TANGENT POWER SUMS AND THEIR APPLICATIONS

Vladimir Shevelev
Dept. of Mathematics, Ben-Gurion University of the Negev, Beersheva, Israel shevelev@bgu.ac.il
Peter J. C. Moses
Moparmatic Company, Astwood Bank, Nr. Redditch, Worcestershire, England
mows@mopar.freeserve.co.uk

Received: 10/3/13, Revised: 6/4/14, Accepted: 10/20/14, Published: 12/8/14

Abstract

For integers m and p, we study the tangent power sums $\sum_{k=1}^{m} \tan ^{2 p} \frac{\pi k}{2 m+1}$. We give recurrence, asymptotic and explicit formulas for these polynomials and indicate their connections with Newman's digit sums in base $2 m$. In particular, for increasing m, we prove a monotonic strengthening of the Moser-Newman digit phenomenon for certain intervals.

1. Introduction

Everywhere below we suppose that $n \geq 1$ is an odd number and p is a positive integer. In the present paper we study tangent power sums of the form

$$
\begin{equation*}
\sigma(n, p)=\sum_{k=1}^{\frac{n-1}{2}} \tan ^{2 p} \frac{\pi k}{n} \tag{1}
\end{equation*}
$$

Shevelev [14] and Hassan [5] independently proved the following statements:
Theorem 1. For every $p, \sigma(n, p)$ is an integer and a multiple of n.
Theorem 2. For fixed $p, \sigma(n, p)$ is a polynomial in n of degree $2 p$ with the leading term

$$
\begin{equation*}
\frac{2^{2 p-1}\left(2^{2 p}-1\right)}{(2 p)!}\left|B_{2 p}\right| n^{2 p} \tag{2}
\end{equation*}
$$

where $B_{2 p}$ is a Bernoulli number.
Hassan [5] proved these results (see his Theorem 4.3 and formula 4.19) using a sampling theorem associated with second-order discrete eigenvalue problems.

Shevelev's proof [14] (see his Remarks 1 and 2) used some elementary arguments including the well-known Littlewood expression for the power sums of elementary polynomials in a determinant form [6].

In this paper we give another proof of these two theorems. In addition, we find several other representations, numerical results, and identities involving $\sigma(n, p)$. We give digit theory applications of $\sigma(n, p)$ in Section 5 ; and in Section 7, using the digit interpretation and a combinatorial idea, we find an explicit expression for $\sigma(n, p)$ (Theorem 7).

2. Proof of Theorem 1

Proof. Let $\omega=e^{\frac{2 \pi i}{n}}$. Note that

$$
\begin{equation*}
\tan \frac{\pi k}{n}=i \frac{1-\omega^{k}}{1+\omega^{k}}=-i \frac{1-\omega^{-k}}{1+\omega^{-k}}, \quad \tan ^{2} \frac{\pi k}{n}=\frac{1-\omega^{-k}}{1+\omega^{k}} \frac{1-\omega^{k}}{1+\omega^{-k}} \tag{3}
\end{equation*}
$$

For the factors of $\tan ^{2} \frac{\pi k}{n}$ we have

$$
\begin{equation*}
\frac{1-\omega^{-k}}{1+\omega^{k}}=\frac{\left(-\omega^{k}\right)^{n-1}-1}{\left(-\omega^{k}\right)-1}=\sum_{j=0}^{n-2}\left(-\omega^{k}\right)^{j}, \frac{1-\omega^{k}}{1+\omega^{-k}}=\sum_{j=0}^{n-2}\left(-\omega^{-k}\right)^{j} \tag{4}
\end{equation*}
$$

Since $\tan \frac{\pi k}{n}=-\tan \frac{\pi(n-k)}{n}$, we have

$$
\begin{equation*}
2 \sigma(n, p)=\sum_{k=1}^{n-1} \tan ^{2 p} \frac{\pi k}{n} \tag{5}
\end{equation*}
$$

and by (3)-(5),

$$
\begin{align*}
& 2 \sigma(n, p)=\sum_{k=1}^{n-1}\left(\sum_{j=0}^{n-2}\left(-\omega^{k}\right)^{j}\right)^{p}\left(\sum_{j=0}^{n-2}\left(-\omega^{-k}\right)^{j}\right)^{p}= \\
& \sum_{k=1}^{n-1}\left(\prod_{l=0}^{p-1} \sum_{j=0}^{n-2}\left(-\omega^{k}\right)^{j} \prod_{l=0}^{p-1} \sum_{j=0}^{n-2}\left(-\omega^{-k}\right)^{j}\right)= \\
& =\sum_{k=1}^{n-1}\left(\prod_{t=0}^{2 p-1} \sum_{j=0}^{n-2}\left(-\omega^{(-1)^{t} k}\right)^{j}\right) . \tag{6}
\end{align*}
$$

Furthermore, we note that

$$
\begin{equation*}
(n-1)^{t} \equiv(-1)^{t} \quad(\bmod n) \tag{7}
\end{equation*}
$$

Indeed, (7) is evident for odd t. If t is even and $t=2^{h} s$ with odd s, then

$$
\begin{gathered}
(n-1)^{t}-(-1)^{t}=\left((n-1)^{s}\right)^{2^{h}}-\left((-1)^{s}\right)^{2^{h}}= \\
\left((n-1)^{s}-(-1)^{s}\right)\left((n-1)^{s}+(-1)^{s}\right)\left((n-1)^{2 s}+\right. \\
\left.(-1)^{2 s}\right) \cdot \ldots \cdot\left((n-1)^{2^{h-1} s}+(-1)^{2^{h-1} s}\right)
\end{gathered}
$$

and, since $(n-1)^{s}+1 \equiv 0(\bmod n)$, we are done. Using (7), we can write (6) in the form (summing from $k=0$, adding the zero summand)

$$
\begin{equation*}
2 \sigma(n, p)=\sum_{k=0}^{n-1} \prod_{t=0}^{2 p-1}\left(1-\omega^{k(n-1)^{t}}+\omega^{2 k(n-1)^{t}}-\ldots-\omega^{(n-2) k(n-1)^{t}}\right) \tag{8}
\end{equation*}
$$

Considering $0,1,2, \ldots, n-2$ as digits in base $n-1$, after the multiplication of the factors of the product in (8) we obtain summands of the form $(-1)^{(r)} \omega^{k r}, \quad r=$ $0, \ldots,(n-1)^{2 p}-1$, where $s(r)$ is the digit sum of r in base $n-1$. Thus we have

$$
\begin{equation*}
2 \sigma(n, p)=\sum_{k=0}^{n-1} \sum_{r=0}^{(n-1)^{2 p}-1}(-1)^{s(r)} \omega^{k r}=\sum_{r=0}^{(n-1)^{2 p}-1}(-1)^{s(r)} \sum_{k=0}^{n-1}\left(\omega^{k}\right)^{r} \tag{9}
\end{equation*}
$$

However,

$$
\sum_{k=0}^{n-1}\left(\omega^{k}\right)^{r}=\left\{\begin{array}{l}
n, \text { if } r \equiv 0 \quad(\bmod n) \\
0, \text { otherwise }
\end{array}\right.
$$

Therefore, by (9),

$$
\begin{equation*}
2 \sigma(n, p)=n \sum_{r=0, n \mid r}^{(n-1)^{2 p}-1}(-1)^{s(r)} \tag{10}
\end{equation*}
$$

and, consequently, $2 \sigma(n, p)$ is an integer multiple of n. It remains to show that the right-hand side of (10) is even. It is sufficient to show that the sum contains an even number of summands. The number of summands is

$$
\begin{aligned}
1+\left\lfloor\frac{(n-1)^{2 p}}{n}\right\rfloor & =1+\frac{(n-1)^{2 p}-1}{n}= \\
1+\sum_{l=0}^{2 p-1}(-1)^{l}\binom{2 p}{l} n^{2 p-1-l} & \equiv 1+\sum_{l=0}^{2 p-1}(-1)^{l}\binom{2 p}{l} \quad(\bmod 2) .
\end{aligned}
$$

But

$$
1+\sum_{l=0}^{2 p-1}(-1)^{l}\binom{2 p}{l}=1-(-1)^{2 p}\binom{2 p}{2 p}=0
$$

This completes the proof of the theorem.

3. Proof of Theorem 2

Proof. We start with a construction similar to the one found in [16]. As is wellknown,

$$
\sin n \alpha=\sum_{i=0}^{\frac{n-1}{2}}(-1)^{i}\binom{n}{2 i+1} \cos ^{n-(2 i+1)} \alpha \sin ^{2 i+1} \alpha
$$

or

$$
\sin n \alpha=\tan \alpha \cos ^{n} \alpha \sum_{i=0}^{\frac{n-1}{2}}(-1)^{i}\binom{n}{2 i+1} \tan ^{2 i} \alpha
$$

Let $\alpha=\frac{k \pi}{n}, k=1,2, \ldots, \frac{n-1}{2}$. Since $\tan \alpha \neq 0, \cos \alpha \neq 0$, then

$$
\begin{gathered}
0=\sum_{i=0}^{\frac{n-1}{2}}(-1)^{i}\binom{n}{2 i+1} \tan ^{2 i} \alpha= \\
(-1)^{\frac{n-1}{2}}\left(\tan ^{n-1} \alpha-\binom{n}{n-2} \tan ^{n-3} \alpha+\ldots-\right. \\
\left.(-1)^{\frac{n-1}{2}}\binom{n}{3} \tan ^{2} \alpha+(-1)^{\frac{n-1}{2}}\binom{n}{1}\right) .
\end{gathered}
$$

This means that the equation

$$
\begin{equation*}
\lambda^{\frac{n-1}{2}}-\binom{n}{2} \lambda^{\frac{n-3}{2}}+\binom{n}{4} \lambda^{\frac{n-5}{2}}-\ldots+(-1)^{\frac{n-1}{2}}\binom{n}{n-1}=0 \tag{11}
\end{equation*}
$$

has $\frac{n-1}{2}$ roots: $\lambda_{k}=\tan ^{2} \frac{k \pi}{n}, k=1,2, \ldots, \frac{n-1}{2}$. Note that (11) is the characteristic equation for the difference equation

$$
\begin{align*}
y(p)= & \binom{n}{2} y(p-1)-\binom{n}{4} y(p-2)+\ldots- \\
& (-1)^{\frac{n-1}{2}}\binom{n}{n-1} y\left(p-\frac{n-1}{2}\right) \tag{12}
\end{align*}
$$

which, consequently, has a closed solution

$$
y(p)=\sum_{k=1}^{\frac{n-1}{2}}\left(\tan ^{2} \frac{k \pi}{n}\right)^{p}=\sigma(n, p)
$$

Now, using Newton's formulas for equation (11),

$$
\sigma(n, 1)=\binom{n}{2}
$$

$$
\begin{gather*}
\sigma(n, 2)=\binom{n}{2} \sigma(n, 1)-2\binom{n}{4} \\
\sigma(n, 3)=\binom{n}{2} \sigma(n, 2)-\binom{n}{4} \sigma(n, 1)+3\binom{n}{6}, \text { etc. } \tag{13}
\end{gather*}
$$

We conclude that $\sigma(n, p)$ is a polynomial in n of degree $2 p$. Note that, by induction, all these polynomials are integer-valued and thus we have another independent proof of Theorem 1. To find the leading terms of these polynomials, we carry out some transformations of (1). Let $m=\frac{n-1}{2}$ and $l=m-k$. Changing the order of the summands in (1), and noting that

$$
\frac{(m-l) \pi}{2 m+1}+\frac{(2 l+1) \pi}{4 m+2}=\frac{\pi}{2}
$$

we have

$$
\begin{equation*}
\sigma(n, p)=\sum_{l=0}^{m-1} \cot ^{2 p} \frac{(2 l+1) \pi}{4 m+2} \tag{14}
\end{equation*}
$$

Further, we have

$$
\begin{gather*}
\sigma(n, p)=\sum_{0 \leq l \leq \sqrt{m}} \cot ^{2 p} \frac{(2 l+1) \pi}{4 m+2}+ \\
\sum_{\sqrt{m}<l \leq m-1} \cot ^{2 p} \frac{(2 l+1) \pi}{4 m+2}=\Sigma_{1}+\Sigma_{2} \tag{15}
\end{gather*}
$$

Let $p>1$. Let us estimate the second sum Σ_{2}. The convexity of $\sin x$ on $\left[0, \frac{\pi}{2}\right]$ gives the inequality $\sin x \geq \frac{2}{\pi} x$. Therefore, for summands in the second sum, we have

$$
\begin{gathered}
\cot ^{2 p} \frac{(2 l+1) \pi}{4 m+2}<\sin ^{-2 p} \frac{(2 l+1) \pi}{4 m+2}< \\
\left(\frac{2 m+1}{2 l+1}\right)^{2 p}<\left(\frac{2 m+1}{2 \sqrt{m}+1}\right)^{2 p}<m^{p}
\end{gathered}
$$

This means that $\Sigma_{2}<m^{p+1}<m^{2 p}$ and has no influence on the leading term. Note that

$$
\frac{(2 l+1) \pi}{4 m+2} \cot \frac{(2 l+1) \pi}{4 m+2} \rightarrow 1
$$

uniformly over $l \leq \sqrt{m}$. Thus

$$
\begin{gathered}
\Sigma_{1}=\sum_{0 \leq l \leq \sqrt{m}}\left(\frac{(4 m+2)}{(2 l+1) \pi}\right)^{2 p}+\alpha(m)= \\
\left(\frac{(4 m+2)}{\pi}\right)^{2 p} \sum_{0 \leq l \leq \sqrt{m}} \frac{1}{(2 l+1)^{2 p}}+\alpha(m)
\end{gathered}
$$

where $\alpha(m) \leq \varepsilon \sqrt{m}$. Thus the coefficient of the leading term of the polynomial $\sigma(n, p)$ is

$$
\begin{gathered}
\lim _{m \rightarrow \infty} \frac{\Sigma_{1}}{n^{2 p}}=\left(\frac{2}{\pi}\right)^{2 p} \sum_{l=0}^{\infty} \frac{1}{(2 l+1)^{2 p}}= \\
\left(\frac{2}{\pi}\right)^{2 p}\left(\zeta(2 p)-\sum_{l=1}^{\infty} \frac{1}{(2 l)^{2 p}}\right)= \\
\left(\frac{2}{\pi}\right)^{2 p}\left(\zeta(2 p)-\frac{1}{2^{2 p}} \zeta(2 p)\right)=\frac{2^{p}\left(2^{2 p}-1\right)}{\pi^{2 p}} \zeta(2 p) .
\end{gathered}
$$

It is left to note that, using $\zeta(2 p)=\frac{\left|B_{2 p}\right| 2^{2 p-1} \pi^{2 p}}{(2 p)!}$, we have that the leading coefficient is defined by (2).

4. Several Numerical Results

In 2002, Chen [1], using generating functions, presented a rather complicated method for finding formulas for $\sigma(n, p)$ for every positive p . Similar results appeared in Chu [2]. However, using Newton's formulas (13) for equation (11), we can effectively find the required formulas in a polynomial form. From $(1), \sigma(1, p)=0$, so $\sigma(n, p) \equiv 0$ $(\bmod n(n-1))$. Let

$$
\sigma^{*}(n, p)=2 \sigma(n, p) /(n(n-1))
$$

By (13), the first polynomials $\left\{\sigma^{*}(n, p)\right\}$ are

$$
\begin{gathered}
\sigma^{*}(n, 1)=1, \\
\sigma^{*}(n, 2)=\frac{n^{2}+n}{3}-1, \\
\sigma^{*}(n, 3)=\frac{2\left(n^{2}+n\right)\left(n^{2}-4\right)}{15}+1, \\
\sigma^{*}(n, 4)=\frac{\left(n^{2}+n\right)\left(17 n^{4}-95 n^{2}+213\right)}{315}-1, \\
\sigma^{*}(n, 5)=\frac{2\left(n^{2}+n\right)\left(n^{2}-4\right)\left(31 n^{4}-100 n^{2}+279\right)}{2835}+1 .
\end{gathered}
$$

It is well-known (cf. Problem 85 in [9]) that integer-valued polynomials have integer coefficients in the binomial basis $\left\{\binom{n}{k}\right\}$. The first integer-valued polynomials $\{\sigma(n, p)\}$ represented in the binomial basis have the form

$$
\sigma(n, 1)=\binom{n}{2}
$$

$$
\begin{gathered}
\sigma(n, 2)=\binom{n}{2}+6\binom{n}{3}+4\binom{n}{4} \\
\sigma(n, 3)=\binom{n}{2}+24\binom{n}{3}+96\binom{n}{4}+120\binom{n}{5}+48\binom{n}{6} \\
\sigma(n, 4)=\binom{n}{2}+78\binom{n}{3}+836\binom{n}{4}+3080\binom{n}{5}+5040\binom{n}{6}+3808\binom{n}{7}+1088\binom{n}{8} .
\end{gathered}
$$

Note that the recursion (12) presupposes a fixed n. In general, by (12), we have

$$
\begin{gather*}
\sigma(n, p)=\binom{n}{2} \sigma(n, p-1)-\binom{n}{4} \sigma(n, p-2)+\ldots- \\
(-1)^{\frac{n-1}{2}}\binom{n}{n-1} \sigma\left(n, p-\frac{n-1}{2}\right), p \geq \frac{n-1}{2} \tag{16}
\end{gather*}
$$

From (1), $\sigma(n, 0)=\frac{n-1}{2}, n=3,5, \ldots$, and then by (13) we have the recursions

$$
\begin{gathered}
\sigma(3, p)=3 \sigma(3, p-1), p \geq 1, \sigma(3,0)=1 \\
\sigma(5, p)=10 \sigma(5, p-1)-5 \sigma(5, p-2), p \geq 2, \sigma(5,0)=2, \sigma(5,1)=10 \\
\sigma(7, p)=21 \sigma(7, p-1)-35 \sigma(7, p-2)+7 \sigma(7, p-3), p \geq 3 \\
\sigma(7,0)=3, \sigma(7,1)=21, \sigma(7,2)=371 \\
\sigma(9, p)=36 \sigma(9, p-1)-126 \sigma(9, p-2)+84 \sigma(9, p-3)-9 \sigma(9, p-4), p \geq 4, \\
\sigma(9,0)=4, \sigma(9,1)=36, \sigma(9,2)=1044, \sigma(9,3)=33300 ; \text { etc. }
\end{gathered}
$$

Thus

$$
\begin{equation*}
\sigma(3, p)=3^{p} \tag{17}
\end{equation*}
$$

and a few terms of the other sequences $\{\sigma(n, p)\}$ are

$$
\begin{gathered}
n=5) \quad 2,10,90,850,8050,76250,722250,6841250,64801250 \\
613806250,5814056250, \ldots ; \\
n=7) \quad 3,21,371,7077,135779,2606261,50028755,960335173 \\
18434276035,353858266965,6792546291251, \ldots \\
n=9) \quad 4,36,1044,33300,1070244,34420356,1107069876 \\
35607151476,1145248326468,36835122753252, \ldots \\
n=11) \quad 5,55,2365,113311,5476405,264893255,12813875437, \\
619859803695,29985188632421,1450508002869079, \ldots
\end{gathered}
$$

5. Applications to Digit Theory

For $x \in \mathbb{N}$ and odd $n \geq 3$, let $S_{n}(x)$ be the sum

$$
\begin{equation*}
S_{n}(x)=\sum_{0 \leq r<x:} \sum_{r \equiv 0}(-1)^{s_{n-1}(r)} \tag{18}
\end{equation*}
$$

where $s_{n-1}(r)$ is the digit sum of r in base $n-1$. Note that $S_{3}(x)$ equals the difference between the numbers of multiples of 3 with even and odd binary digit sums (or multiples of 3 from sequences A001969 and A000069 in [15]) in the interval $[0, x)$.

Moser (cf. [8], Introduction) conjectured that

$$
\begin{equation*}
S_{3}(x)>0 . \tag{19}
\end{equation*}
$$

Newman [8] proved this conjecture. Moreover, he obtained the inequalities

$$
\begin{equation*}
\frac{1}{20}<S_{3}(x) x^{-\lambda}<5 \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{\ln 3}{\ln 4}=0.792481 \ldots \tag{21}
\end{equation*}
$$

In connection with Newman's remarkable results, we will call the qualitative result (19) a "weak Newman phenomenon" (or "Moser-Newman phenomenon"), while an estimating result of the form (20) will be called a "strong Newman phenomenon."

In 1983, Coquet [3] studied a very complicated continuous and nowhere differentiable fractal function $F(x)$ with period 1 for which

$$
\begin{equation*}
S_{3}(3 x)=x^{\lambda} F\left(\frac{\ln x}{\ln 4}\right)+\frac{\eta(x)}{3} \tag{22}
\end{equation*}
$$

where

$$
\eta(x)=\left\{\begin{array}{l}
0, \text { if } x \text { is even } \tag{23}\\
(-1)^{s_{2}(3 x-1)}, \text { if } x \text { is odd }
\end{array}\right.
$$

He obtained

$$
\begin{gather*}
\limsup _{x \rightarrow \infty, x \in \mathbb{N}} S_{3}(3 x) x^{-\lambda}=\frac{55}{3}\left(\frac{3}{65}\right)^{\lambda}=1.601958421 \ldots, \tag{24}\\
\liminf _{x \rightarrow \infty, x \in \mathbb{N}} S_{3}(3 x) x^{-\lambda}=\frac{2 \sqrt{3}}{3}=1.154700538 \ldots \tag{25}
\end{gather*}
$$

In 2007, Shevelev [13] gave an elementary proof of Coquet's formulas (24)-(25) and gave sharp estimates in the form

$$
\begin{equation*}
\frac{2 \sqrt{3}}{3} x^{\lambda} \leq S_{3}(3 x) \leq \frac{55}{3}\left(\frac{3}{65}\right)^{\lambda} x^{\lambda}, x \in \mathbb{N} \tag{26}
\end{equation*}
$$

Shevelev also showed that the sequence $\left\{(-1)^{s_{2}(n)}\left(S_{3}(n)-3 S_{3}(\lfloor n / 4\rfloor)\right)\right\}$ is periodic with period 24 , taking the values $-2,-1,0,1,2$. This gives a simple recursion for $S_{3}(n)$. In 2008, Drmota and Stoll [4] proved a generalized weak Newman phenomenon, showing that (19) is valid for the sum (18) for all $n \geq 3$, at least beginning with $x \geq x_{0}(n)$. Our proof of Theorem 1 allows us to treat a strong form of this generalization, but only in "full" intervals with even base $n-1$ of the form $\left[0,(n-1)^{2 p}\right)$ (see also the preprint of Shevelev [14]).

Theorem 3. For $x_{n, p}=(n-1)^{2 p}, p \geq 1$, we have

$$
\begin{equation*}
S_{n}\left(x_{n, p}\right) \sim \frac{2}{n} x_{n, p}^{\lambda}, \quad \sigma(n, p) \sim x_{n, p}^{\lambda}(p \rightarrow \infty) \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\lambda_{n}=\frac{\ln \cot \left(\frac{\pi}{2 n}\right)}{\ln (n-1)} \tag{28}
\end{equation*}
$$

Proof. Employing (10) and (18), we have

$$
\begin{equation*}
S_{n}\left(x_{n, p}\right)=\frac{2}{n} \sigma(n, p), p \geq 1 \tag{29}
\end{equation*}
$$

Thus, choosing the maximum exponent in (1) as $p \rightarrow \infty$, we find

$$
\begin{gather*}
S_{n}\left(x_{n, p}\right) \sim \frac{2}{n} \tan ^{2 p} \frac{(n-1) \pi}{2 n}= \\
\frac{2}{n} \cot ^{2 p} \frac{\pi}{2 n}=\exp \left(\ln \frac{2}{n}+2 p \ln \cot \frac{\pi}{2 n}\right)= \\
\exp \left(\ln \frac{2}{n}+2 p \lambda \ln (n-1)\right)=\exp \left(\ln \frac{2}{n}+\ln x_{n, p}^{\lambda}\right)=\frac{2}{n} x_{n, p}^{\lambda} . \tag{30}
\end{gather*}
$$

In particular, in the cases of $n=3,5,7,9,11$, we have $\lambda_{3}=\frac{\ln 3}{\ln 4}=0.79248125 \ldots$, $\lambda_{5}=0.81092244 \ldots, \lambda_{7}=0.82452046 \ldots, \lambda_{9}=0.83455828 \ldots, \lambda_{11}=0.84230667 \ldots$, respectively.

To show that

$$
\begin{equation*}
1-\frac{\ln \frac{\pi}{2}}{\ln (n-1)} \leq \lambda_{n} \leq 1-\frac{\ln \frac{\pi}{2}}{\ln (n-1)}+\frac{1}{(n-1) \ln (n-1)} \tag{31}
\end{equation*}
$$

we note the convexity of $\cos x$ on $\left[0, \frac{\pi}{2}\right], \cos x \geq 1-\frac{2}{\pi} x$, and therefore $\cos \frac{\pi}{2 n} \geq 1-\frac{1}{n}$. Noting that $\tan \frac{\pi}{2 n} \geq \frac{\pi}{2 n} \geq \sin \frac{\pi}{2 n}$, we have

$$
\frac{2}{\pi}(n-1) \leq \cot \frac{\pi}{2 n} \leq \frac{2}{\pi} n
$$

and, by (28),

$$
1-\frac{\ln \frac{\pi}{2}}{\ln (n-1)} \leq \lambda_{n} \leq 1-\frac{\ln \frac{\pi}{2}}{\ln (n-1)}+\frac{\ln \left(1+\frac{1}{n-1}\right)}{\ln (n-1)}
$$

which yields (31), since, for $n \geq 3, \ln \left(1+\frac{1}{n-1}\right)<\frac{1}{n-1}$. Finally, let us show that λ_{n} is monotonic increasing. For $f(x)=\frac{\ln \cot \left(\frac{\pi}{2 x}\right)}{\ln (x-1)}$, we have

$$
\begin{equation*}
\ln (x-1) f^{\prime}(x)=\frac{\pi}{x^{2} \sin \frac{\pi}{x}}-\frac{f(x)}{x-1} \tag{32}
\end{equation*}
$$

As in (31), we also have

$$
\begin{equation*}
f(x) \leq 1-\frac{\ln \frac{\pi}{2}}{\ln (x-1)}+\frac{1}{(x-1) \ln (x-1)} \tag{33}
\end{equation*}
$$

On the other hand, since $\sin \frac{\pi}{x} \leq \frac{\pi}{x}$, then

$$
\frac{\pi(x-1)}{x^{2} \sin \frac{\pi}{x}} \geq 1-\frac{1}{x}
$$

and, by (32), in order to show that $f^{\prime}(x)>0$, it is sufficient to prove that $f(x)<$ $1-\frac{1}{x}$, or, by (33), to show that

$$
1-\frac{\ln \frac{\pi}{2}}{\ln (x-1)}+\frac{1}{(x-1) \ln (x-1)}<1-\frac{1}{x}
$$

or

$$
\frac{\ln (x-1)}{x}+\frac{1}{x-1}<\ln \frac{\pi}{2} .
$$

This inequality holds for $x \geq 7$, and since $\lambda_{3}<\lambda_{5}<\lambda_{7}$, then the monotonicity of λ_{n} follows. Thus we have the monotonic strengthening of the strong form of a Newman-like phenomenon for base $n-1$ in the intervals considered.

6. An Identity

Since (29) was proved for $x_{n, p}=(n-1)^{2 p}, p \geq 1$, then by (16), for $S_{n}\left(x_{n, p}\right)$ in the case $p \geq \frac{n+1}{2}$, we have the relations

$$
\begin{aligned}
\sum_{k=0}^{\frac{n-1}{2}}(-1)^{k}\binom{n}{2 k} \sigma(n, p-k) & = \\
\sum_{k=0}^{\frac{n-1}{2}}(-1)^{k}\binom{n}{2 k} S_{n}\left((n-1)^{2 p-2 k}\right) & =0 .
\end{aligned}
$$

When $p=\frac{n-1}{2}$, the latter relation does not hold. Let us show that in this case, we have the identity

$$
\sum_{k=0}^{\frac{n-1}{2}}(-1)^{k}\binom{n}{2 k} S_{n}\left((n-1)^{n-2 k-1}\right)=(-1)^{n}
$$

or, putting $n-2 k-1=2 j$, the identity

$$
\begin{equation*}
\sum_{j=0}^{\frac{n-1}{2}}(-1)^{j}\binom{n}{2 j+1} S_{n}\left((n-1)^{2 j}\right)=1 \tag{34}
\end{equation*}
$$

Indeed, when $j=0$ we have $S_{n}(1)=1$, while by (29), for $p=0$, we obtain

$$
S_{n}(1)=\frac{2}{n} \sigma(n, 0)=\frac{2}{n} \frac{n-1}{2}=\frac{n-1}{n}
$$

i.e., the error is $-\frac{1}{n}$, and the error in the corresponding sum is $n\left(-\frac{1}{n}\right)=-1$. Therefore, in the latter formula, instead of 0 , we have 1 . Note that (34) can be written in the form

$$
\sum_{j=1}^{\frac{n-1}{2}}(-1)^{j-1}\binom{n}{2 j+1} \sigma(n, j)=\binom{n}{2}
$$

7. Explicit Combinatorial Representation

The representation (29) allows us to find an explicit combinatorial representation for $\sigma(n, p)$. We need three lemmas.

Lemma 4. ([11], p. 215) The number of compositions $C(m, n, s)$ of m with n positive parts not exceeding s is given by

$$
\begin{equation*}
C(m, n, s)=\sum_{j=0}^{\min \left(n,\left\lfloor\frac{m-n}{s}\right\rfloor\right)}(-1)^{j}\binom{n}{j}\binom{m-s j-1}{n-1} \tag{35}
\end{equation*}
$$

Since $C(m, n, 1)=\delta_{m, n}$ (Kronecker delta), then we have the identity

$$
\begin{equation*}
\sum_{j=0}^{\min (n, m-n)}(-1)^{j}\binom{n}{j}\binom{m-j-1}{n-1}=\delta_{m, n} \tag{36}
\end{equation*}
$$

Lemma 5. The number of compositions $C_{0}(m, n, s)$ of m with n nonnegative parts not exceeding s is given by

$$
C_{0}(m, n, s)=\left\{\begin{array}{l}
C(m+n, n, s+1), \text { if } m \geq n \geq 1, s \geq 2 \tag{37}\\
\sum_{\nu=1}^{m} C(m, \nu, s)\binom{n}{n-\nu}, \text { if } 1 \leq m<n, s \geq 2 \\
1, \text { if } m=0, n \geq 1, s \geq 0 \\
0, \text { if } m>n \geq 1, s=1, \\
\binom{n}{m}, \text { if } 1 \leq m \leq n, s=1
\end{array}\right.
$$

Proof. First, let $s \geq 2, m \geq n \geq 1$. Decrease by 1 every part of a composition of $m+n$ with n positive parts not exceeding $s+1$. Then we obtain a composition of m with n nonnegative parts not exceeding s such that zero parts are allowed. Second, let $s \geq 2,1 \leq m<n$. Consider $C(m, \nu, s)$ compositions of m with $\nu \leq m$ parts. To obtain n parts, consider $n-\nu$ zero parts, which we choose in $\binom{n}{n-\nu}$ ways. Summing over $1 \leq \nu \leq m$ gives the required result. The other cases follow.

Now let $(n-1)^{h} \leq N<(n-1)^{h+1}, n \geq 3$. Consider the representation of N in base $n-1$:

$$
N=g_{h}(n-1)^{h}+\ldots+g_{1}(n-1)+g_{0}
$$

where $g_{i}=g_{i}(N), i=0, \ldots, h$, are the digits of $N, 0 \leq g_{i} \leq n-2$. Let

$$
s^{e}(N)=\sum_{i \text { is even }} g_{i}, s^{o}(N)=\sum_{i \text { is odd }} g_{i} .
$$

Lemma 6. N is a multiple of n if and only if $s^{o}(N) \equiv s^{e}(N)(\bmod n)$.
Proof. The lemma follows from the relation $(n-1)^{i} \equiv(-1)^{i}(\bmod n), i \geq 0$.
Now we obtain an explicit combinatorial formula for $\sigma(n, p)$.
Theorem 7. For $n \geq 3, p \geq 1$, we have

$$
\begin{gather*}
\sigma(n, p)=\frac{n}{2} \sum_{j=0}^{(n-2) p}\left(\left(C_{0}(j, p, n-2)\right)^{2}+\right. \\
\left.2 \sum_{k=1}^{\left\lfloor\frac{(n-2) p-j}{n}\right\rfloor}(-1)^{k} C_{0}(j, p, n-2) C_{0}(j+n k, p, n-2)\right), \tag{38}
\end{gather*}
$$

where $C_{0}(m, n, s)$ is defined by (37).
Proof. Consider all nonnegative integers N not exceeding $(n-1)^{2 p}-1$ that have $2 p$ digits $g_{i}(N)$ in base $n-1$ (leading zeroes are allowed). Let the sum of the digits of N in the even p positions be j, while for the odd p positions, let the sum be $j+k n$
where k is a positive integer. Then, by Lemma 6 , such N are multiples of n. Since in base $n-1$ the digits do not exceed $n-2$, then the number of ways to choose such N, for $k=0$, is $\left(C_{0}(j, p, n-2)\right)^{2}$. In case $k \geq 1$, we should also consider the symmetric case when in the odd p positions the sum of the digits of N is j, while over the even p positions, the sum is $j+k n$ with a positive integer k. For $k \geq 1$ this gives $2 C_{0}(j, p, n-2) C_{0}(j+k n, p, n-2)$ required N. Furthermore, since n is odd, then if k is odd, $s_{n-1}(N)$ is also odd. If k is even, then $s_{n-1}(N)$ is even. Thus the difference, $S_{n}\left((n-1)^{2 p}\right)$, between n-multiple N s with even and odd digit sums is

$$
\begin{gathered}
S_{n}\left((n-1)^{2 p}\right)=\sum_{j}\left(\left(C_{0}(j, p, n-2)\right)^{2}+\right. \\
\left.2 \sum_{k}(-1)^{k} C_{0}(j, p, n-2) C_{0}(j+n k, p, n-2)\right) .
\end{gathered}
$$

Now to obtain (38), note that $0 \leq j \leq(n-2) p$, and for $k \geq 1, j+n k \leq(n-2) p$, so that $1 \leq k \leq \frac{(n-2) p-j}{n}$, and that by $(29), \sigma(n, p)=\frac{n}{2} S_{n}\left((n-1)^{2 p}\right)$.
Example 8. Let $n=5, p=2$. By Theorem 7, we have

$$
\begin{gather*}
\sigma(5,2)=2.5 \sum_{j=0}^{6}\left(\left(C_{0}(j, 2,3)\right)^{2}+\right. \\
\left.2 \sum_{k=1}^{\left\lfloor\frac{6-j}{3}\right\rfloor}(-1)^{k} C_{0}(j, 2,3) C_{0}(j+5 k, 2,3)\right) . \tag{39}
\end{gather*}
$$

We have

$$
\begin{gathered}
C_{0}(0,2,3)=1, C_{0}(1,2,3)=2, C_{0}(2,2,3)=3 \\
C_{0}(3,2,3)=4, C_{0}(4,2,3)=3, C_{0}(5,2,3)=2, C_{0}(6,2,3)=1
\end{gathered}
$$

Thus

$$
\sum_{j=0}^{6}\left(\left(C_{0}(j, 2,3)\right)^{2}=44\right.
$$

In the cases $j=0, k=1$ and $j=1, k=1$ we have

$$
C_{0}(0,2,3) C_{0}(5,2,3)=2, C_{0}(1,2,3) C_{0}(6,2,3)=2
$$

Thus

$$
\left.2 \sum_{j=0}^{6} \sum_{k=1}^{\left\lfloor\frac{6-j}{3}\right\rfloor}(-1)^{k} C_{0}(j, 2,3) C_{0}(j+5 k, 2,3)\right)=-8
$$

and, by (39),

$$
\sigma(5,2)=2.5(44-8)=90
$$

On the other hand, by (1),

$$
\sigma(5,2)=\sum_{k=1}^{2} \tan ^{4} \frac{\pi k}{5}=0.278640 \ldots+89.721359 \ldots=89.999999 \ldots
$$

Example 9. In case $n=3$, then by Theorem 7 and formulas (17) and (37), we have

$$
\begin{gathered}
3^{p}=\frac{3}{2} \sum_{j=0}^{p}\left(\left(C_{0}(j, p, 1)\right)^{2}+\right. \\
\left.2 \sum_{k=1}^{\left\lfloor\frac{p-j}{3}\right\rfloor}(-1)^{k} C_{0}(j, p, 1) C_{0}(j+3 k, p, 1)\right)= \\
\frac{3}{2} \sum_{j=0}^{p}\left(\binom{p}{j}^{2}+2 \sum_{k=1}^{\left\lfloor\frac{p-j}{3}\right\rfloor}(-1)^{k}\binom{p}{j}\binom{p}{3 k+j} .\right.
\end{gathered}
$$

Using the well-known formula $\sum_{j=0}^{p}\left(\binom{p}{j}^{2}=\binom{2 p}{p}\right.$, we obtain the identity

$$
\sum_{j=0}^{p\left\lfloor\frac{p-j}{3}\right\rfloor} \sum_{k=1}^{\lfloor-1)^{k}}\binom{p}{j}\binom{p}{3 k+j}=3^{p-1}-\frac{1}{2}\binom{2 p}{p}
$$

or, changing the order of summation,

$$
\sum_{k=1}^{\left\lfloor\frac{p}{3}\right\rfloor}(-1)^{k} \sum_{j=0}^{p-3 k}\binom{p}{j}\binom{p}{3 k+j}=3^{p-1}-\frac{1}{2}\binom{2 p}{p}
$$

Since (cf. [10], p. 8)

$$
\begin{equation*}
\sum_{j=0}^{p-3 k}\binom{p}{j}\binom{p}{3 k+j}=\binom{2 p}{p+3 k} \tag{40}
\end{equation*}
$$

we obtain the identity

$$
\begin{equation*}
\sum_{k=1}^{\left\lfloor\frac{p}{3}\right\rfloor}(-1)^{k-1}\binom{2 p}{p+3 k}=\frac{1}{2}\binom{2 p}{p}-3^{p-1}, p \geq 1 \tag{41}
\end{equation*}
$$

Note that (41) was proved by another method by Shevelev [12] and again by Merca [7] (cf. Cor. 8.3)

Acknowledgment The authors are grateful to Jean-Paul Allouche for bringing [5] to our attention. They also thank the anonymous referee for important improvements and pointing out [2].

References

[1] H. Chen, On some trigonometric power sums, Int. J. Math. Sci., 30 (2002) No. 3, 185-191.
[2] W. Chu, Summations on trigonometric functions, Appl. Math. Comp., 14 (2002), 161-176.
[3] J. Coquet, A summation formula related to the binary digits, Invent. Math., 73 (1983), 107-115.
[4] M. Drmota and T. Stoll, Newman's phenomenon for generalized Thue-Morse sequences, Discrete Math., 308 (2008) No. 7, 1191-1208.
[5] H. A. Hassan, New trigonometric sums by sampling theorem, J. Math. Anal. Appl., 339 (2008), 811-827.
[6] J. E. Littlewood, A University Algebra, 2nd ed., London, Heinemann, 1958.
[7] M. Merca, A Note on Cosine Power Sums, J. Integer Seq., 15 (2012), Article 12.5.3.
[8] D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc., 21 (1969), 719-721.
[9] G. Polya and G. Szegö, Problems and Theorems in Analysis, Vol. 2, Springer-Verlag, 1976.
[10] J. Riordan, Combinatorial Identities, John Wiley \& Sons, 1968.
[11] V. S. Sachkov, Introduction to Combinatorial Methods of Discrete Mathematics, Moscow, Nauka, 1982 (In Russian).
[12] V. Shevelev, A Conjecture on Primes and a Step towards Justification, arXiv, 0706.0786 [math.NT].
[13] V. Shevelev, Two algorithms for exact evalution of the Newman digit sum, and a new proof of Coquet's theorem, arXiv, 0709.0885 [math.NT].
[14] V. Shevelev, On Monotonic Strengthening of Newman-like Phenomenon on ($2 m+1$)-multiples in Base $2 m$, arXiv, 0710.3177 [math.NT].
[15] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences http://oeis.org.
[16] A. M. Yaglom and I. M. Yaglom, An elementary derivation of the formulas of Wallis, Leibnitz and Euler for the number π, Uspekhi Matem. Nauk, VIII 5(57) (1953), 181-187 (In Russian).

