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Distance Distributions in Ensembles of Irregular
Low-Density Parity-Check Codes

Simon Litsyn, Senior Member, IEEE,and Vladimir Shevelev

Abstract—We derive asymptotic expressions for the average dis-
tance distributions in ensembles of irregular low-density parity-
check (LDPC) codes. The ensembles are defined by matrices with
given profiles of column and row sums.

Index Terms—Distance distributions, low-density parity-check
(LDPC) codes.

I. INTRODUCTION

T HE low-density parity-check (LDPC) codes are famous
because of their performance in the vicinity of the Shannon

limit under iterative decoding of modest complexity. However,
this phenomenon is still far from being completely understood.
One of the important parameters helping in analysis of codes’
performance under maximum-likelihood decoding is their dis-
tance distribution. Such estimates are important in analyzing
achievable limits of performance of LDPC codes, and optimiza-
tion of their parameters.

The problem of estimation distance distribution of regular
codes (i.e., codes defined by parity-check matrices with fixed
column and row sums) was addressed in many papers, starting
with the original Gallager’s work [2], see for most general re-
sults [5]. Use of such estimates to bounding performance of
LDPC codes was discussed in [2], [7], [9], [13].

Recently, it was found that irregular LDPC codes (i.e., codes
defined by parity-check matrices with several possible values
of column and row sums) perform better than the regular codes
under iterative decoding [6], [11], [12], [14].

In this paper, we solve the problem of estimation of the
average distance distribution in ensembles of irregular LDPC
codes. This question was addressed independently in [4], where
an implicit expression for such distributions was given. Here
we give an explicit formula describing the average distance
distributions.

The paper is organized as follows. We start by defining the
considered ensemble of irregular codes, and define the average
distance distribution in this ensemble. Then we count the
number of matrices belonging to the ensemble of special shape,
yielding that the defined codes contain the word having ones
on the first positions and zeros on the remaining positions.
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Subsequently, we show how the previous result can be used
for the general problem. Optimization of parameters in the
derived expression accomplishes the proof. We conclude with a
discussion on the number of solutions to a system of equations
appearing in the optimization problem, and provide some
evidence for a conjecture that the system possesses at most
three solutions.

II. ENSEMBLE OFIRREGULAR CODES

We consider the following ensemble of irregular codes
associated with ensemble of parity-check matrices. The
codes are defined by matrices from , and thus have
rate at least . Let , , and
be nonnegative integers independent of

(1)

(2)

Moreover, assume that the numbers for and
for are integral. Let the following intervals of

integer numbers be defined:

(3)

(4)

An matrix belongs to the ensemble
if for every

(5)

and for every

(6)

In other words, we partition the rows of the matrix intostrips,
each of the size . Also, we partition all the columns into

strips, each of size . A matrix belongs to the defined en-
semble if the row sums of the rows belonging to theth (hori-
zontal) strip are , , and the column sums of the
columns in the th (vertical) strip are , .
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Given the parity-check matrix , a word belongs to the
code if , i.e., if all the row sums of the submatrix of
consisting of the columns corresponding to the nonzero places
in are even.

Let be a number in the interval . Given a matrix
, we may find the number of submatrices consisting of

columns of having even row sums. Clearly, it is equal to
the number of codewords of weight in the code defined by
the matrix . Let us define a class of matrices
consisting of all matrices such that the sum of the firstentries
in each row is even.

Given a specific matrix, it seems to be a generally intractable
problem for modestly large sizes of the matrix. However, the
problem becomes simpler if we aim at determining the average
of this number in the ensemble . Let us define

(7)

where

(8)

and is the Hamming weight of vector. Let

(9)

be the natural entropy function.
The main result of the paper is as follows.

Theorem 1: Let , , , be
positive integers, , , , be num-
bers from , such that

and let

(10)

where

Let

(11)

where

(12)

Let a finite discrete set be the set of positive first
components of solutions to the system

(13)

(14)

Then if

(15)

where is the parity function, if is even, and
otherwise, then

(16)

If (15) does not hold then

Note that the system (13), (14) is of polynomial type. There
is numerical evidence that the number of positive solutions to
the system, i.e., the size of, does not exceed. We conjecture
it always to be true. In the generalized regular case (all’s are
equal) we have only one solution.

III. PROOF OFTHEOREM 1

Let us sketch the main steps of the proof of Theorem 1. We
start in Section III-A from considering a subclass of de-
noted in the case when all the horizontal blocks have
equal sizes. Using a technical lemma in Section III-B, we find
the proportion of the matrices from within the class

. The expression for is given in the form of a finite sum
which is logarithmically equivalent to its maximum summand.
Furthermore, in Sections III-C–III-E, we compute the asymp-
totics for (the main obstacle is overcome in Section III-D,
where we solve a system of equations in respect to parameters
corresponding to the maximal summand). In Section III-F, we
establish two lemmas allowing generalization of the obtained
result to the case of arbitrary sizes of horizontal blocks. In Sec-
tion III-G, we find the asymptotics for in the general case. In
Section III-H, we prove the uniqueness of the positive solution
to an equation appearing in the proof. Further, in Section III-I,
we study as a function in a special parameter
depending on . In Section III-J, we maximize the sum of two
components of the distribution, namely,and depending on
partition of within the vertical blocks. This accomplishes the
proof of Theorem 1.

A. Counting Matrices of Given Profile

We start with a lemma allowing estimation of the number of
matrices with given row and column profiles.

Lemma 1: Let be an ensemble of binary matrices

(17)
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(26)

(27)

(28)

such that their row sums , , and column sums
, , satisfy

1) All ’s and ’s are bounded, i.e., there exists a pos-
itive constant bounding from above all the row and
column sums.

2) All column sums are strictly positive. Then

(18)

where means that

Proof: According to a modification [5] for rectangular
matrices of a theorem due to O’Neil [10]

(19)

By (17) and the conditions of the lemma

(20)

and

Thus, the exponent in (19) is between two constants, and .
It is left to prove that tends to infinity with . This easily
follows since by (17) and (20)

B. Counting Matrices From for the Case of Horizontal
Blocks of Equal Sizes

We deal with the ensemble defined in the previous sec-
tion. Consider first the case . The
following balance identity holds:

(21)

Let for a matrix the following extra condition holds:
the sum of the first , , entries in each row is
even. In this case, we write that

The matrix is comprised of horizontal blocks and vertical
blocks, such that the row sums in each horizontal block and
column sums in each vertical block are the same for all the rows
and for all the columns. Givenwe may determine such that

(22)

(in case we assume the left sum to be equal to). Suppose
that among the rows of theth horizontal block there are
rows such that the sum of their first entries equals ,

, is the parity function

is even
otherwise.

The matrix is thus partitioned into two parts, and
, containing correspondingly the first and the last
columns of . Let

be the ensemble of all possible matrices . Analogously, we
define ensemble . The probability that an arbitrary matrix
picked from the ensemble belongs to is

(23)

where the summation is over all , ,
satisfying the following conditions:

(24)

(25)

By (18), we have (26)-(28) at the top of this page, and, finally,
by (23), (24), and (26)–(28) we get the expression (29) at the
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(29)

top of the page, where the summation is over all numbers
satisfying (24) and (25).

Set

(30)

(31)

Evidently

(32)

Furthermore,

(33)

where is the sum from (29).
From (24) and (25), or, in the new notations (30) and (31), the

conditions become

(34)

(35)

Notice that for , the following upper bound is valid for
(and, therefore, by (31), for):

(36)

Indeed, by (34),

Thus, (35) yields the expression at the bottom of the page and
the equality

follows. Thus, only if all ’s are even there is no essential re-
striction on .

Since

then, necessarily

or

(37)

However, by (30) and (21)

(38)

and, finally, (38) and (37) yield (36).
Denote

(39)
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where the maximum is taken over all satisfying (34) and
(35).

Since in (33) contains a number of summands that is
polynomial in , we have

(40)

Moreover, the asymptotics for is calculated under condi-
tions (34), (35).

C. The Basic System of Equations for Computing the
Asymptotics of

By (34) and (35)

(41)

(42)

(43)

Notice that by (34), . Thus, we assume in what fol-
lows that . Therefore, by (43)

(44)

(45)

(46)

By (39) and (34) we get (47) at the bottom of the page.
Equating to zero the partial derivatives in ,

, , of the sum from (47) (deriva-
tives in all but ). From (44) and (46) we find the
following derivatives:

1) in , ,

(48)

2) in ,

(49)

This is the sought system for computing .

D. Solution of the Basic System

We prove in this subsection the following result.

Theorem 2: The system (48)–(49) has the unique solution
given by

(50)

where , , and is the
unique positive root of

(51)

Proof: Plugging into (48), multiplying it by and
subtracting from (48) for arbitrary , we get

(52)

or

(53)

where , .
Analogously, from (49) we get

(54)

where .

(47)
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Notice that (44) and (45) yield

(55)

Moreover, by (46) we can rewrite (48) and (49) (for )
in the following way:

(56)
where

(57)

where , .
Assume as well

(58)

where , .
Substitute into (48), multiply by , and then subtract

the result from (49). We get

(59)

From (59) and (54) for we obtain

(60)

Comparing (60) with (53) we conclude

(61)

In the previously introduced notation we have

(62)

Divide (53) by . By (46) and (57) we have

(63)

Notice that by (54)

(64)
Thus, the right-hand side of (64) is a constant independent of.

Dividing (46) by , by (57) from (56) we find

(65)

However, by (53)

(66)

Now, by (66) and (65) we have

(67)

Therefore, by (64) and (67) we get

(68)
From (55) and (57) it follows that

(69)

On the other hand, by (64) and (68) and taking into account
(57) and (58) we find

(70)

Finally, from (69) and (70) we get

(71)

Taking into account (67) set

(72)
and noticing that this yields

(73)

we find from (63) that

(74)

where .
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Furthermore, by (64) and (58)

(75)

Denote

(76)

By (75) and (58)

(77)

Then, (72), (77), and (62) yield

(78)

and, therefore

(79)

By (71) and (75)

(80)

By (72)

However, by (76) and (78)

and

Multiplying both sides of the last equation by

we obtain

Thus, by (80) we arrive at the following identity:

(81)

Comparing (81) with (74), and using (79), we conclude with
(82) at the bottom of the page. From an easy identity

(83)

and denoting

(84)

we get

(85)

To derive an equation for let us return to the expressions for
, (44) and (68). By (72) and (75)

(86)

(by (77))

(by (78))

Therefore, from (44) multiplied by , (57), (58), and

(86) we have

(87)

(82)



LITSYN AND SHEVELEV: DISTANCE DISTRIBUTIONS IN ENSEMBLES OF IRREGULAR LDPC CODES 3147

or, taking into account (73) and (79), after multiplication by
we obtain

(88)

Notice, that by (83)

(89)

Assuming in (88) , by (89) we have

(90)

Moreover, taking into account (79), after multiplication of
(81) by we get

(91)

or, by (83), and having in mind , we derive

(92)

Dividing (90) by (92) we have

(93)

Let us use (85) for . After multiplication of (93) by
we get

(94)

where .
By (62), (79) for , and (57) we find

(95)

Substitute it into the right-hand side of (94). Solving it for the
double sum we have

(96)

where .
Notice that due to (89) (when ) the left-hand side of

(96) is

(97)

Multiply (96) by , and set

(98)

(99)

(100)

Then (96) can be rewritten in the following way:

(101)

Let us now return to (87). Moving

into the double sum (under assumption ) we have

(102)
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Furthermore, in the left-hand side of (90) the first summand
vanishes. Thus, dividing both parts by we obtain

(103)

Multiply (103) by , and divide the result by (92). We get

(104)

Solving (104) for the double sum and taking into account (95)
and (97) we have

(105)

Multiplying by and using notation from (98) and (99) we
find

(106)

Comparing it with (101) we conclude that

(107)

and thus from (106) it follows that

(108)

Substituting and by their expressions (99) and (100)
we derive the sought equation in

(109)

This equation can be written in an alternative form. From (109)
it follows that

or

Thus,

(110)

By (30) and balance (21) it follows that

(111)

Therefore, we have

(112)

Let us continue the proof of Theorem 2. By (107) and (100)

(113)

From (98) and (113) we get

(114)

where . Therefore, by (95),

(115)

where , . Moreover, by
(58) and (92) it follows that

(116)

Then from (79) and (84) after multiplying by and taking
into account (58) we obtain

(117)

By (116) and (117)

(118)

where .
What is left is to find , and

.
By (86) with (84) and (58)

(119)

By (119) and (116)

(120)

Furthermore, from (34) and (115) for

By (83), when and

and therefore,

(121)
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where . Analogously, from (34), (118), and
(120) we have

(122)

Comparing (115), (118), (120)–(122) we conclude that a uni-
form expression is valid

(123)

where , .
Theorem 2 is proved up to uniqueness of the positive root to

(51). This will be done in Section III-H for a more general case.

E. Calculation of Asymptotics for and

Substituting from (123) into (47) we have (124) at the
bottom of the page. By (83)

(125)

By (89)

(126)

By (124)–(126)

Using (109) we obtain

(127)

or, taking into account (38)

(128)
Then, by (40) and (38)

(129)
Thus, we have the following result.

Theorem 3: If

(130)

then

(131)

where is the unique positive root of (112), otherwise

F. Lemmas of Equivalence and Gluing

To scrutinize the more general case we will need the fol-
lowing lemmas.

Lemma 2: The maximum of the product (39) will not alter if
some of ’s are equal to each other.

Proof: It is easy to check using Stirling approximation.
We omit the details.

The lemma shows that we are allowed to glue blocks with
equal row sums into one common block, andvice versa, split a
block to several blocks having the same row sums.

Lemma 3: Let in a matrix from some of the blocks
have length , . Then
(see (39)) asymptotically does not depend on’s.

(124)
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Proof: It is enough to prove the lemma for two blocks,
one having length , and the second one being of length

. Moreover, assume that all the column sums equal
. Then the product (39) assumes form

(132)

under conditions

(133)

Thus,

(134)

Moreover, by Stirling

(135)

Therefore, by (133) and (134)

while

for a constant .

Thus,

G. Asymptotics of in the General Case of Arbitrary Sizes of
Horizontal Blocks

Now we are ready to accomplish the proof. Consider a more
general (than the previous) case when there arehorizontal
blocks of (perhaps different) lengths

(136)

By Lemma 3, we may assume that all ’s are proportional
to , and

(137)

Using the ”gluing lemma” (Lemma 2) and (112) we arrive at
the following equation in:

(138)

and (111) reduces to

(139)

Thus, Theorem 3 reduces to the following.
Theorem 4: If

(140)

then

(141)

where is the unique positive root of (138), andis defined in
(31); otherwise

H. The Uniqueness of the Positive Solution to (138)

We prove now that (138) always possesses a positive solution,
and, moreover, this solution turns out to be unique. Indeed, set,
for

(142)
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Then

and (138) reduces to

(143)

Let

(144)

and notice that

(145)

Since, by (142), , then

and by (145)

(146)

Then is monotonously increasing from

and up to . However,

if is even
otherwise.

Thus,

Since

the right-hand side of (143) belongs to

This means that (143) always has a unique solution
in the interval , and our claim follows. Moreover, if

then , and if then .
Notice also that from (143) and the fact that monoto-

nously grows it follows that monotonously decreases, and,
therefore, by (142) is monotonously increasing.

I. Study of

In this subsection we establish the following result.

Theorem 5:
1) For , is monotonously decreasing.

2) For even , possesses minimum at ,
which is the absolute minimum if all ’s are even, and is a local
one otherwise.

3) For odd , is not an extremal point, and

(147)

4) The same expression is valid for 2) when not all the sums
are even. Then has at least one local maximum for
.

5) For , all the stationary points of the function
are roots of the equation

(148)

Proof:
1) From the above arguments it follows that the function

is invertible. By (141) we have (149) at the top of the following
page. Notice that by (38), (109) becomes

(150)

From (149) and (150) we find

(151)

Thus, the stationary points of satisfy

(152)

or

(153)

For these points by (150) we have

(154)

The equation has root , which, by (152) corresponds to
. Let us show that to the left from the point (or,

which is the same, ) there are no stationary points of
. Indeed, by (143), for , , and, therefore, by

(142), . Thus,

and (154) is not valid. By (150)

and therefore,
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(149)

By (151)

Thus, monotonously decreases down to the value .
By (141)

(155)

2) and 3) Assume now that . Then, by (143), ,
and . Then

(156)

(157)

By (150), we have

(158)

With the help of (158) we will study in a (small) right
vicinity of (or, in a right vicinity of ).

Set , and notice that

(159)

Therefore, the positivity of the difference in (158) depends on
the positivity of

However, assuming that all ’s are distinct (see the ”gluing
lemma”), we have

(160)

where is the index of the minimum

From (160) it follows that if is even then for belonging to
a small enough right vicinity of , by (150) and (158)

and thus

However, if is odd, for the same values of

In the first case, attains minimum at , and the min-
imum is

(161)

In the second case, continues decreasing in at least small
vicinity of .

Let us show, moreover, that

(162)

i.e., the equality in (36) corresponds to the limit case of .
Indeed, for an odd and tending to infinity

(163)

For even

(164)

Using these relations along with (150), we find

and (162) follows.
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It follows from (162) that if is odd then

(165)

Let us show that

(166)

Notice that for growing

From (141), we find

(167)

By L’Hopital’s rule

(168)
By (138)

(169)

Finally, (167) and (169) yield (166).
4) Using again (158) we will study in a small (left)

vicinity of

or, as it was earlier shown, forbig enough. We have for ,

(170)

For big enough, the expression (170) becomes negative
if among the numbers there is at least one odd
number. If here is even, then for the
increasing of will be necessary changed by decreasing.
Therefore, has at least one local maximum point for

.

5) From (152), (150), and (138) when we have

and (148) follows.

Remark 1: It is easy to see that if is a positive constant,
then

and thus (166) yields that if there is at least one oddand at
least one (indepenedently of its parity) tends to , then

.

J. Computation of the Spectrum

Let us change now the definition of. We assume that we
are choosing the columns in the following way. In theth
vertical block (of size ) we pick the first columns, where

. Here . Clearly

(171)

Set temporarily

(172)

(173)

(174)

(175)

It is clear that

(176)

For this new system, let us calculate. Using (22), (31), for
, and (171)–(176), we obtain

(177)
From (172) we get

(178)

Furthermore

(179)
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Our goal is to compute (see (7) and (8))

(180)

where the sum and the maximum are taken over all
satifying (171).

We will use the following technical trick. Let us introduce a
-ensemble, is a small positive parameter, similar to the initial

one. In the -ensemble, we consider the matrices having the
same distribution of the row sums, but there is an extra zero
column strip (indexed ) of breadth . Set

(181)

Then

Moreover, assume that in theth vertical strip of breadth
all column sums are , , and

(182)

Let the numbers , , be small -perturbations
of the numbers , so that

(183)

(184)

Set

(185)

(186)

Thus, for it follows that

(187)

We also assume existence of the following limit:

(188)

Notice that from (178), (181), and (182) it follows that

(189)

Moreover, analogously to (179) we have

(190)

Equating to zero the partial derivatives in , ,

of the sum , we find

(191)
Denote

(192)

Thus, (191) can be written as

and

(193)

Summing up (193) for we find

(194)

Let us move to the limit when . Then ,
, and, by (188), . Therefore,

(195)

where, by (192)

(196)

Thus, since given by (196) we know , the (195) can be
considered as an equation of degreein one indeterminate.

Consider the following function

where . When grows from to it monotonously
decreases from ( ) down to . Therefore, for any

, the equation

has a unique positive solution. Thus, (195) possesses the only
positive root .

Moving to the limit in (193) we find the sought dis-
tribution of numbers

(197)
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Our goal now is to confirm that the numbers from
(197) deliver maximum to the distance distribution

. Notice, for instance, that in the case
we find from (195) that

and, therefore, from (197) it follows that

(198)

In this case, by (178), , i.e., , and the max-
imum of the distance distribution corresponds to the maximum
of . It is easy to show that the values defined in
(198) indeed provide the maximum of under con-
dition .

Let us consider now the general situation. Let first,be a
point where decreases. Then, by (196), . Since
the maximum of the second summand in the logarithm of the
distance distribution corresponds to , and

decreases, then , from (193), will deliver
the maximum of the distribution only if the corresponding value
of is not greater than. By (178), (197), and (195), this means
that the following inequality:

(199)

is valid in a small vicinity of . To prove this inequality we need
the following lemma.

Lemma 4: Let , be arbitrary real numbers, ,
, and . Then the following equality is

valid:

(200)

Proof: First, compare the coefficients at ,
. On the left-hand side, the coefficient is . On

the right-hand side, the coefficient is

The coefficients of , , are evidently equal (both
in the left- and the right-hand sides).

Set in (200)

(201)

Since , then

(202)

From (202) it follows that all the summands in the right-hand
side of (200) are nonpositive for the values defined by (201).
This proves (199). Notice that the equality in (199) holds only
if .

Let now be a point where increases. Then, the values
of , , defined by (193) deliver maximum to the
distribution only when the corresponding valueis not less than
, that is, it happens when the inequality (199) holds in the op-

posite direction. Let us prove that this indeed holds whenlies
in a close enough vicinity of.

For the values (201), under condition

(203)

By (203), all the summands in the right-hand side of (200) are
nonnegative for the values defined by (201). This proves the
inequality opposite to (199).

Finally, in the stationary points of , , and (199)
becomes an equality which corresponds to

According to (197)

(204)

where, by (195) (it also follows from (204))

This means that for the stationary points of we have

For the derived values of (197), using (179) we find after
simple transformations

(205)
Denote

(206)

Then

(207)

According to (195) and (206)

(208)
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By (197) and (206) we get

(209)

where . Since

then, by (151)

(210)

By (208) and (209) we derive the following system of equa-
tions in and :

(211)

where in (206) is defined by (210), and is defined by
(138)–(139).

Now, by (180), (141), and (207) we obtain (16) from The-
orem 1.

This accomplishes the proof of Theorem 1. Moreover, we ob-
tained the distribution of the numbersdelivering maximum of
the distance distribution component. It is by (197) and (206)

(212)

IV. ON THE SOLUTIONS TO THESYSTEM (13)–(14)

We analyze here the number of solutions to (13) and (14). As
we have mentioned, we conjecture that in the general case the
number of the solutions never exceeds three. In this section, we
provide evidence that the number of solutions can be more than
one.

Assume that

(213)

(214)

By (214), belongs to the interval where is decreasing.
In this case, there exists a maximum in the left vicinity of.
Since corresponds to the maximum of ,
computed under condition , then the value of
delivering the maximum to is . Ac-
cording to (197), the choice of , corresponds to the fol-
lowing approximate equality:

(215)

It means that the expression in (215) is almost independent of
. This is possible only if , , with high accuracy.

Substituting into (13)

(216)

we find

(217)

Now (14) is also satisfied

(218)

Exact equality could be achieved by a small variation ofin the
vicinity of and around .

Let us find now another solution to the system, essentially
distant from the solution. Let be small enough.
Since when

(219)

by (213)

(220)

Therefore, by (220) and (216)

(221)

and

(222)

Furthermore, (14) yields

(223)

Since, when is small enough and , we have for ,
and , then by (221) and (223)

(224)

Notice that for the stationary points of function from (16)
under the maximum

(225)

This means that the stationary point (224) is situated in a small
right vicinity of . The other stationary point which is close
to does not belong to a small vicinity of . Indeed, by (213)

and thus,

(226)
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We will illiustrate the above situation by an example.

Example: Let , ; ;
, , . Thus, we consider a rate

code. We have the following three solutions to (13) and (14), the
first and the third correspond to our considerations. We provide
accuracy of seven digits after the decimal point in the numbers.

1) . This value is on the left of
and corresponds to a local maximum of . The max-
imum equals . Then ,

, (the approximation (217)
gives ).

2) . This value corresponds to the local min-
imum of equal . Here, ,

, . This case corresponds
to an intermediate value of, which still is not far from

.

3) . This value corresponds to the absolute
maximum of , and thus provides the value of.
The maximum equals . Here ,

, .

Notice that in this example , and by (224)

i.e., differs from this value only in the seventh digit after the
decimal point. In this case, , and the approxi-
mation (222) provides for this value .

V. ON THE MINIMUM DISTANCE

In this section, we discuss the minimum distance of codes in
the ensemble of irregular codes. To do this we have to study
the derivative of the average distance distribution in the (right)
vicinity of . Notice that in the case , i.e., when all
the column sums are equal, we have essentially the regular case
considered earlier in [5]. Thus, we assume from now on that

. Let

First, notice that by (13) we have that when then
, . Thus, by (14) it follows that . By

the earlier proved one-to-one correspondence betweenand ,
related by (10), and it follows that . On the contrary,
when , then , and . Therefore, is
equivalent to all tend to zero. In what follows, we need
asymptotics of , etc., when .

We start with as a function in . Notice, that by (10) the
function is even. Standard computation with binomial coeffi-
cients gives

(227)

Using (10) and the balance equation

(228)

we find

(229)

where

(230)

(231)

It is easy to show that

(232)

From (229) it follows that

(233)

Another corollary of (229) is that

(234)

Furthermore

(235)

By (14) we have

(236)

Let us elaborate on (236). We have by (11)

(237)

When

(238)

Indeed, if

then (237) contradicts (236). Therefore, by (235) and (237)

(239)

(240)

and, since , by (235) and (240)

(241)

(242)

Thus, by (240) and (235)

(243)
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On the other hand

(244)

Comparing (243) and (244) we conclude that

(245)

In particular, if ,

(246)

In the case and , we find a more accurate repre-
sentation of ,

(247)

Comparing (243) and (244), and taking into account (246) we
find

(248)
In the case, , , we find a more accurate repre-

sentation of

(249)

Comparing (243) and (244), and taking into account (246), we
find

(250)

Finally, when

(251)

where

(252)

Let be the expression under the maximum in (16). Then

(253)

The last expression can be simplified: from (150) and (228) it
follows that

(254)

Taking into account (254) and (12), we find

(255)

Moreover, by (235)

(256)

We will consider several situations.

A. Case

By (241), (13), and (14) we find

(257)

(258)

This yields

(259)

Using (255), (256), and (259) we conclude that

(260)

By (257) and (260), we have that in the considered case

(261)

This means that the average minimum distance in the considered
ensemble is linear in .

B. Case

Let us consider now the case . Notice that by (240)
and (246)

(262)

a) , .
By (235), (240), (247), and (248)

(263)

(264)

Therefore,

(265)

Furthermore, by (233), (263), and (264)

(266)

(267)

(268)

Thus,

(269)
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By (255), (259), and (269)

(270)
Since, by (229) and (265)

(271)

then

(272)

Therefore, if then , and there is a linear in
minimum distance.

Otherwise the derivative is positive.
b) , .
Analogously to the previous case

(273)

It is easy to check that the condition for negativity of the
derivative coincides with the previous case.

c) , .
This case differs from the previous one in constantsof

(252) and of (250). However, it affects only terms of small
orders, and (273) holds true.
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