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1 Introduction
In the 1980s it became popular to study the subgroup growth of a finitely generated (discrete)
group. This is embodied in the sequence (an) which counts the number of index-n subgroups
of a given group G. One might reasonably ask how one even begins to study this sequence. An
attractive possibility is that one might try to encode some of the group structure in a simpler
algebraic object. It is not obvious that this can be done in general. The authors of the paper
[GSS88] realised that if one specialises to a certain subclass of these groups, namely finitely
generated torsion-free nilpotent groups (or T -groups), one can attach a certain Lie algebra
over the ring Z. This object looks additively just like the lattice Zd for some d ∈ N. Their
beautiful result shows that for this special subclass of groups, counting (finite index) subgroups
is essentially the same as counting (finite index) subrings in the ring. Their result is the subject
of this note.

A proof of the result is given in Grunewald, Segal and Smith (see [GSS88]). However, it
is not self-contained, relying heavily on the ‘Mal’cev correspondence’ which is described in a
book of Segal ([Seg83]). Consequently, the reader has to do some work to identify and adapt
certain results appearing in the book in order to reconstruct a coherent argument.

The purpose of these notes is to give a detailed account of this result and its proof in a mostly
self-contained manner. We will need to assume two important structural results, whose proofs
lie beyond the scope of these notes: the existence of an embedding of any given T -group into
a group of upper unitriangular matrices over Z, and the Baker-Campbell-Hausdorff formula.

2 Statement of the Theorem
The result we shall be discussing is the following. We first give the statement, then explain the
various notations and terminology.

Theorem 1 ([GSS88], Theorem 4.1) Let G be a T -group of Hirsch length n. Then there exists
f ∈ N, depending only on n, such that Gf is an LR group, and such that if L = log Gf then

ζG,p = ζL,p, ζ¢
G,p = ζ¢

L,p, ζ∧G,p = ζ∧L,p

for all primes p not dividing f .

We will define the Hirsch length of a T -group in Section 3. In Section 4 we will define a map
called log which maps H into an algebra of upper triangular matrices; for H to be an LR group
(Lie Ring group) means that the image of H under log is a Z-lattice and is closed under the
induced Lie bracket. If ∗ refers to some property of a subgroup or subring, we write

ζ∗G,p(s) =
∞∑
i=0

a∗pkp
−ks, ζ∗L,p(s) =

∞∑
i=0

b∗pkp
−ks

where
a∗pk = |{H ≤ G | H has property ∗}|
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and
b∗pk = |{H ≤ L | H has property ∗}|.

For ∗ ∈ {≤,¢,∧}, we interpret ≤ to mean subgroup (respectively, subring), ¢ to mean normal
subgroup (respectively ideal) and ∧ to mean subgroup whose profinite completion is isomor-
phic to the profinite completion of the original group (respectively subring H of L such that for
all primes p, H ⊗ Zp is isomorphic to L⊗ Zp).

3 Preliminaries
We start off with some basic facts about T -groups. First, a reminder about nilpotency. For any
group G, we can define the lower central series

G = γ1(G) ≥ γ2(G) ≥ . . . ≥ . . .

where the members are defined inductively by γ2(G) = [G,G], γi+1(G) = [γi(G), G]. The
group G is called nilpotent if this sequence terminates at 1, and has class c if γc(G) 6= 1 and
γc+1(G) = 1. The Hirsch length of a group is the number of infinite factors in a chain

G = G1 ≥ G2 ≥ . . . ≥ Gk = 1

of cyclic extensions (provided that at least one such chain exists, this number is independent of
the choice of chain).It may be shown that any T -group has finite Hirsch length.

Now let R denote a commutative ring with identity, and Tr1(m,R) the group of upper
unitriangular matrices over R (i.e. matrices with entries in R, 1’s along the diagonal and zeroes
below the diagonal). The first result we need is the following:

Theorem 2 ([Seg83], Chapter 5) Let G be a T -group. There exists an embedding G ↪→
Tr1(m,Z) for some m ∈ N.

We will not prove this; rather, we refer the interested reader to the book cited. Often we will
only need an embedding of G into Tr1(m,Q). In general, groups which admit an embedding
into Tr1(m, k), where k is a field of characteristic zero, can be studied using the Mal’cev corre-
spondence. This given by a map (called log) from Tr1(m, k) to Tr0(m, k), where Tr0(m, k) is
the Lie algebra over k of strictly upper triangular matrices. The map is given by the usual formal
power series for log, which will have only finitely many non-zero coefficients since Tr1(m, k)
is unipotent. It will turn out that log is a bijection, with inverse exp. The image of the restriction
of log to an arbitrary group G embedded in Tr1(m, k) could fail to be closed under addition and
the standard Lie bracket (u, v) = uv − vu in Tr0(m, k). In the special situation that log G does
enjoy both these properties, we call G an LR group.

The proof of Theorem 2 relies on the following facts:

1. There exists some f ∈ N such that Gf is an LR group
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2. If H is an LR group then for almost all primes p, the local zeta functions at p of H and
log H are equal

3. If H is a finite index subgroup of G, then for almost all primes p, the zeta functions at p
of G and H are equal

The reader who has studied the paper [GSS88] will have noticed that in that paper they
package all the ‘bad’ primes into their definition of f , presumably to streamline the statement
of Theorem 2. We find it more intuitive to separate the ‘bad’ primes according to the three items
listed above.

We now begin with a detailed description of the argument.

4 The log and exp maps
Most of the material in this section is taken directly from the book [Seg83]. Let k be a field of
characteristic zero. For x ∈ Tr1(m, k) put

log x = (x− 1)− (x− 1)2/2 + · · ·+ (−1)n(x− 1)n−1/(n− 1)

and for v ∈ Tr0(m, k) put

exp v = 1 + v2/2! + · · ·+ vn−1/(n− 1)!

Note that (x − 1)n = 0 = vn so these functions are actually the same as the respective power
series. Therefore they are mutually inverse bijections. We next present a formula allowing us
to express the group operation in Tr1(m, k) in terms of Lie brackets via the log map. First we
need some notation. For l > 2 and xi elements of Tr1(m, k), write

[x1, x2, . . . , xl] = [[x1, x2, . . . , xl−1], xl]

which we call a repeated (group) commutator, and for vi elements of Tr0(m, k) write

(v1, v2, . . . , vl) = ((v1, v2, . . . , vl−1), vl).

It will also be useful to have notation to deal with repeated commutators or Lie brackets involv-
ing only two arguments repeated in various orders. If e = (e1, . . . , ej) is a vector of positive
integers, x, y ∈ Tr0(m, k) and u, v ∈ Tr1(m, k), write

[x, y]e = [x, y, . . . , y︸ ︷︷ ︸
e1

, x, . . . , x︸ ︷︷ ︸
e2

, . . .]

and
(u, v)e = (u, v, . . . , v︸ ︷︷ ︸

e1

, u, . . . , u︸ ︷︷ ︸
e2

, . . .).

The following theorem is a technical fact vital to all that follows.
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Theorem 3 (Baker-Campbell-Hausdorff formula) There exist constants qe ∈ Q, one for
each vector e of positive integers, such that q(1) = 1/2 and such that for any two matrices
u, v ∈ Tr0(m, k), the matrix

u ∗ v = u + v +
∑

e

qe(u, v)e

has the property
(exp u).(expv) = exp(u ∗ v).

When we come to applying this theorem, we will usually not need to know anything more about
the actual coefficients involved, except possibly the first one q(1). It is remarkable and by no
means obvious that the group operation can be recovered inside the Lie algebra by suitable ‘cor-
rection’ terms coming from Lie commutators. The theorem in fact holds in greater generality
than what we see here, namely for formal power series in two non-commuting variables.

5 Lattice groups - a criterion
We will soon discuss a sequence of technical results which will eventually allow us to formulate
a condition ensuring that a given subgroup G of Tr1(m, k) is an LR group. In fact, the hardest
part will be to ensure that G is a lattice group; namely, that its image under log is closed
under addition. Given an element x of Tr1(m, k) and a positive integer j, we define x1/j :=
exp((1/j) log(x)). It is clear that this defines a unique jth root of x. If x belongs to some
subgroup G of Tr1(m, k), x1/j may or may not lie in G. We define G1/j to be the subgroup
〈x1/j | x ∈ G〉 of Tr1(m, k) generated by all the jth roots of elements of G. Our main goal in
the following section will be to prove the following result.

Theorem 4 ([Seg83], Chapter 6, Theorem 4) There exists t ∈ N, depending only on m, such
that, if H ≤ Tr1(m,Q) and H ¢ H1/t, then H is an LR group.

Actually we will show that t can be chosen so that it depends explicitly on the coefficients
in the Baker-Campbell-Hausdorff formula up to the terms of (bracket) length m− 1.

Now assume that Theorem 4 holds. Suppose we are given a subgroup G of Tr1(m,Q).
Recall that the first of our three main objectives stated above is to prove that there exists some
f ∈ N such that Gf is an LR group. (Note that to do this we will not end up using the fact
that G is finitely generated.) We claim that we can take f := tm−1. We will need the following
result about nilpotent groups.

Proposition 1 ([Seg83], Chapter 6, Proposition 2) If G is a nilpotent group of class at most c
and s ∈ N, then every element of the subgroup

Gsc

= 〈gsc | g ∈ G〉

is the sth power of an element of G.
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Let us assume both Theorem 4 and Proposition 1, and deduce the desired result. Given G ≤
Tr1(m,Q), note that G has class at most m− 1. Pick t as in Theorem 4 and put f := tm−1. By
Proposition 1, every element of Gf is expressible as a tth power of an element of G. Therefore
(Gf )1/t is contained in G. However, Gf ¢ G since the image of a product of f th powers under
any automorphism is again a product of f th powers. Thus Gf ¢ (Gf )1/t and by Theorem 4, Gf

is an LR group.
We close this section by proving Proposition 1. We begin with the technical

Lemma 1 ([Seg83], Chapter 6, Lemma 4) Let G be a group with γc+1(G) = 1 and let x1, . . . , xr ∈
G. Then for every k ∈ N we have

(γc〈x1, . . . , xr〉)kc

= γc〈xk
1, . . . , x

k
r〉.

Proof. If c = 1 the result is trivial. We argue by induction on c. We may assume that G =
〈x1, . . . , xr〉. By inductive hypothesis,

(γc−1(G))kc−1

.γc(G) = γc−1〈xk
1, . . . , x

k
r〉.γc(G).

We will repeatedly make use of the following special identities: if at least one of z and x lies in
γc−1(G) then we have

[z, xy] = [z, x]y[z, y] = [z, x][z, y] (1)
[zi, x] = [z, x]i = [z, xi] (2)

(1) holds since [z, x] is central, and (2) follows. From (1) it follows that if S generates a
subgroup H of G, and K is any subset of G, then [K, H] = 〈[K, S]〉. By (2), for any subsets
S and T of G, and any j ∈ N, 〈[S, T ]〉j = 〈S, T j〉. These facts will be used in what follows
without further reference. Now

(γc(G))kc
= 〈[γc−1(G), g] | g ∈ G〉kc

= 〈[u, xi] | u ∈ γc−1(G); i = 1, . . . , r〉kc

= 〈[u, xi]
kc | u ∈ γc−1(G); i = 1, . . . , r〉

= 〈[ukc−1
, xk

i ] | u ∈ γc−1(G); i = 1, . . . , r〉
= 〈[γc−1(G)kc−1

, xk
i ] | i = 1, . . . , r〉

= 〈[γc−1〈xk
1, . . . , x

k
r〉, xk

i ] | i = 1, . . . , r〉 by inductive hypothesis
= γc〈xk

1, . . . , x
k
r〉 .

2

We are now ready to prove Proposition 1. We have γc+1(G) = 1. The case c = 1 is trivial; we
proceed by induction on c. Consider a typical element

g = xsc

. . . xsc
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of Gsc . Put H = 〈xs
1, . . . , x

s
r〉. By Lemma 1,

γc(H) = (γc〈x1, . . . , xr〉)sc

.

Since g ∈ Hsc−1 , by inductive hypothesis applied to H/γc(H), there exist y ∈ H , z ∈ γc(H)
such that g = ysz. However, γc〈x1, . . . , xr〉 is abelian so we can write z = usc for some
u ∈ γc〈x1, . . . , xr〉. Thus

g = (yusc−1

)s,

as required.

6 Proof of Theorem 4
In this section we will state and prove some important technical results needed to prove Theo-
rem 4. The philosophy is that one can ‘approximate’ a Lie commutator by a group commutator
via the Mal’cev correspondence in such a way that the correction terms are either ‘longer’ group
commutators, or ‘longer’ Lie commutators. As a spin-off, we will show how to construct the
‘Mal’cev completion’ or ‘radicable hull’ of a group embedded in Tr1(m, k).

Lemma 2 ([Seg83], Chapter 6, Corollary 2) Let k be a field of characteristic zero. For x1, . . . , xs ∈
Tr1(m, k), we have

log[x1, . . . , xs]− (log x1, . . . , log xs) =
∑

i

rici

where each ci is a repeated Lie bracket of length at least s + 1 in log x1, . . . , log xs, each of
which appears at least once; and the coefficients ri are universal constants lying in Q and are
independent of m.

Proof. We first prove this in the case s = 2. Let x1, x2 ∈ Tr1(m, k) and put ui = log xi. Let M
be the Lie algebra generated by u1, u2 and let L be the subalgebra generated by all commutators
in u1, u2 of length at least 3. Note that L is in fact an ideal in M . Now we have

log[x1, x2] = log x−1
1 ∗ log x−1

2 ∗ log x1 ∗ log x2

= (−u1) ∗ (−u2) ∗ u1 ∗ u2

= (−u− v + (1/2)(u, v) + w1) ∗ (u + v + (1/2)(u, v) + w2) for some w1, w2 ∈ L
= (u, v) + w3 for some w3 ∈ L.

Now apply induction: for x1, . . . , xs ∈ Tr1(m, k), let Ls be the Lie algebra generated by com-
mutators of length at least s + 1 in log x1, . . . , log xs in which each of these arguments occurs
at least once, and let L2 be the Lie algebra generated by commutators of length at least 3 in
log[x1, . . . , xs−1] and log xs in which each occurs at least once. Then by induction we have

log[x1, . . . , xs] + L = log[[x1, . . . , xs−1], xs]
= (log[x1, . . . , xs−1], log xs) + c + L (c ∈ L2)
= (log x1, . . . , log xs) + c + L
= (log x1, . . . , log xs) + L.
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It follows that suitable constants ri exist but may depend on the choice of elements xi. To see
that they are actually independent of this choice, we can start by working over a field k contain-
ing some field of fractions of a polynomial ring over an arbitrary field with a large number of
variables, and choosing our elements xi to be matrices with entries involving independent inde-
terminates. The coefficients ri obtained will remain valid if we specialize by choosing values
for the indeterminates. This effectively allows us to choose any s-tuple of group elements and
obtain the same constants, hence these constants are universal. 2

Lemma 3 ([Seg83], Chapter 6, Corollary 3) Let k be a field of characteristic zero. For x1, . . . , xs ∈
Tr1(m, k), we have

(log x1, . . . , log xs) = log[x1, . . . , xs] +
∑

i

si log vi

where each vi is a repeated commutator of length at least s + 1 in x1, . . . , xs, each of which
appears at least once; and the coefficients si are universal constants lying in Q which depend
on m.

Proof. In the case s ≥ m − 1, this follows trivially from Lemma 2, since Lie commutators
of length at least s + 1 are trivial. The result now follows for all s by reverse induction and
application of Lemma 2. Note that the number of steps in this induction depends on m− s, so
the constants si depend on m. 2

These two lemmas turn out to be extremely powerful. Before stating our next result, we
observe the following:

Corollary 1 There exists a positive integer r such that for every tuple e of positive integers and
x, y ∈ Tr1(m,Q),

qe(log x, log y)e ∈ r−1
∑

f

Z log[x, y]f

Proof. Recall that the qe come from the Baker-Campbell-Hausdorff formula (Theorem 3). The
fact that such r exists is a direct consequence of Lemma 3 (note that only finitely many vectors
e give a non-zero Lie commutator). (For interest’s sake, we note here that if m = 3, so that
Tr1(m,Q) is of class two, we can take r = 2.) 2

From here on we assume that the positive integer r, which must exist by Corollary 1, has been
fixed. Suppose now we are given an arbitrary subgroup G of Tr1(m,Q). Let Gj be the subgroup
of G consisting of all matrices having n− j − 1 diagonals above the main diagonal consisting
entirely of zeroes. Then in fact Gj = G ∩ γm−j(Tr1(m,Q)), and it is a standard fact that
G = Gm−1 ≥ . . . ≥ G0 = 1 is a central series for G. We have the following result.
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Lemma 4 Let r be as in Corollary 1. Then for each 1 ≤ j ≤ m− 1, we have

r2j−1−1Z log Gj ⊆ log Gj.

Proof. Note that Lemma 4 holds trivially in the case of j = 1, since G1 is abelian. Now assume
inductively that it holds for all j < l for some l ≤ m− 1.

Note that for x ∈ Gl, x ∈ Gj , by construction of r we have

r(log xy − log x− log y) = r((log x) ∗ (log y)− log x− log y)
= r(

∑
qe

(log x, log y)e)

∈ ∑
f Z log[x, y]f

since [x, y] ∈ Gj−1. Moreover, for g1, . . . , gs−1 ∈ Gl, gs ∈ Gj , it follows easily that

r(log g1 + · · ·+ gs) ∈ r log(g1 . . . gs) + ZGj−1. (3)

We now have the following:

Lemma 5 For each 2 ≤ j < l, we have that for all x ∈ Gl, g1, . . . , gs ∈ Gj , there exists y ∈ Gl

such that
r2j−1

(log x + (log g1 + · · ·+ log gs)) ∈ log y + Z log Gj−1. (4)

Proof. We have

r2j−1
(log x1 + (log g1 + . . . + log gs)) = r(log xr2j−1−1

+ log h) (h ∈ Gj)

∈ log(xr2j−1−1
h) + Z log Gj−1,

2

It remains to put everything together to complete the inductive step: for g1, . . . , gs ∈ Gl and
writing w := g1 . . . gs, we have

r2l−1−1(log g1 + · · ·+ log gs) = r2l−1−2(log wr + ul−1) by (3))

= r2l−1−2−2l−2−2l−3−···−21
(log z + u1) by repeated application of 4

= log z + u1 ,

where ul−1 ∈ Z log Gl−1, u1 ∈ Z log G1, z ∈ Gl. Since G1 is abelian, we may write u1 = log h
where h ∈ log G1. Since G1 is central, we have (log z + u1) = log zh ∈ Gl, and we are done.
2

We now set a new constant.

Definition 1 Put t = r2m−2
.

The following builds on Lemma 4:
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Lemma 6 Let K ¢ G ≤ Tr1(m,Q). Taking t as in Definition 1, we have for all g ∈ G and
k ∈ K that

log g + t log k ∈ log K〈g〉 (5)
t log g + log k ∈ log K〈gt〉. (6)

(7)

Proof. We establish by induction that if K ≤ Gi then, replacing t by r2i−1 , both (5) and
(6) hold. If K ≤ G1 then K is central and r2i−1

= r, giving log g + r log k = log gkr,
r log g + log k = log grk, as required. Suppose that the two equations have been established for
all i < j for some j < m − 1. Suppose that K ≤ Gj and put H = [K,G]. Since (Gi) is a
central series, H ≤ Gj−1; since K ¢ G, also H ¢ G. Write tj := r2j−1 . We have

log g + tj log k − log gktj = −∑
qe(log g, tj log k)e by Theorem 3

∈ t0r
−1

∑
Z log[g, k]f

by Corollary 1 and since in each repeated commutator we can take out factors of t0 at least once.
Now [g, k]f ∈ H for all f by definition of H . Thus

log g + tj log k − log gktj ∈ r2j−1−1Z log H.

By Lemma 4 we have
r2j−2−1Z log H ⊆ log H

so for some h ∈ H we have

log g + tj log k = log gktj + r2j−2
log h

∈ log H〈gktj〉

by the inductive hypothesis, since H ≤ Gj−1. But log H〈gktj〉 ≤ log K〈g〉, proving 5. Now
arguing as before we have

tj log g + log k − log gtjk = −∑
qe(tj log g, log k)e

∈ t0r
−1

∑
Z log[g, k]f ,

hence
tj log g + log k − log gtjk ∈ r2j−1−1Z log H ⊆ r2j−2

log H.

Thus, for some h ∈ H we have

tj log g + log k = log gtjk + r2j−2
log h

∈ log H〈gtjk〉,

using again the inductive hypothesis for (5). But log H〈gtjk〉 ⊆ log K〈gtj〉, proving (6). 2
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Now finally we can establish Theorem 4. Pick t as in Definition 1. Let x, y ∈ H . Then by
construction, there exists g ∈ H1/t such that x = gt. Since H ¢ H1/t we have by Lemma 6 that

log x + log y = t log g + log y
∈ log(H〈gt〉)
= log H

hence H is a lattice group. To complete the proof of Theorem 4 it remains to show that H is
closed under the Lie operation. Given x1, x2 ∈ H , there exists g ∈ H1/t such that x1 = gt

(similarly for x2, but we shall not need this). By Lemma 3 we have

(log x1, log x2) = t(log g, log x2) = t log[g, x2] + t
∑

i

si log vi

where the vi are group commutators of length at least 3 involving both g and x2. Now r|t, and
by construction, r is a common denominator for the si (cf. Corollary 1 with e = (1) so that
qe = 1/2). Furthermore, by assumption H ¢ H1/t hence each group commutator lies in H .
Thus (log x1, log x2) ∈ Z log H = log H .

7 A diversion: the radicable hull
8 Proof of Theorem 2
Actually we will not prove all the parts of Theorem 2. For a treatment of ‘proisomorphic’
subgroup counting ζ∧G,p, we refer the interested reader to [GSS88] and [Seg83]. We start by
tackling objective 2 mentioned in Section 3. This proceeds in a number of steps. The basic
idea is fix an LR group and to show that for almost all primes p the log map gives an index-
preserving correspondence between the subgroups of p-power index and the subrings of its
image. We assume throughout that all groups are contained in Tr1(m,Q), unless otherwise
specified.

Lemma 7 Let t be as in Definition 1. If t0 is a non-zero multiple of t and H satisfies H ¢H1/t0

then H is an LR group.

Proof. H1/t ≤ H1/t0 , hence H ¢ H1/t, and the result follows from Theorem 4. 2

Lemma 8 For any H ≤ Tr1(m,Q) and j ∈ N, we have |H1/j : H| < ∞, |H : Hj| < ∞ and
both |H1/j : H| and |H : Hj| divide some power of j.

Proof. The proof of this innocent-looking fact is too much of a diversion to present at this point.
We will defer it to the end of this section. 2

Lemma 9 If H ≤ K, K is an LR group and (|K : H|, t) = 1 then H is an LR group.
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Proof. The idea is to construct another LR group lying above H of index relatively prime to
|K : H|, and then take its intersection with K. Put t0 = tm−1, H1 = H1/t0 , H2 = H t0

1 . Then
H ≤ H2 ≤ H1. By Proposition 1, H

1/t
2 ≤ H1 since H1 is of class at most m−1. Now H2 ¢H1

by construction, hence H2 ¢ H
1/t
2 . By Theorem 4, H2 is an LR group. Now |H2 : H| divides

some power of t, by Lemma 8, hence |K ∩ H2 : H| divides 1 by Lagrange’s Theorem, i.e.
K ∩H2 = 1. Thus log H = log H2 ∩ log K and log H is an LR group. 2

Definition 2 Let d1 be a common denominator for the coefficients in the Baker-Campbell-
Hausdorff formula (Theorem 3) of length at most m− 1.

Lemma 10 Let K be an LR group and put L = log K. If M is a Lie subring of L and
(|L : M |, td1) = 1 then exp M is a subgroup of K.

Proof. Given λ, µ ∈ M let x = exp λ and y = exp µ. Then xy ∈ K so log(xy) ∈ L. Now
log(xy) = λ ∗ µ so by the BCH formula and by the choice of d1, d1 log(xy) lies in M . Since
|L : M | log(xy) ∈ M too, we have log(xy) ∈ M , as required. 2

By Lemma 2 and Lemma 3 there exist constants ri, si depending only on m such that for all
x, y ∈ Tr1(m,Q)

log[x, y]− (log x, log y) =
∑

i

rici = −
∑

i

si log vi

where each ci is a repeated Lie bracket of length at least 3 in log x, log y and each vi is a repeated
group commutator in x and y.

Definition 3 Let d2 be a common denominator for all the (finitely many) coefficients ri, si of
non-zero terms in the above expressions.

Lemma 11 Let H ≤ K where K is an LR group and (|K : H|, td1d2) = 1. Then H ¢K ⇐⇒
log H ¢ log K (i.e. an ideal of log K).

Proof. Put q = |K : H|. Note that by Lemma 9, H is an LR group. Assume that H ¢ K. Let
h ∈ H , g ∈ K. Then gq ∈ H so we have

q(log h, log g) = (log h, log gq) ∈ log H

since H is an LR group. Also

d2(log h, log g) = d2 log[h, g] +
∑

d2si log vi

as in Lemma 3. Since the vi are group commutators in g and h, they are all contained in H .
Further, by construction (Definition 3) d2si ∈ Z for each i. Since log H is a Lie ring, we con-
clude that d2(log h, log g) ∈ log H . But (d2, q) = 1 so (log h, log g) ∈ log H and log H¢log K.
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To prove the other direction, assume that log H ¢ log K. Using the definition of q above,
we have

q log[h, g] = log([h, g])q ∈ log H.

Also,
d2 log[h, g] = d2(log h, log g) +

∑
i

d2rici ∈ Z log H = log H.

As before, (d2, q) = 1 so log[h, g] ∈ log H and H ¢ K. For an alternative argument for this
second part, see [Seg83], Chapter 6, Lemma 4.7. 2

Lemma 12 Let H ≤ K, where K is an LR group, let p be a prime not dividing td1d2 and m a
positive integer. Then |K : H| = pm if and only if | log K : log H| = pm.

Proof. Note that H is an LR group, by Lemma 9. Suppose that |K : H| = pm. We may in fact
assume that m = 1. For suppose that m > 1. If we can show that there exists at group J such
that H < J < K then (|K : J |, t) so J is an LR group; furthermore, |K : J | and |J : H| are
powers of p strictly less than pm, and we can reduce to the case m = 1 by induction. To see that
such a group J exists, let T be the normal closure of H (cf. Section 9). By factoring out by T ,
we can assume that K is finite. Then K is a direct product of its Sylow subgroups (see again
Section 9); say K =

∏
q Sq. Put R =

∏
q 6=p Sq. Since |K : H| is a p-power, R ≤ H . Therefore

we can factor out by R and assume that K is a p-group. We now argue by induction on the size
of K that a suitable subgroup J exists lying strictly between H and K (the base case K = p
holds vacuously). The centre of K is non-trivial. If it is contained in H , we can factor it out
and apply the inductive hypothesis. If not, then we can find an element x of the centre which is
not contained in H . If 〈H, x〉 6= K then we are done. If 〈H, x〉 = K, write |K : H| = pa and
observe that 〈H, xpa−1〉 is a subgroup of K of index p.

We now consider the case m = 1. Note that in fact H ¢ K: as in the above argument, we
can factor out by the normal core of H and assume that K is finite. Now the normalizer of H
in K is larger than H (cf. Section 9), hence it must be K. Let g be an element of k\H so that
K = H〈g〉. Define d1 as in Definition 2. We claim that

log K =

p−1⋃
i=0

(log H + id1 log g).

To see this, note that

log(Hgid1) = {log(hgid1) | h ∈ H}
= {log h + log gid1 +

∑
e qe(log h, log gid1)e}

⊆ log H + log gid1 (log H ¢ log K; d1qe ∈ Z)
= log H + id1 log g,
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hence

log K =

p−1⋃
i=0

log(Hgid1) ⊆
p−1⋃
i=0

(log H + id1 log g)

(here we use the fact that (d1, p) = 1). It follows that | log K : log H| ≤ p, but evidently
| log K : log H| 6= 1 (since gid1 /∈ H for all i = 1, . . . , p − 1). Thus | log K : log H| = p, as
required.

Finally, we need to prove the reverse implication. Assume then that | log K : log H| = pm.
Write |K : H| = a = pk1

1 . . . pkl
l with each ki > 0. Let T be the normal core of H (cf. Sec-

tion 9). Then K/T is a finite nilpotent group and we may write K/T as a direct product
∏

q Sq,
where Sq is the Sylow-q subgroup of K/T . Write Sq for the preimage of Sq under the quotient
map K → K/T . Set H1 = HSp1 . Then |H1 : H| = pk1

1 and by the first part of the proof,
| log H1 : log H| = pk1

1 . Hence p = p1. Considering now H1 ≤ K and repeating, we eventually
get that p1 = · · · = pl = p. Thus |K : H| is a p-power and by the first part again,

∑l
i=1 ki = m,

as required. 2

To complete the proof of Theorem 2 (excluding ζ∧G,p), we require the following.

Lemma 13 Let K ≤ G be T -groups with |G : K| finite and let p be a prime not dividing
|G : K|. For each subgroup H of G, put H1 = K ∩ H . Then H 7→ H1 gives an index-
preserving bijection between the (normal) subgroups of G of p-power index and the (normal)
subgroups of K of p-power index.

Proof. We first show that the map is index preserving. Let H be a subgroup of G of index pm,
for some m ∈ N. Then

2

9 Finite nilpotent groups
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