Preliminaries

$\left(^{*}\right)$ We've seen in the practical session the following property of $\varphi_{i_{1}} \wedge \ldots \wedge \varphi_{i_{k}}$:
Let $V_{1}, \ldots, V_{k} \in \mathbb{R}^{n}$, it holds that $\varphi_{i_{1}} \wedge \ldots \wedge \varphi_{i_{k}}\left(V_{1}, \ldots, V_{k}\right)=\operatorname{det}\left(M_{i_{1}, \ldots i_{k}}\right)$.
With $M_{i_{1}, \ldots, i_{k}}$ being the K columns of the matrix whose rows are V_{1}, \ldots, V_{k}.
$\left(^{* *}\right)$ Let $\omega \epsilon \Lambda^{k}\left(\mathbb{R}^{n}\right)$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ continuously differentiable. Then $f^{*} \omega \epsilon \Lambda^{k}\left(\mathbb{R}^{m}\right)$ such that $f^{*} \omega\left(V_{1}, \ldots, V_{k}\right)=\omega\left(d f V_{1}, \ldots, d f V_{k}\right)$. Lets note it as $\omega o d f$.
$\left(^{* * *)}\right.$ Let $\omega \in \wedge^{n}\left(\mathbb{R}^{n}\right)$, then $\omega=f d x_{1} \wedge \ldots \wedge d x_{n}$ and $\int_{[0,1]^{k}}^{\prime} \omega=\int_{[0,1]^{k}}^{\prime} f$.
(\#) Let $C:[0,1]^{k} \rightarrow \mathbb{R}^{n}$ be a singular k-cube (?) then $\int_{C}^{\prime} \omega=\int_{[0,1]^{k}}^{\prime} C^{*} \omega$

Main part

Now, Let $\omega \epsilon \Lambda^{k-1}\left(\mathbb{R}^{k}\right)$ and $C=I^{k}$ the identity cube. In order to calculate $\int_{d C}^{\prime} \omega$ it suffices to calculate for $\omega=f d x_{1} \wedge \ldots \wedge \widehat{d x}_{J} \wedge \ldots \wedge d x_{k}$ from linearity.

For a typical summand in $d C$ we have:
$'_{[i, \alpha]}^{k}:[0,1]^{k-1} \rightarrow \mathbb{R}^{k} . I_{[i, \alpha]}^{k}\left(x_{1}, . ., x_{k-1}\right)=\left(x_{1}, ., x_{i}, \alpha, x_{j+1}, x_{k-1}\right)$
And the integral is as follows:
$\int_{I_{[i, \alpha]}^{k}}^{\prime} \omega \frac{\operatorname{from}_{(\#)}}{=} \int_{I^{k-1}}^{\prime}\left(I_{[i, \alpha]}^{k}{ }^{*} \omega\right)=\int_{I^{k-1}}^{\prime}\left(I_{[i, \alpha]}^{k}{ }^{*} f d x_{1} \wedge . . \widehat{d x}_{J} . . \wedge d x_{k}\right)=$
$=\frac{=}{f r o m(* *)} \int_{I^{k-1}}^{\prime}\left(\right.$ fol $\left._{[i, \alpha]}^{k}\right)\left(d x_{1} \wedge . . \widehat{d x}_{J} . . \wedge d x_{k}\right.$ odi $\left.I_{[i, \alpha]}^{k}\right)$.
We'll note that $d I_{[i, \alpha]}^{k}=\left|\begin{array}{llllll}1 & & & & & \\ & 1 & & & 0 & \\ & & 0 & & & \\ & 0 & & \ddots & 1 & \\ & & & & & 1\end{array}\right| a(k X k-1)$ matrix with the i'th row being 0 .

From (${ }^{* * *}$) we know how to integrate a K-1 form over a K-1 dimensional space. All is left to note is that for $i \neq j$, we get that:
$d x_{1} \wedge . . \widehat{d x}_{j} . . \wedge d x_{n} \circ d I_{[i, \alpha]}^{k}\left(V_{1}, \ldots, V_{k-1}\right)=d x_{1} \wedge . . \widehat{d x}_{j} . \wedge d x_{k}\left(d I_{[i, \alpha]}^{k} V_{1}, \ldots, d I_{[i, \alpha]}^{k} V_{k-1}\right)=$
$=\frac{=}{\text { from (*) }} \operatorname{det}\left(M_{1, \ldots, i, i, \ldots, \ldots-1}\right)$
But for every $d I_{[i, \alpha]}^{k} V_{m}$, that i'th coordinate is 0 . So the i'th column of $M_{1, \ldots, i, j, \ldots k-1}$ is 0 , and we get $\operatorname{det}\left(M_{1, ., i, j, \jmath, \ldots-1}\right)=0$. Hence $I_{[i, \alpha]}^{k} f d x_{1} \wedge . . \widehat{d x}_{J} . . \wedge d x_{k}$ is the zero $\mathrm{k}-1$ form, and $\int_{[i, \alpha]}^{\prime} \omega=0$.

On the other hand if $i=j$ then for the standard basis e_{1}, \ldots, e_{k-1} it holds that $d x_{1} \wedge . . \widehat{d x}_{J} . . \wedge d x_{k}\left(d I_{[i, \alpha]}^{k} e_{1}, \ldots, d I_{[i, \alpha]}^{k} e_{k-1}\right)=d x_{1} \wedge . . \widehat{d x}_{J} . . \wedge d x_{k}\left(e_{1}{ }^{\prime}, \ldots, e_{k-1}{ }^{\prime}\right)=$ $\operatorname{det}\left(M_{1, \hat{\jmath}, k-1}\right)=\operatorname{det}\left(I_{k-1}\right)=1$. with e'=e concatenated with 0 in j 'th entry.

So $d x_{1} \wedge . . \widehat{d x}_{J} . . \wedge d x_{k}\left(d I_{[i, \alpha]}^{k} V_{1}, \ldots, d I_{[i, \alpha]}^{k} V_{k-1}\right)$ is THE base element for $\Lambda^{k-1}\left(\mathbb{R}^{k-1}\right)$.
And from $\left(*^{* * *}\right)$ we get $\int_{[0,1]^{k-1}}^{\prime}\left(f o I_{[i, \alpha]}^{k}\right)\left(d x_{1} \wedge . . \widehat{d x}_{j} . . \wedge d x_{k}\right.$ od $\left.d I_{[i, \alpha]}^{k}\right)=\int_{[0,1]^{k-1}}^{\prime}\left(f o I_{[i, \alpha]}^{k}\right)=$ $' \int_{[0,1]^{k}}^{\prime} f\left(x_{1}, ., x_{i}, \alpha, x_{j+1}, x_{k-1}\right)$

