m
and (148) foIIows. O

Remark 1: It is easy to see that if is a positive constant,
then
. a
lim zH (1 - —) =400
x— 400 €T
and thus (166) yields that if there is at least one eddnd at

least oner; (indepenedently of its parity) tends teco, then
min P(§) — —oo. O

J. Computation of the Spectrum

Let us change now the definition ¢f We assume that we
are choosing thén columns in the following way. In théth
vertical block (of size);n) we pick the first);n columns, where

0; < n;.Herei =1,2,...,h. Clearly
Or+ 024 +0,=06, 6 <. (171)
Set temporarily
7 = 0;, 1=1,....h (172)
TMhai = i — 0i, 1=1,...,h (173)
Si = Si, i=1,...,h (174)
gh-{—i = 84, (2 :1, ,h (175)
It is clear that
2h h
Soai=1, Y @ (176)
=1 =1

For this new system, let us calculate Using (22), (31), for
q = h, and (171)—(176), we obtain

vicinity of ) h
S isi—sn(f+n2+ -+ 70)+0sn D Nisi
9 n =1 =1
. 2. vim(ri) 0= 2h T
=1-=; i > i
=1 =1
2 Vit (177)
_ _ - From (172) we get
or, as itwas earlier shown, fébig enough. We have far— oo, N N N
Z viri(t—1)" 1 B viri(t—1)" ! > bis; Sbisi > bis;
1<g:r; even (t—|—1)T’ +(t_ 1)717 1<g:r; odd (t—|—1)7’1 - (t_ 1)T7 0= h ZZlh = 1;1 = = (178)
Vil Vi Z Oisi + > (mi —0;)s; 2 Misi
~ Z 2% Z 9 (170) ‘ i=1 i=1
1<g:r; even 1<g:r; odd

Furth
For ¢ big enough, the expression (170) becomes negatlvurt ermore

if among the numbers,,r,,...,r, there is at least one oddC
number. If heremin;<;<,r; is even, then fort > 1 the
increasing ofP(6) will be necessary changed by decreasing. n
'I:her?fore,P(é) has at least one local maximum point for = Z(m Inn; —0; In6; — (1, —0;) In(n; —6;)).  (179)
0> 3. i

h
1 N
(01,0s,...,0,) := nh_)n;o p lnH <9LTL>

=1
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Our goal is to compute (see (7) and (8))

b =1n> exp (P(é) + O, .. .,ah))

where the sum and the maximum are taken ovefall. ., 6,
satifying (171).
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Equating to zero the partial derivativeséiﬁ),j =1,...,h,

We will use the following technical trick. Let us introduce eDenote
6-ensemble) is a small positive parameter, similar to the initial

one. In theé-ensemble, we consider the matrices having the
same distribution of the row sums, but there is an extra zero¢s := exp

column strip (indexed + 1) of breadthén. Set

771(6) :771(1—6) i = 1>h7 772+1 = 0. (181)
Then
h+1
i=1

Moreover, assume that in thth vertical strip of breadtlryg‘s)n

all column sums are;, i = 1,...,h, and
Sh4+1 = 0. (182)
Let the numberﬂf‘s),z‘ =1,2,...,h, be smalls-perturbations
of the number9;, so that
lim 6% =g, (183)
5—+0
0 -+ 0 <6 (184)
Set
ei(zé-l)—l =0 - 0§6) - 6}(:5) (185)
0 <6 <n®. (186)
Thus, fori = h + 1 it follows that
lim 6%, = 0. (187)
We also assume existence of the following limit:
o
lim ———— =¢. (188)
8 &
b=+0 771(L-|21 - 924)-1
Notice that from (178), (181), and (182) it follows that
5 40,
) = = (189)
> s
i=1

Moreover, analogously to (179) we have

5 ) )
o6, ....6) )

h+1 (8)
n,n
= lim —In

h+1
3 (57 1l — - ).
i=1

(190)

of the sumP(6®) + C(6",....,6'")), we find
&) _p® 9o
1a)y . Si n; j h+1 _
PUO™) - - +1n PO +1n @ 0 =0.
E 775 )SL J h+1 h+1
i=1
(191)
1(G(8) (8)
—7; 67) R RGO hil & (192)
D nl(é)si Mht1 — 6h+1
=1
Thus, (191) can be written as
6.
In —2—— =s;In(s +In&s,
(®) _ 4 J ’
o =
and
5 77@
0= —7_—— j=172.. h (193)
1+¢s &
Summing up (193) foj = 1,..., h we find
h 77(5) )
—_—9g-6") . (194)
—8j p— +1
; 1+ ¢ ¢!
Let us move to the limit whed — 0. Thenlim 6521 =0,
lim #®) = 4, and, by (188)lim &5 = ¢. Therefore,
h
Wi
=9 (195)
—Sj —1
=~ 14 (53¢
where, by (192)
e
¢ :=exp ZLD ) (196)
Zlmsz'

Thus, since giverP(d) by (196) we know(, the (195) can be
considered as an equation of degheie one indeterminaté.
Consider the following function

h

fla)y=>" "

= 1+a;z

wherea; > 0. Whenz grows fromo0 to oo it monotonously
decreases from (= Z?’:l 7;) down to0. Therefore, for any
¢ € (0,1), the equation

flx) =0

has a unique positive solution. Thus, (195) possesses the only
positive rooté = &g.

Moving to the limit(6 — 0) in (193) we find the sought dis-
tribution of numberd;

i

Y= e

(197)
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Our goal now is to confirm that the numbefs from Since{ < 1, then

(197) deliver maximum to the distance distributiét{) + 1

C(64,...,05). Notice, for instance, that in the case= s, = 8> s o < ) 202
~-§:sh::2weﬁndﬂom(l9®thm P T ! (202)
1 From (202) it follows that all the summands in the right-hand
W =0 side of (200) are nonpositive for the values defined by (201).
This proves (199). Notice that the equality in (199) holds only
and, therefore, from (197) it follows that if s = = sp. ~
Let nowd be a point wheréP(6) increases. Then, the values
6; = On;, j=1,...,h (198) of6;,j = 1,...,h, defined by (193) deliver maximum to the

) - ) N distribution only when the corresponding valiis not less than
In this case, by (178 = ¢, i.e.,P(f) = const, and the max- g that is, it happens when the inequality (199) holds in the op-
imum of the distance distribution corresponds to the maximum,site direction. Let us prove that this indeed holds whées
of C(6.,...,04). Itis easy to show that the values defined ity 5 close enough vicinity of.
(198) indeed provide the maximum®f6., ..., 6,) undercon-  Eor the values (201), under conditigrn> 1
diton 6y + .-+ 6, = 0.
Let us consider now the general situation. Let fitshe a 1 S 1 (203)

~ i > 8 & > .
point whereP(6) decreases. Then, by (196), < 1. Since FE ST (sig~t T 14 (s

the maximum of the second summand in the logarithm of t : . :
distance distributior (6 , . .., 6,) corresponds té — 6, and %ey (203), all the summands in the right-hand side of (200) are

P(@) decreases, thefy, j = 1,..., h, from (193), will deliver ponne?_?tlve for Fthet valllg%s defined by (201). This proves the

the maximum of the distribution only if the corresponding valu'é]quirL:a”' y%p&OSI ? t?§1 ; )- ints aP (0 _ 1 and (199

of 4 is not greater thaf. By (178), (197), and (195), this meansb aty, € stationary points (¢), ¢ =1, and (199)
ecomes an equality which corresponds to

that the following inequality:

h s h m h é =40.
R <« I U ;S 199
; L+ =gt — ; L4 (=gt ;77 (199) According to (197)
is valid in gsmall vicinity ofd. To prove this inequality we need 0, — £ . i=1,....h (204)
the following lemma. 1+¢
Lemma 4: Leta;, b; be arbitrary real numbers=1,...,h, where, by (195) (it also follows from (204))
n; > 0,andn; + --- + n, = 1. Then the following equality is
valid: &
1+¢

maiby + naazba + - - + nrapby,

This means that for the stationar ointsRJ(fH~ we have
— (a1 + neaz + -+ + npap)(mby + n2ba + - - + npby) yPp )

= mna(a1 — az)(by — b2) +mns(a1 — az)(by — b3) 6; = On;, i=1,...,h
+--+ ar — an)(br — by ] _ _
m(ar ~ an)(br = b) For the derived values @f; (197), using (179) we find after
+ 210z — as) (b — bs) + mama(az — as)(bz — bs) simple transformations
+ -+ nenn(az — ap)(by — by)+ }
4+ .-+ 7711_177;,,((1}1_1 - ah)(bh,_l — bh). (200) 0(01 Hh):i: ;i In (1+C*S¢€71)1+C T

. o — 1+<‘—s,€—1 (C_Si£_1)<73i571
Proof. First, compare the coefficients at;b;, « = = (205)
1,...,h. On the left-hand side, the coefficientsjs — n?. On Denote

the right-hand side, the coefficient is

i
(mmi +memi + -+ ni—11;) L4 ot
+ (Minit1 + Minite + -+ ninn) Then
=ni(m +m2+ -+ —n:) = 0 (1 = m5). h .
o o _ th“w&J:E:mH<J>. (207)
The coefficients ofi;b;, ¢ # j, are evidently equatn;n; (both prl i
in the left- and the right-hand sides). O _
According to (195) and (206)
Set in (200)
h
o 1 i zi = 0. (208)
al_l-l-C_S’f_p bi=s;, i=1,..., h. (201) ;
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By (197) and (206) we get

h
Z s;x; = 0s (209)
i=1
wheres = Zle n;8;. Since
e
( =exp (P (6))
S
then, by (151)
6
= —. 210
S (210)
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It means that the expression in (215) is almost independent of
1. This is possible only it ~ 1, { < 1, with high accuracy.
Substitutingl ~ 1 into (13)

h

h
;x:;#ﬁ (216)
we find
%571 ~ 0 la %9 (217)
Now (14) is also satisfied
}Zixzis_ i _ g (218)
i:lsL i:181+19

By (208) and (209) we derive the following system of equF_xact equality could be achieved by a small variatiog of the

tions int and¢:

h h
E x; =0, E z;8; = Os
=1 =1

where ¢ in (206) is defined by (210), and is defined by
(138)—(139).

(211)

Now, by (180), (141), and (207) we obtain (16) from The-

orem 1. O

vicinity of 1 and¢~* aroundi;2.

Let us find now another solutlon to the system, essentially
distant from the solutiod. Let (,0 < ¢ < 1 be small enough.
Since whensy > s;

This accomplishes the proof of Theorem 1. Moreover, we obherefore, by (220) and (216)

tained the distribution of the numbetsdelivering maximum of
the distance distribution component. It is by (197) and (206)
1=1,...,h. (212)

Hi = Ty,

IV. ON THE SOLUTIONS TO THESYSTEM (13)—(14)

We analyze here the number of solutions to (13) and (14). As h

we have mentioned, we conjecture that in the general case the

number of the solutions never exceeds three. In this section,

one.
Assume that

Sp>8ho1 > >8,(L=m)sa>s1, m 2> >
(213)

1
6 < min <§,771> . (214)

By (214),0 belongs to the interval whef@(f) is decreasing.
In this case, there exists a maximum in the left vicinitydof
Sincef = 6 corresponds to the maximum 661, 6, ...,6.),
computed under conditioﬁ:ﬁ;1 #; = 6, then the value ob),
delivering the maximum t@’'(64, 6, ..., 05) is 6; = n;0. Ac-
cording to (197), the choice &f ~ 6, corresponds to the fol-
lowing approximate equality:

1 .
B — R 215
[EyerTa (215)

provide evidence that the number of solutions can be more thgnce whenj is small enough ang, > s
1!

CE> (219)
by (213)
T1 > Xo > X3 > - > Th. (220)
L m ~
e Eorr Py 0 (221)
and
s 0
S —7 (222)
m —
Furthermore, (14) yields
SiTi n
=4. (223)
e 2 e

we have for > 2,
(7%¢7t > 1ands; (% < s1¢*, then by (221) and (223)

i _ 510

e 22— LT 224
s 1 + (gt s (224)
Notice that for the stationary points of functiofid) from (16)
under the maximum

$0 = s121 + -+ + span > s1(z1 4 -+ ap) = s160. (225)

This means that the stationary point (224) is situated in a small
right vicinity of % The other stationary point which is close
to 6 does not belong to a small vicinity éfs—e Indeed, by (213)

s> ms1+ (1 —n1)s2 > s1

and thus,

0
SL<<9
S

(226)
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We will illiustrate the above situation by an example. Using (10) and the balance equation
Example: Lets; = 2, s, = 28 (h = 2); r1 = 30 (g = 1); v & B
n =mns = 0.5,0 = 0.1, = 0.5. Thus, we consider a rate/’2 S Zl viri =1 (228)

code. We have the following three solutions to (13) and (14), the
first and the third correspond to our considerations. We provi?ﬁ‘éa find
accura}cy of seven digits after the decimal point in the numbers. §— cgt2 . égt4 +O(t% (229)
1) #; = 0.0958855. This value is on the left of = 0.1
and corresponds to a local maximumi)f¢). The max- Where

imum equals—0.0207870. Then{ = 0.9959481, t = v
0.1064861, ¢ = 0.1179562 (the approximation (217) Cg =" > wiri(ri — 1) (230)
gives¢ = 0.1111111). i=1

2) 0y = 0.0596296. This value corresponds to the local min- &y = N Z viri(r; — 1)(T2 i —3). (231)
imum of b (#) equal—0.0239098. Here,{ = 0.9580943, 3s — ‘

t = 0._0661842,.5 = 0.1871131..This case correspondsy; i easy to show that

to an intermediate value @f, which still is not far from

¢ =1 Cg > cg > 1. (232)
3) #; = 0.0133336. This value corresponds to the absolut&rom (229) it follows that

maximum ofb}(¢), and thus provides the value 4.

0 _ A 43 5

The maximum equal$0.0491889. Here¢ = 0.5850010, b1 = 2eqt — 42417 + O(17). (233)

t = 0.0231004, ¢ = 0.7305134. Another corollary of (229) is that
Notice that in this example = 15, and by (224) Inf=2Int+Ine, — 5_9t2 + O(t*). (234)

Cg
510 — 0.0133333 Furthermore .
s <

= — =yt + (c2 — é,)t* + O(t7). 235
(=g — ot G o). (@39

i.e., 5 differs from this value only in the seventh digit after the h
decimal point. In this cas&2¢ — 0.2500008, and the approxi- BY (14) we have
mation (222) provides for this value2500000. 7]

6
w < =< eyt (236)
S; S;
V. ON THE MINIMUM  DISTANCE Let us elaborate on (236). We have by (11)

In this section, we discuss the minimum distance of codes in o micTE 237
the ensemble of irregular codes. To do this we have to study YT X ¢sig (237)
the derivative of the average distance distribution in the (righfyhen: — o
vicinity of § = 0. Notice that in the cask = 1, i.e., when all N .
the column sums are equal, we have essentially the regular case (€=o(1), i=12,... h (238)
considered earlier in [5]. Thus, we assume from now on thgfgeed, if
h > 2. Let

limsup (%€ > 0
25T1<T2<"'<7‘g, 2< 51 < 89> --< 8. =0
then (237) contradicts (236). Therefore, by (235) and (237)

First, notice that by (13) we have that whénr- 0 thenz; — t5¢ = o(1), 1=1,2,...,h (239)
0,7 = 1,2,...,h. Thus, by (14) it follows that — 0. By Zr = (e — (25 €2 4 OB 6B 240
the earlier proved one-to-one correspondence bet#eent, _ ' UT’C §=mee (¢¢%) (240)
related by (10), and — 0 it follows thatt — 0. Onthe contrary, and, sinces; > s1,7 = 2,...,h, by (235) and (240)

whent — 0, thend — 0, andd — 0. Therefored — 0 is z; =o(zy), i>2 (241)
equivalent to alk € T tend to zero. In what follows, we need 1 = o(@») i>3 (242)
asymptotics o#, 4, ¢, z;, etc., whernt — 0. ’ ’ =
We start withd as a function irt. Notice, that by (10) the Thus, by (240) and (235)
functiond is even. Standard computation with binomial coeffi- h
cients gives lesl =811 + S22 + 0(13) = Ulslcglftsl
=1
()T (1 = O mstey T () — )6

1 t)r 1_t T s s S2 So
( + ) +( ) . _nlslcgklé‘?tzl +772820;]‘§t 2
2 2 4 6
=1—(r;—1)t +§(T1’ — D) (ri+r;=3)t"4+0(t°). (227) + O(min(fts"’_??ftsz7f2t25‘ ). (243)
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On the other hand Moreover, by (235)
h 2 _
insi =fs = scgt2 - ségt4 + O(t%). (244) In(=Int+Inc, + cgc—Cgt2 + O(th). (256)
=1 g
Comparing (243) and (244) we conclude that We will consider several situations.
1
f = 851 1 tsll 2 T {8 (—E) L % i, +f (245) A Casegl Z ’
M151Cq (7)), s2=s+l. By (241), (13), and (14) we find
In particular, ifs; = 2, I
) x1~9~98— (t —0) (257)
£=L+{g(tt)’ Széé (246) dey s
2mey (t), s2=3. T +o(1). (258)
In the cases; = 2 andss = 3, we find a more accurate repre- !
sentation of, This yields
2 3 (2 K2 d K3
5—21g+At+Bt + O(t°). (247) Zl i — i ATy :__1nw1+ 1n771+0( ). (259)
ZT; 51
Comparing (243) and (244), and taking into account (246) we
find Using (255), (256), and (259) we conclude that
3128 s s —4m 93 5 by _ 1 f——sl t+0(1 260
A=-2E2 p=_"[(1 22, - =slnt nt+ O(1). (260)
it 2m < T T g 40 o

(248) By (257) and (260), we have that in the considered sase 3
In the cases; = 2, so = 4, we find a more accurate repre-

sentation of lim = —o0. (261)
6—0 df
§= 27710 +Ct? + O(t%). (249)  This means that the average minimum distance in the considered
_ 7 o ensemble is linear in.
Comparing (243) and (244), and taking into account (246), we
find B. Cases; = 2
o 1 [ séq s2 s1)2C4 (250) Let us consider now the case = 2. Notice that by (240)
= — ~ 5 —_—— — — S5 ].
2c2 - 4m m and (246)
Finally, whensy > 5 x; = O(t%), i>3 (262)
§= 5+ DI+ O(t") (251)  a)s; = 2,55 = 3.
e By (235), (240), (247), and (248)
where o 3
i ) o =22 2223 o) (263)
1 (s¢, s 2 4m
C
g py = g2 BB 065 (264

g
Let b; be the expression under the maximum in (16). Then 2m iyt

by .
a0 = s(Inf — In(1 - 9)) 0=z, + 20+ O@%) = 2242 = 2523 4 O(t*). (265)
1

Therefore,

i EDRES R pY; Furthermore, by (233), (263), and (264)

=1
dey s 9o
j h o des — == — —scgt + O(1?) (266)
—s1nt—%%+21nu”f;f. (253) dd9 3 81
X
i=1 ar2 4’72 scgt + O(12) (267)
The last expression can be simplified: from (150) and (228) it 39 n
follows that ;91 —o(t¥), i>3. (268)
g r;—1 r;—1
<ty (I+t)" it —(1—¢)"
el ) 254) Thus,
b= 521 1+f7“1+(1—t)“ (254)
. . . K3 K2 d K2
Taking into account (254) and (12), we find Zl DiZ Tl -2 ln Lot
- i df 2771
ab} h 1 — x; dT; = 3
F=sn¢+d In=—= R (255) il <2+ln )+O(t21nt). (269)
i=1 i 8771 Micy
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By (255), (259), and (269)

(1]
dby s, 2me,  3stnec < s ) 9
—Z =—In—2 4+ —=2(2+1In + O(t"Int).
g 2 s 81 21y ( ) 2l
(270) 3
Since, by (229) and (265)
9 2 3ny ]
2 2
=Ty 7 271
70 8+2smcgt—|—0(t ) (271)
(5]
then
(6]
db; 2mic, 37
—2 =1 g +-= ZInt). 272
g = In— —|—2mcgt+0(t nt) (272) .
Therefore, i2n;c, < s then% < 0, and there is a linear in 18]
minimum distance. [
Otherwise the derivative is positive.
b) S1 = 2, S9 = 4. [10}
Analogously to the previous case
b [11]
o 2meg 92
—f% =1In g _Z EZcitlnt+ O(t). 273
da s 2 m g ( ) ( ) [12]

It is easy to check that the condition for negativity of the
derivative coincides with the previous case. [

C)Sl = 2,8 > 5.

This case differs from the previous one in constabtof
(252) andC of (250). However, it affects only terms of small
orders, and (273) holds true.

(14]
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