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Abstract. Dense forests are discrete subsets of Euclidean space which are
uniformly close to all sufficiently long line segments. The degree of density
of a dense forest is measured by its visibility function. We show that cut-
and-project quasicrystals are never dense forests, but their finite unions
could be uniformly discrete dense forests. On the other hand, we show that
finite unions of lattices typically are dense forests, and give a bound on their
visibility function, which is close to optimal. We also construct an explicit
finite union of lattices which is a uniformly discrete dense forest with an
explicit bound on its visibility.

À la mémoire d’Évariste Adiceam (1949–2018).

1. Introduction

A set Y ⊂ Rn is called uniformly discrete if there is a uniform lower bound
on the distance between two distinct points of Y , and of finite density if

lim sup
T→∞

#(Y ∩B(0, T ))

T n
<∞,

where B(x, r) denotes the ball of radius r > 0 around x ∈ Rn, and the distance
of points in Rn is measured using some norm (the precise choice of norm will
be immaterial in the results that follow and we will switch between norms as
convenient). Note that a uniformly discrete set is of finite density but the
converse need not hold. We say that Y is a dense forest if there exists a
function ε 7→ v(ε) such that for every ε > 0, every line segment of length
v(ε) comes ε-close to Y . A function v : R+ → R+ for which this condition
is satisfied is then referred to as a visibility function of Y . By considering a
disjoint collection of cylinders of round base ε and height v(ε), one finds that
for a dense forest of finite density, there is a constant c > 0 such that for all
ε > 0,

v(ε) ≥ cε−(n−1). (1.1)
1
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A well-known open question of Danzer is whether there is Y ⊂ R2 which is
of finite density and for which the lower bound (1.1) is sharp up to the choice of
c; i.e. whether there is a dense forest in the plane of finite density with v(ε) =
O
(

1
ε

)
. Interest in Danzer’s question has led to some interest in dense forests of

finite density, and uniformly discrete ones, with visibility functions which are
close to the bound given by (1.1). We mention four papers which are important
for our discussion. A paper of Bishop [6] gave a construction, attributed to
Peres, of a dense forest of finite density in R2. The construction will be reviewed
below. The set in question is a union of three explicit translated lattices,
and the bound v(ε) = O (ε−4) was given for the visibility function. The set
considered in [6] is not uniformly discrete, and the first proof of the existence
of a uniformly discrete dense forest was given in [21], with an explicit set in
Rn for any n ≥ 2, but without an effective bound on the visibility function.
In [1], for every n ≥ 2 and every η > 0, a probabilistic construction was given
which gives rise to sets of bounded density in Rn satisfying a visibility bound
v(ε) = O

(
ε−(2n−2+η)

)
. Note that in the case n = 2, this improves on [6], but is

not yet close to (1.1). In [2], Alon gave a probabilistic argument, which showed
the existence of a uniformly discrete dense forest in R2 with a visibility bound
v(ε) = O

(
ε−(1+o(1))

)
. The construction of Alon could be adapted to higher

dimensions as well, and yields sets which come very close to the lower bound
(1.1). However the sets of [2] were not given explicitly.

Thus it is natural to search for sets Y ⊂ Rn with the following properties:

• They are explicitly described.
• They are uniformly discrete.
• They are dense forests and their visibility bound comes close to (1.1).

The explicit sets we will consider involve periodic and almost periodic sets,
and their finite unions. Note that a lattice is clearly uniformly discrete but
is not a dense forest, and the same holds for a periodic set (a finite union
of translates of one lattice). In fact a periodic set misses a neighborhood of
some affine subspace of codimension one. On the other hand, as Peres showed,
a union of finitely many periodic sets could be a dense forest. Such a finite
union is clearly of finite density, and it is sometimes uniformly discrete (see
Proposition 2.1). Another source of explicit constructions are cut-and-project
sets or model sets, which are intensively studied in the literature on aperiodic
structures, see e.g. [3]. We review their definition in §2.2. It is well-known
that cut-and-project sets are uniformly discrete. However our first result shows
that they cannot be dense forests.

Theorem 1.1. Let Y ⊂ Rn be a cut-and-project set. Then Y is not a dense
forest; in fact there exists ε > 0 and a (n − 1)-dimensional affine subspace Z
of Rn such that Y contains no points in the ε-neighborhood of Z.
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Nevertheless cut-and-project sets can be used to construct interesting exam-
ples of dense forests. Namely we have:

Theorem 1.2. There exist uniformly discrete dense forests in R2, which are
a finite union of cut-and-project sets.

The uniformly discrete dense forest in Theorem 1.2 is given explicitly. How-
ever our proof does not provide bounds on its visibility function. We are able
to construct other sets which are finite unions of translated lattices, for which
we have good visibility bounds. Namely we have:

Theorem 1.3. There is a union of three translated lattices in R2 which is a
uniformly discrete dense forest with visibility bound v(ε) = O

(
ε−(5+η)

)
for any

η > 0.

The three translated lattices are given completely explicitly, see §6.1. Re-
moving the condition of uniform discreteness and using more translated lattices,
we are able to get much better visibility bounds:

Theorem 1.4. For each n ≥ 2, each s ≥ n and each η > 0, for a.e. choice of
ns lattices in Rn, their union is a dense forest with visibility function satisfying

v(ε) = O
(
ε−(n−1+αn(s)+η)

)
,

where

αn(s) =
n(n− 1)2

s− (n− 1)
−→
s→∞

0.

The measure implicit in this a.e. statement is defined by choosing at random
an s-tuple Θ of vectors in Rn−1 and applying an explicit construction described
in §5.2. Moreover this a.e. set is described by the explicit condition of being
uniformly Diophantine, which we introduce in this paper (see §5.3).

In the special case n = 2, our construction is a generalization of the con-
struction of Peres mentioned above. Recall that Peres used a union of three
explicit translated lattices to obtain a dense forest in R2, see Figure 1. His
argument used a Diophantine inequality to give a visibility bound of O (ε−4)
for this set; our analysis, applied to the same set, yields a better bound of
O (ε−3) and shows how, by choosing more lattices whose generators satisfy a
different Diophantine condition, one can improve further on this bound.
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Figure 1. Peres’ construction: a union of three trans-
lated lattices in the plane which is a dense forest.

Note that all the examples considered in this paper are known not to be
Danzer sets, i.e. they cannot realize the bound (1.1), see [4, 21].

Organization of the paper. After some generalities on cut-and-project con-
structions and tori, we prove Theorems 1.1 and 1.2 in §3 and §4 respectively.
The proofs rely on viewing cut-and-project sets as return times to a section
in certain higher dimensional toral flows. In §5 we introduce the condition
of being uniformly Diophantine, and state Proposition 5.6, which asserts that
this condition ensures a certain uniform rate of equidistribution for translations
on tori. We show that such uniform equidistribution implies visibility bounds
for certain finite unions of translated lattices, and thus reduce Theorems 1.3
and 1.4 to the verification of the existence of uniformly Diophantine matrices.
Proposition 5.6 is proved in §6, and is used to derive Theorem 1.3. In §7 we de-
velop a ‘metric theory’ related to the property of being uniformly Diophantine,
from which we deduce the existence of the required matrices. We conclude the
paper with some open problems.
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helpful suggestions. The authors gratefully acknowledge the support of grants
EP/T021225, BSF 2016256 and ISF 2095/15. The first named author wishes
to thank Federico Ardila for a talk given at the University of Waterloo in 2018
which turned out to be most illuminating to solve some of the questions raised
in this paper.
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2. Preliminaries

In this section we set our notation and collect some results we will use.

2.1. Lattices. A subset Λ ⊂ Rd is called a lattice if there are v1, . . . ,vd such
that Λ = spanZ(vi) = Zv1 ⊕ · · · ⊕ Zvd (note that in this paper lattices are
always of full rank). Fix a norm on Rd and denote by

λ1 (Λ) ≤ . . . ≤ λd (Λ)

the successive minima of Λ; that is, λk(Λ) is the minimal r > 0 for which
Λ contains k linearly independent vectors of norm at most r. The successive
minima depend on the norm chosen, and unless otherwise specified, we will use
the Euclidean norm. Let µ(Λ) denote the covering radius of Λ; that is,

µ (Λ) = sup
x∈Rd

inf
λ∈Λ
‖x− λ‖ .

It then follows from Jarńık’s Transference Theorem (cf. [15, Theorem 23.4
p.381]) that

1

2
· λd (Λ) ≤ µ (Λ) ≤ d

2
· λd (Λ) . (2.1)

When using other norms, the constants 1/2, d/2 should be replaced in (2.1) by
other constants depending on the norm and on d.

A translated lattice or grid is a set of the form x + Λ where Λ is a lattice,
and Y ⊂ Rd is called periodic if it is of the form Y =

⋃s
j=1 (xj + Λ) for some

lattice Λ and xj ∈ Rd.

2.2. Cut–and–project quasicrystals. We now define cut-and-project sets,
which are an important source of aperiodic but ordered discrete sets in math-
ematical physics. For background and history we refer the reader to [3]. Let
n, k,N be integers with n ≥ 1, k ≥ 1 and N = n+k, and write RN = Vphys⊕Vint
for subspaces satisfying dimVphys = n, dimVint = k. The spaces Vphys and Vint
are called the physical and the internal spaces respectively, and we denote by
πphys : RN → Vphys and πint : RN → Vint the projections associated with the di-
rect sum decomposition. Let L ⊂ RN be a translated lattice, and let W ⊂ Vint
be a bounded set. The set

Λ(L,W )
def
= πphys

(
L ∩ π−1

int(W )
)

is called a cut-and-project set, W and L are its window and lattice, and (n,N)
are its associated dimensions.

In the literature there are two slightly different conventions regarding cut-
and-project sets. In the first, one fixes Vphys (resp. Vint) to be the space parallel
to the first n (resp. last k) coordinate axes and varies the translated lattice L,
while in the second, one fixes L = ZN and varies the summands of the direct
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sum decomposition RN = Vphys ⊕ Vint. It will be convenient for us to use both
points of view. Also, in the literature, various different hypotheses are imposed
on the window and on the lattice. For example it is often assumed that W is
compact and equal to the closure of its interior, and that πphys|L is injective
and πint(L) is dense. We emphasize that we do not require these assumptions
and only assume that W is bounded.

2.3. Tori. We will use boldface letters to denote vectors in RN and write x ·y
for the standard inner product of x,y, ‖x‖ =

√
x · x and x⊥ for {y : x·y = 0}.

A torus is the quotient V/Λ for a finite dimensional vector space V and a lattice
Λ ⊂ V . The standard torus RN/ZN will be denoted by TN , and π : RN → TN
will be the projection. For a subspace V ⊂ RN , the restriction of the standard
inner product to V is an inner product, we can use this inner product to induce
a volume form on V , as well as on the quotient torus T = V/Λ. For a Borel
subset A ⊂ T we denote by VolT (A) (or Vol(A) if confusion is unwarranted)
its measure with respect to this volume form.

A subspace V ⊂ RN is called rational if it is the set of solutions of a system of
linear equations with rational coefficients. This happens if and only if V ∩ ZN
is a lattice in V , or equivalently, π(V ) is a torus in TN . An affine subtorus of
TN is a translate x+ π(V ) for V a rational subspace of RN . Equivalently, it is
a coset in the quotient TN/π(V ). We will always equip RN with the standard
inner product and use its restriction to a rational subspace V to equip π(V )
with a volume.

Let V ⊂ RN be a rational subspace and T = π(V ) ⊂ TN be the cor-
responding subtorus, and denote by VolT the corresponding measure on T ∼=
V/(V ∩ZN). The quotient space TN/T is naturally identified with V ⊥/π⊥(ZN)
where π⊥ : RN → V ⊥ is orthogonal projection, and we let VolTN/T be the vol-

ume on TN/T obtained by using the standard inner product on V ⊥. With
these conventions we have

VolT (T ) · VolTN/T

(
TN/T

)
= Vol

(
TN
)

= 1. (2.2)

For a lattice Λ ⊂ RN , we define its covolume to be Vol(RN/Λ), and denote
this quantity by coVol(Λ). The dual lattice of Λ is defined by

Λ∗ =
{
x ∈ RN : ∀y ∈ Λ, x · y ∈ Z

}
, (2.3)

and one has (see e.g. [13, Chap. 1])

coVol(Λ) · coVol(Λ∗) = 1. (2.4)

2.4. Unions of translated lattices. Understanding tori and their subtori
is related to understanding closed (additive) subgroups of RN . Any closed
subgroup H of RN is of the form H = L + V , where V ⊂ RN is a vector
subspace, L is discrete, and the orthogonal projection of L onto V ⊥ is discrete.
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Here V is the connected component of the identity in H. Recall that two
discrete subgroups L1, L2 are commensurable if L1 ∩ L2 is of finite index in
both L1 and L2, or equivalently, L1 + L2 is discrete. Note that the connected
component of L1 + L2 depends only on the commensurability class of L1, L2.

We will need the following:

Proposition 2.1. Let L1, . . . , Ls be lattices in RN . Then the following are
equivalent:

(a) There are xi, i = 1, . . . , s such that
⋃s
i=1 (xi + Li) is uniformly discrete.

(b) For each i, j ∈ {1, . . . , s}, Li − Lj 6= RN .

Proof. We first prove (a) =⇒ (b). Let Λi = xi + Li for each i. Assume by
contradiction that Li−Lj is dense in RN . Then Λi−Λj = Li−Lj +xi−xj is
also dense, and in particular for any ε > 0 there are x ∈ Λi,y ∈ Λj such that
0 < ‖x− y‖ < ε. This means that Λi ∪ Λj is not uniformly discrete.

In order to prove (b) =⇒ (a) we will define Hij = Li − Lj  RN and show
that if x1, . . . ,xs satisfy

xi − xj /∈ Hij for all i, j, (2.5)

then
⋃s
i=1 (xi + Li) is uniformly discrete. Note that (2.5) holds for almost

every choice of x1, . . . ,xs. Let ε > 0 be smaller than the minimal distance
between xi − xj and Hij, and also smaller than the minimal distance between
two distinct points in the same Li. Let y1,y2 be two distinct elements of⋃s
i=1 Λi. If y1,y2 belong to the same Λi then they are at least a distance ε

apart, and otherwise we can write y1 = xi′ + `1, y2 = xj′ + `2 with i′ 6= j′,
`1 ∈ Li′ and `2 ∈ Lj′ . Then `2 − `1 ∈ Hi′j′ and hence

‖y1 − y2‖ ≥ ‖xi′ − xj′ − (`2 − `1)‖ ≥ ε,

as required. �

Corollary 2.2. For any two translated lattices Λ1,Λ2 ⊂ RN , if the union
Y = Λ1 ∪ Λ2 is uniformly discrete, then Y is not a dense forest; in fact there
exists ε > 0 and an (N − 1)-dimensional affine subspace Z ⊂ RN such that Y
contains no points in the ε-neighborhood of Z.

Proof. Let Λi = Li +xi, i = 1, 2, let H = L1 − L2, and let V be the connected
component of the identity in H. Since Y is uniformly discrete, we have by
Proposition 2.1 that V  RN . Let V0 be an (N − 1)-dimensional subspace of
RN containing V which is spanned by elements of H, and let P : RN → V ⊥0 be
the orthogonal projection. Then the choice of V0 ensures that P (H) is discrete,
and since L1 ∪ L2 ⊂ H, we have that Y ⊂ (x1 + H) ∪ (x2 + H). If we take a
point z ∈ V ⊥0 \ P ((x1 +H) ∪ (x2 +H)), then the conclusion of the Corollary
will be valid with Z = P−1(z). �
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Note that by Theorem 1.3, it is possible to obtain a uniformly discrete dense
forest as a union of three translated lattices in R2.

2.5. Visit times in a dynamical system. Cut-and-project sets also arise as
the set of visit times to a section of an Rn-action on TN , n < N . Let V ∼= Rn
be a subspace of RN . Then V acts on TN via the linear action

v · x = x+ π(v).

Following the terminology in [16], for x0 ∈ TN and S ⊂ TN we define the
(n,N)-toral dynamics set by the set of ‘return times’ to S:

YS,x0

def
= {v ∈ V : v · x0 ∈ S}. (2.6)

An Rn-action is called minimal if all orbits are dense. It is well-known
(see e.g. [14, Chap. 3]) that the above Rn-action is minimal if and only if
V is a totally irrational subspace; namely, if and only if it is contained in
no proper rational subspaces of RN . Moreover, for any x ∈ TN , the closure
V · x is an affine subtorus of TN on which the V -action is minimal; that is
V · x = x+ π(U), where U is the smallest rational subspace containing V .

A subset S ⊂ TN is called a linear section (for the V -action on TN) if
S = π(K) for a bounded set K ⊂ U , where U is a k-dimensional affine subspace
of RN that is transverse to V , and K has non-empty interior in U .

We will repeatedly use the following well-known fact (which was mentioned
without proof in [16]):

Proposition 2.3. If U, V are subspaces of RN with RN = U⊕V , and S ⊂ π(U)
is a linear section for the associated V -action on TN , then for any x0 ∈ TN ,
the set YS,x0 is a cut-and-project set for a decomposition in which V = Vphys
and U = Vint. Moreover any cut-and-project set arises in this way.

Proof. Let

x0 ∈ TN , V = Vphys, U = Vint, L = −x0 + ZN , S = π(K), W = −K.

Then

v ∈ YS,x0 ⇐⇒ v + x0 ∈ S = π(K)

⇐⇒ ∃w ∈ W such that v + π(x0) = π(−w)

⇐⇒ ∃z ∈ ZN , w ∈ W such that v + x0 = −w + z

⇐⇒ ∃z′ ∈ L, w ∈ W such that v +w = z′

⇐⇒ ∃z′ ∈ L such that v = πphys(z
′), πint(z

′) ∈ W.

�
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2.6. More detailed statements. Via Proposition 2.3, we see that Theorem
1.1 asserts that (n,N) toral dynamics sets arising from linear sections are not
dense forests. On the other hand, in [21], a uniformly discrete dense forest was
constructed, using visit times to a section in an Rn-action on a compact homo-
geneous space. We would like to modify this construction and use dynamics of
linear toral flows instead, but as Theorem 1.1 shows, if we use a linear section
the resulting set will not be a dense forest. To rectify this we will allow a larger
class of sets to serve as the section S.

For this discussion we will specialize to the case N = 3, n = 2, so that a sec-
tion is one-dimensional. We say that S ⊂ T3 is a piecewise linear unavoidable
section if

(1) S is a finite union J1 ∪ · · · ∪ J` where the Ji are disjoint projections
under π of closed line segments in R3 (of finite length).

(2) S intersects every co-dimension 1 sub-torus, that is S ∩ π(x+Q) 6= ∅
for every x ∈ R3 and every 2-dimensional rational subspace Q ⊂ R3.

The following results will be proved in §4. They immediately imply Theorem
1.2.

Theorem 2.4. Piecewise linear unavoidable sections in T3 exist.

In fact, as we will see, they exist whenever the dimensions n,N satisfy N =
n+ 1, but we will not be using this fact.

Theorem 2.5. For every piecewise linear unavoidable section S ⊂ T3, every
x0 ∈ T3, and every 2-dimensional subspace V ⊂ R3 which does not contain
rational lines and is transverse to S, the set

Y = YV,S,x0

def
= {v ∈ V : v · x0 ∈ S}

is a uniformly discrete dense forest in V ∼= R2. The set Y is a finite union of
cut-and-project sets with associated dimensions (2, 3), with the same physical
space Vphys = V .

3. Cut-and-project sets are not dense forests

In this section we will prove Theorem 1.1. We will need the following well-
known fact (see e.g. [13, Cor., p. 25]):

Proposition 3.1. Let q ∈ ZN and Q = q⊥. Then

‖q‖ ≥ Vol
(
Q/Q ∩ ZN

)
. (3.1)

Moreover, if q is primitive (i.e. the gcd of its coordinates is equal to 1), then
we have equality in (3.1).
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Lemma 3.2. Let k,N ∈ N, 1 ≤ k < N , and let U ⊂ RN be a k-dimensional
subspace. Then for every bounded set K ⊂ U there exists an (N−1)-dimensional
rational subspace Q ⊂ RN , and some b ∈ RN , such that π(K)∩π(Q+ b) = ∅.

Proof. Given K and U , it suffices to find a rational subspace Q of dimension

N−1, and a coset of π(Q), Q̃ ∈ TN/π(Q), such that π(K)∩ Q̃ = ∅ (where the
quotient denotes quotients of abelian groups). Indeed, if this happens then any

b ∈ π−1(π(Q̃)) will satisfy the required conclusion. Given a rational subspace
Q ⊂ RN of dimension N − 1, let PQ⊥ : RN → Q⊥ denote the orthogonal

projection on Q⊥. Note that π(Q) ∼= Q/
(
Q ∩ ZN

)
is an (N − 1)-dimensional

sub-torus of TN , and that the space of cosets TN/π(Q) is parameterized by
Q⊥/PQ⊥(ZN).

If no such coset Q̃ ∈ TN/π(Q) exists then PQ⊥(K) covers Q⊥/PQ⊥(ZN),
and in particular Vol(PQ⊥(K)) ≥ Vol(Q⊥/PQ⊥(ZN)). So it suffices to find a
rational subspace Q with the property that

Vol(PQ⊥(K)) < Vol(Q⊥/PQ⊥(ZN))
(2.2)
=

1

Vol(Q/Q ∩ ZN)
· (3.2)

Let {u1, . . . ,uk} be an orthonormal basis of U . By replacing K with a set
that contains it, it suffices to find Q satisfying (3.2) where

K =

{
k∑
i=1

aiui : |ai| ≤ t

}
, (3.3)

for some t > 0. We will look for Q = span {q}⊥, where q ∈ ZN . By Proposition
3.1, it would suffice to find q ∈ ZN with Vol(PQ⊥(K)) < 1

‖q‖ . For K as in (3.3),

denoting by (e1, . . . , eN) the standard basis, we have

Vol(PQ⊥(K)) ≤ 2
√
k · t ·max

{∣∣∣∣ei · q‖q‖
∣∣∣∣ : i ∈ {1, . . . , k}

}
,

and this expression is smaller than 1/ ‖q‖ if

max
1≤i≤k

{|ei · q|} < δ, where δ
def
=

1

2
√
kt
· (3.4)

Let L be a line in U⊥; then (3.4) clearly holds if q is a nonzero integer vector
in the δ-neighborhood of L; that is, in the set

C def
=
{
x ∈ RN : dist(x, L) < δ

}
.

Since C is a convex centrally symmetric body of infinite volume, by Minkowski’s
convex body theorem (see e.g. [13, p. 71]) such an integer vector q exists. �
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Proof of Theorem 1.1. Replacing TN if necessary with V · x, we may assume
that V is totally irrational. If n = N then Y is periodic, that is Y is a finite
union of cosets of a lattice Λ ⊂ Rn, and then we may take Z to be parallel to
an (n− 1)-dimensional subspace spanned by vectors in Λ.

So we can assume that n < N and YS,x0 is a (n,N)-toral dynamics set,
associated with the action of a totally irrational n-dimensional space V on the
torus TN . Set k = N − n. Then, by assumption, S = π(K), where K is
a compact subset of a k-dimensional affine space U ⊂ RN . Let z ∈ U ∩ V ,
and note that YS,x0 − z = Yπ(K−z),x0 . Then it suffices to show that Yπ(K−z),x0

is not a dense forest. Note that K − z ⊂ U − z which is a k-dimensional
subspace of RN . By Lemma 3.2 there exists an (N − 1)-dimensional rational

subspace Q ⊂ RN , and a coset Q̃ of it, such that π(K − z) ∩ π(Q̃) = ∅. Note

that Z
def
= V ∩ Q̃ is a (n− 1)-dimensional affine subspace of V and of Q̃. Since

π(K − z) ∩ π(Q̃) = ∅, and the sets π(K − z) and π(Q̃) are closed in TN ,

there exists some ε > 0 such that dTN (π(K − z), π(Q̃)) > ε. Then we also
have d(π(K − z), π(Z)) > ε. That is, any point which is ε-close to Z misses
YS,x0 − z, and this proves the assertion. �

4. An explicit uniformly discrete dense forest using toral
flows

In this section we will prove Theorems 2.4 and 2.5.
In order to see that a piecewise linearly unavoidable section exists, we refer

the reader to Figure 2.
We also sketch an alternative existence proof for linearly unavoidable sec-

tions, which uses toral dynamics and can be generalized to higher dimensions,
i.e. to the case N = n+ 1 for arbitrary n ≥ 2.

Sketch of another proof of Theorem 2.4. Let {Tj : j ∈ N} be an enumeration of
the 2-dimensional affine tori passing through the origin in T3. From Proposition
3.1 we have Vol(Tj)→∞ and from (2.2), Vol

(
TN/Tj

)
→ 0. Let J1, J2, J3 ⊂ R3

be closed line segments, in linearly independent directions, such that the images
in S =

⋃
π(Ji) are disjoint. Since the directions are linearly independent, there

is a uniform lower bound on the angle that each Tj makes with at least one of
the Ji. Therefore when projecting onto T3/Tj, for all large enough j, at least
one of the Ji projects onto the quotient T3/Tj. Thus for all sufficiently large
j, and every coset T ′j of Tj, we have T ′j ∩ S 6= ∅.

Now by adding finitely many line segments to S, and keeping the property
π(Ji1) ∩ π(Ji2) = ∅, we obtain a piecewise linear unavoidable section. �

Proof of Theorem 2.5. This is very close to the argument of [21, Proof of Thm.
1.3]. First note that uniform discreteness of Y follows from the fact that the
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Figure 2. A piecewise linearly unavoidable section in T3: any
2-torus intersects at least one of the faces of the cube in a loop,
and thus intersects the section.

segments comprising S are closed and disjoint, and the transversality assump-
tion. We prove that Y is a dense forest by contradiction. If not, then there
exists some ε > 0, unit vectors wj ∈ V , and Lj → ∞ such that the line

segments `j
def
= {xj + t ·wj : t ∈ [0, Lj]} satisfy dist(Y, `j) ≥ ε for all j. Denote

Kj
def
=
{
v ∈ V : dist(v, `j) ≤

ε

3

}
,

and define a sequence of Borel probability measures µj on T3 by

∀f ∈ C(T3),

∫
T3

fdµj
def
=

1

Vol(Kj)

∫
Kj

f(v · x0)dv,

where the integral on the right hand side is with respect to the Euclidean

volume on V . By passing to a subsequence we may assume that wj
j→∞−−−→ w,

and that µj
weak−∗−−−−→ µ. Since wj is the direction of the long axis of the cylinder

Kj, and since the stabilizer of a measure is a group, it follows that the measure

µ is invariant under H
def
= span(w). By [14, Chap. 3], every Borel probability

measure on T3, invariant and ergodic under H, is the Haar measure on some
rational torus T ⊂ T3. Note that such a T cannot be 1-dimensional. Indeed if
such a T is 1-dimensional then T = π(H), hence w is a rational direction in
the physical space V , contradicting the assumption that V does not contain
rational lines.
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Let g ∈ C(T3) be a bump function that is positive on S and supported on
the ε/3 neighborhood of S. Recall that since S is a piecewise linear unavoid-
able section, S intersects every 2-dimensional rational sub-torus of T3, and in
particular S ∩ T 6= ∅, for every T as above. This implies that

∫
T3 gdν > 0

for any ergodic H-invariant measure ν, and hence by ergodic decomposition,∫
T3 gdµ > 0. On the other hand, for every j and for every v ∈ Kj, by definition

dist(v, Y ) ≥ 2ε
3

, thus distT3(v · x0,S) ≥ 2ε
3

and v · x0 misses the support of g.
This implies g(v · x0) = 0, and hence

∫
T3 gdµj = 0 for every j, a contradiction

to µj
weak−∗−−−−→ µ.

Let I1, . . . , I` be line segments whose projections define S. Then each π(Ii)

is a linear section and hence the set Y =
⋃`
j=1 Yπ(Ii),x0 is a finite union of

cut-and-project sets as required. �

5. Finite unions of translated lattices and uniformly
Diophantine sets of vectors

We now move to results concerning finite unions of translated lattices.

5.1. More notation. The following notation will be used in the rest of the
paper. Given two expressions X and Y , we will use both of the notations
X � Y and X = O(Y ) to mean that X and Y are depending on some variables
and there exists a constant c > 0 (called the implicit constant), independent of
these parameters, such that X ≤ cY .

• Throughout we will have two dimensions n and d linked by the relation

n = d+ 1 ≥ 2.

• The coordinates of x ∈ Rn will be denoted by (x1, . . . , xn).
• ‖ · ‖∞ and ‖ · ‖2 will denote respectively the sup-norm and Euclidean

norm, B∞(x, r) and B2(x, r) will denote the respective open balls.
When making a statement which does not depend on the choice of
norm we will simply write ‖ · ‖ and B(x, r) unless these notations are
specifically defined otherwise.
• x·y will denote the usual scalar product between the vectors x, y ∈ Rn.
• π : Rn → Tn = Rn/Zn is the natural projection.
• 〈x〉Zn will denote the distance from x ∈ Rn to Zn with respect to the

sup-norm. Thus d(π(x), π(y)) = 〈x−y〉Zn is the metric on Tn induced
by ‖ · ‖∞. For n = 1 we will abbreviate this as 〈x〉Z = 〈x〉.
• A real n×m matrix A (where n,m ≥ 1) will be identified with a vector

in Rn×m by concatening its successive columns. Its transpose will be
the m× n matrix denoted by AT .
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5.2. On Peres’ construction of dense forests. We recap Peres’ explicit
construction of a discrete forest of bounded density, given in [6]. Let ϕ =
(1 +

√
5)/2 be the golden ratio and let

F1(ϕ)
def
= Z2 ∪

(
1 0
ϕ 1

)
· Z2.

Thus, F1(ϕ) is the union of the standard integer lattice in R2 with an irrational
shear of it1.

Applying Dirichlet’s theorem in Diophantine approximation, Peres proved
that F1(ϕ) is a dense forest when restricting to line segments with slope
bounded in absolute value by 1 (that is, to those line segments “close to hori-
zontal”). His argument ensured a visibility function of O (ε−4). Set

F2(ϕ)
def
= Z2 ∪

(
ϕ 1
1 0

)
· Z2

and note that F2(ϕ) is obtained by permuting the role of the coordinate axes
in the definition of F1(ϕ). This implies a similar bound for line segments
with slope bigger than 1 in absolute value (that is, any line segment “close to
vertical”). Thus, defining

F(ϕ)
def
= F1(ϕ) ∪ F2(ϕ)

(which is the union of three lattices), we have a dense forest with visibility
function satisfying v(ε) = O (ε−4) . See Figures 3 and 4, which represent re-
spectively the sets of points F1(ϕ) and F2(ϕ). Their union is the dense forest
F(ϕ) depicted in Figure 1.

1In fact, in [6], the slightly different set

((
1/2
0

)
+ Z2

)
∪
(

1 0
ϕ 1

)
· Z2 was used in place

of F1(ϕ).
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Figure 3. The ε-thickening of the
set F1(ϕ) represented above inter-
sects line segments “close to horizon-
tal”.

Figure 4. The ε-thickening of the
set F2(ϕ) represented above inter-
sects line segments “close to verti-
cal”.

The goal of this section is to generalize Peres’ construction, obtaining dense
forests in any dimension which are almost fully explicit (see Section 5.3 for
details) and with good visibility bounds. In particular we will improve the
visibility bound in Peres’ original planar forest.

Let J : Rn → Rn be the linear transformation that acts by permutating
coordinates as follows:

J (x1, x2, . . . , xn−1, xn)T = (x2, x3, . . . , xn, x1)T . (5.1)

Given an integer s ≥ 2, denote by

Θs,d = (θ1, . . . ,θs) (5.2)

an s-tuple of d-dimensional vectors.
Then define

F1 (Θs,d)
def
=

s⋃
i=1

(
1 0T

θi Id

)
· Zn, (5.3)

where Id stands for the d × d identity matrix. For ` = 1, . . . , n, let F` (Θs,d)
denote the image of F1 (Θs,d) under J `−1, i.e.

F` (Θs,d) = J `−1 (F1 (Θs,d)) , (5.4)
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and let

F (Θs,d)
def
=

n⋃
`=1

F` (Θs,d) . (5.5)

Note that F (Θs,d) is the union of at most ns lattices, and that Peres’ construc-
tion is F (Θ2,1) with Θ2,1 = (0, ϕ).

5.3. Visibility bounds for these forests. Recall that a vector θ ∈ Rd is
said to be Diophantine of type τ > 0 if there exists a constant c(θ) = c > 0
such that

∀u ∈ Zd\{0}, 〈u · θ〉 ≥ c

‖u‖τ
·

A multidimensional version of Dirichlet’s theorem (see [12, Theorem VI,
p.13]) implies that necessarily τ ≥ d. The visibility bounds in the forest (5.5)
will depend on a strenghtening of this concept:

Definition 5.1. Let Φ be a non-increasing function tending to zero at infinity.
An s-tuple of d dimensional vectors Θs,d, as in (5.2), is uniformly Diophantine
of type Φ if for any T ≥ 1 and any ξ ∈ Rd, there exists i ∈ {1, . . . , s} such that
for all u ∈ Zd\{0} with sup-norm at most T ,

〈u · (ξ − θi)〉 ≥ Φ(T ). (5.6)

The set of Θs,d that are uniformly Diophantine of type Φ will be denoted by
UDT ds (Φ). Thus, Θs,d ∈ UDT ds (Φ) means that

inf
T≥1

inf
ξ∈Rd

max
1≤i≤s

min
1≤‖u‖∞≤T

u∈Zd

{
Φ(T )−1 〈u · (ξ − θi)〉

}
≥ 1.

Also, given τ > 0, set

UDT ds (τ)
def
=
⋃
c>0

UDT ds
(
x 7→ cx−τ

)
.

It is easily seen that the set UDT ds (Φ) is translation invariant; that is, for
any α ∈ Rd,

(θ1, . . . ,θs) ∈ UDT ds (Φ) ⇐⇒ (θ1 +α, . . . ,θs +α) ∈ UDT ds (Φ).

In particular, from any uniformly Diophantine set of vectors of a given type, one
can obtain another uniformly Diophantine set of vectors of the same type such
that one of the latter vectors takes any predefined value. Also, if UDT ds (Φ) 6=
∅, then taking ξ = 0 in (5.6) and using Dirichlet’s theorem, one sees that
necessarily

Φ (T ) = O
(
T−d

)
. (5.7)
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Theorem 5.2. Assume that Θs,d ∈ UDT ds (Φ). Then the set F (Θs,d) con-
structed in (5.5) is a dense forest in Rn with visibility function satisfying

v(ε) = O

((
εd−1 · Φ

(
dε−1

)−1
)d)

. (5.8)

Theorem 5.2 will be established in §5.4. Note that as the bound on the
uniformly Diophantine type comes closer to the upper bound (5.7), the bound
(5.8) on the visibility approaches the optimal (1.1).

A number θ ∈ R is badly approximable if it is of Diophantine type τ = 1. It
is well-known that the golden ratio ϕ is badly approximable. It will be shown
in §7.1 that any (α, β)T ∈ R2, where β − α is a badly approximable number,
belongs to the set UDT 1

2 (3). Combined with Theorem 5.2, this implies that
the visibility bound in Peres’ original forest can be improved from O (ε−4) to
O (ε−3).

The property of being a uniformly Diophantine set of vectors will be related
in §7.1 to an explicit Diophantine condition. As a consequence, the existence
of such sets will be guaranteed in any dimension. More precisely, the following
result will be established in §7.2:

Theorem 5.3. Assume that s ≥ d + 1. Let Φ be a non-increasing function
tending to zero at infinity such that

lim inf
T→∞

Φ(2T )

Φ(T )
> 0 (5.9)

and
∞∑
m=1

2md(s+1)Φ (2m)s−d < ∞. (5.10)

Then, with respect to the d × s-dimensional Lebesgue measure, for almost all
Θs,d there is c = c (Θs,d) > 0 such that Θs,d ∈ UDT ds (cΦ).

As an immediate consequence of Theorems 5.2 and 5.3 we obtain:

Corollary 5.4. Under the assumptions of Theorem 5.3, the visibility in the
dense forest F (Θs,d) constructed in (5.5) can be bounded by (5.8) for almost
all Θs,d.

For instance, by setting

Φ(T ) = T−( d(s+1)
s−d

+η) for η > 0,

where s ≥ d+ 1, one sees that Theorem 1.4 is a consequence of Corollary 5.4.
Additional improvements are possible by setting

Φ(T ) = T−( d(s+1)
s−d ) log(T )−β

for appropriately chosen β = βs,d.
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5.4. Reduction to a Diophantine statement. In this subsection we will
examine what it means for a line segment L to be ε-close to the set F (Θs,d)
defined in (5.5). For the computations in this subsection it will be most con-
venient to work with the sup-norm on Rn, and so in this section ‖x‖ = ‖x‖∞.
As all norms on Rn are bi-Lipschitz equivalent to each other, and the prob-
lems we consider are insensitve to multiplications by constants depending on
dimension, this involves no loss of generality.

Let

0 < ε <
1

2

and let L be the parameterized line segment

L def
= {αt+ β : t ∈ [0,M ]} ,

where α,β ∈ Rn, ‖α‖ = 1, so that M ≥ 0 is at most the length of L and at
least a fixed constant multiple of it.

By (5.4) and (5.5), L is within distance ε of F (Θs,d) if and only if for some
`, J `(L) is within distance ε of F1 (Θs,d). Since the matrix J in (5.1) permutes
the coordinates, there is no loss of generality in assuming that ‖α‖ = |α1|
(where α1 denotes the first coordinate of α). Also by switching endpoints of
L if necessary we can assume α1 = 1. Thus we now assume

α1 = ‖α‖ = 1, (5.11)

and study when L comes ε-close to the set F1 (Θs,d) defined by (5.3).
Given k ∈ Z, and using (5.11), we see that L intersects the hyperplane
{x : x1 = k} precisely when β1 ≤ k ≤ β1 + M , and the intersection point is
given by α (k − β1) + β. It follows from (5.3) that this point comes ε-close to
F1 (Θs,d) when there exists an index 1 ≤ i ≤ s such that

〈α(k − β1) + β − kθi〉Zd = 〈k (α− θi) + β − β1α〉Zd < ε.

Write k = dβ1e+m, where 0 ≤ m ≤M is an integer and where d · e denotes
the ceiling function. Then the preceding discussion shows:

Proposition 5.5. Suppose that

∀ξ, ζ ∈ Rd, ∃0 ≤ m ≤M, ∃i ∈ {1, . . . , s} s.t. 〈m (ξ − θi) + ζ〉Zd < ε.
(5.12)

Then any line segment with length M gets ε-close to a point in F (Θs,d).

In turn, (5.12) is implied by the statement that for every ξ ∈ Rd there is
an index 1 ≤ i ≤ s for which the finite sequence (m · π (ξ − θi))0≤m≤M is ε-

dense in Td (with respect to the metric on Td induced by 〈 · 〉Zd). We will now
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investigate conditions under which the multiples of a vector are not ε-dense in
the torus. Given parameters ε > 0 and M ≥ 1, define

Cd(ε,M) =
{
ξ ∈ Td : the sequence (mξ)0≤m≤M is not ε-dense in Td

}
.

(5.13)
Let also

Sd(ε,M)
def
=

{
ξ ∈ Td : ∃u ∈ Zd\ {0} , ‖u‖ ≤ cdε

−1, 〈u · ξ〉 ≤ c′d ·
εd−1

M1/d

}
,

where

cd
def
= d and c′d

def
= d3/2. (5.14)

Proposition 5.6. With the above notation, assume that

M ≥ 2dε−d. (5.15)

Then,

Cd(ε,M) ⊂ Sd(ε,M).

Proposition 5.6 will be proved in the next section. We now use it to derive
Theorem 5.2.

Deduction of Theorem 5.2 from Proposition 5.6. Given ε > 0, M ≥ 1 and Θs,d

as in (5.2), set

Σd (ε,M,Θs,d)
def
=

s⋂
i=1

(Sd(ε,M) + θi) ,

where addition is taken on Td and we identify θi with its projection modulo
Zd.

Assume that Θs,d ∈ UDT ds (Φ). Definition 5.1 is then readily seen to imply
that the set Σd (ε,M,Θs,d) is empty whenever

M >
(
c′d · εd−1 · Φ

(
cdε
−1
)−1
)d
, (5.16)

in which case, for every ξ there exists an index i ∈ {1, . . . , s} such that ξ−θi 6∈
Sd(ε,M). Using (5.7) we see that (5.16) implies that M > cε−d for some
constant c depending only on d. Thus, replacing M if necessary by its constant
multiple, we have that (5.15) is also satisfied, and hence by Proposition 5.6 we
have that (m (ξ − θi))0≤m≤M is ε-dense in Td. This implies Theorem 5.2 via
Proposition 5.5. �
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6. Effective equidistribution in tori

The goal of this section is to prove Proposition 5.6. In this section, unless
stated otherwise, we continue with the notation ‖x‖ = ‖x‖∞, and use the met-
ric on Td induced by the sup-norm. The following lemma provides a necessary
condition for ξ ∈ Td to belong to the set Cd(ε,M) defined in (5.13). This
condition reduces the proof of Proposition 5.6 to the study of the multiples of
a rational vector.

Lemma 6.1. Assume that (5.15) holds. Then

Cd (ε,M) ⊂
⋃
p/q∈S

B

(
p

q
,

1

qM1/d

)
, (6.1)

where S is the set of all rational vectors p/q ∈ Td such that

1 ≤ q ≤M and
p

q
∈ Cd

(ε
2
, q
)
. (6.2)

Proof. We prove that the complement of the right hand side of (6.1) is con-
tained in the complement of the left hand side.

Let ξ ∈
⋂

p/q∈S

[
Td rB

(
p
q
, 1
qM1/d

)]
. By Dirichlet’s theorem, there exist a

vector p ∈ Zd and an integer 1 ≤ q ≤M such that∥∥∥∥ξ − pq
∥∥∥∥ < 1

qM1/d
·

This implies that p/q /∈ S, namely that (m · π(p/q))0≤m≤q−1 is ε/2-dense in

Td. Assuming (5.15), we show that (m · π(ξ))0≤m≤M is ε-dense in Td.
Let λ ∈ Td. By the ε/2-density of (m · π(p/q))0≤m≤q−1 there exists an

integer 0 ≤ m ≤ q − 1 such that〈
m
p

q
− λ

〉
Zd

<
ε

2
·

Then,

〈mξ − λ〉Zd =

〈
m

(
ξ − p

q

)
+

(
m
p

q
− λ

)〉
Zd

≤ m ·
∥∥∥∥ξ − pq

∥∥∥∥+

〈
m
p

q
− λ

〉
Zd

<
1

M1/d
+
ε

2
≤

(5.15)
ε,

whence the lemma. �



QUASICRYSTALS, LATTICES AND DENSE FORESTS 21

In view of Lemma 6.1, we wish to provide a necessary condition for the
relation p/q ∈ Cd

(
ε
2
, q
)

appearing in (6.2) to hold. For this we will recast
the statement in terms of lattices. Let Λ (p, q) be the lattice spanned by the
rational vector p/q ∈ Rd and by the vectors e1, . . . , ed of the standard basis of
Rd; that is,

Λ (p, q)
def
= spanZ

{
p

q
, e1, . . . , ed

}
⊂ Rd.

Also let
Λ∗ (p, q)

def
=
{
u ∈ Zd : p · u ≡ 0 (mod q)

}
.

It is easily seen that Λ (p, q) is the dual of Λ∗ (p, q), and of index q in Zd. From
this and (2.4) it is easy to deduce the following:

Lemma 6.2. The lattice Λ (p, q) has covolume 1/q whenever gcd(p, q) = 1,
and

π (Λ (p, q)) =

(
k · π

(
p

q

))
0≤k≤q−1

. (6.3)

Recall from §2.1 that λ1(Λ) and µ(Λ) denote respectively the first minimum
and the covering radius of a lattice Λ. We now show:

Lemma 6.3. Assume that the Euclidean length of the shortest nonzero vector
in Λ∗ (p, q) satisfies

λ1 (Λ∗ (p, q)) > d · ε−1.

Then the sequence (k · π (p/q))0≤k≤q−1 is ε/2-dense in Td.

Proof. A well-known result of Banaszczyk [5, Thm. 2.2], asserts that for any
lattice Λ ⊂ Rd, µ(Λ) · λ1(Λ∗) ≤ d/2 (we note that weaker results had been
known for some time, and these could also be used in our context, at the sole
expense of requiring a change in the constants appearing in (5.14)). Since
Λ(p, q) contains Zd, the sequence (6.3) will be ε/2-dense in Td (with respect
to the sup-norm) provided the sup-norm covering radius of Λ(p, q) is at most
ε/2. Thus the Lemma follows immediately from Banaszczyk’s bound and the
bound ‖x‖ ≤ ‖x‖2. �

We will need a further transference result (see [12, Theorem II, Chap. V] for
a proof):

Lemma 6.4 (Mahler’s Transference Theorem). Let ξ ∈ Rd and assume that
there is a nonzero integer q such that

〈qξ〉Zd ≤ C and |q| ≤ U,

for real parameters C and U satisfying 0 < C < 1 ≤ U . Then there is v ∈
Zd \ {0} such that

〈ξ · v〉 ≤ D and ‖v‖ ≤ V,



22 FAUSTIN ADICEAM, YAAR SOLOMON, AND BARAK WEISS

where

D = dU−(d−1)/dC, V = dU1/d.

Proof of Proposition 5.6. Let ξ ∈ Cd (ε,M), where M satisfies (5.15). From
Lemma 6.1, there exist p ∈ Zd and q ≥ 1 such that

‖qξ − p‖ ≤M−1/d (6.4)

and such that (6.2) holds.
Assume first that q < ε−d. Lemma 6.4, applied with the parameters

C =
1

M1/d
and U = ε−d,

yields the existence of v ∈ Zd such that

〈ξ · v〉 ≤ d · ε
d−1

M1/d
and 1 ≤ ‖v‖ ≤ d · ε−1.

In particular, ξ ∈ Sd(ε,M). Assume now that

q ≥ ε−d. (6.5)

Since p/q ∈ Cd( ε2 , q), Lemma 6.3 implies the existence of u ∈ Λ∗(p, q) ⊂ Zd
with

1 ≤ ‖u‖ ≤ ‖u‖2 ≤ d · ε−1, (6.6)

and hence such that, by (2.3),

p

q
· u = k

for some integer k. Then by the Cauchy-Schwarz inequality,

〈ξ · u〉 ≤ |ξ · u− k| =

∣∣∣∣(pq − ξ
)
· u
∣∣∣∣

≤
∥∥∥∥pq − ξ

∥∥∥∥
2

· ‖u‖2

≤
(6.4),(6.6)

√
d

qM1/d
· d · ε−1

≤
(6.5)

d3/2 · ε
d−1

M1/d
.

By (5.14), ξ ∈ Sd(ε,M) and the proof of Proposition 5.6 is complete. �
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6.1. An explicit uniformly discrete dense forest. In this section we prove
Theorem 1.3. We will work with a variant of the set F(Θs,d), which can be
analyzed in a similar way. Let α, β, γ, δ be nonzero real numbers satisfying the
following conditions:

(i) γ
δ(α+γ)

∈ Q.

(ii) (α + γ) (β + δ) = 1.
(iii) For any η > 0 there is c > 0 such that for any integers P,Q, not both

zero,

〈Pα +Qγ〉 ≥ cmax{|P |, |Q|}−(2+η)

and

〈Pβ +Qδ〉 ≥ cmax{|P |, |Q|}−(2+η).

Now define

Λ1 = Z2, Λ2 =

(
γ α
0 1

)
· Z2, Λ3 =

(
1 0
β δ

)
· Z2.

Theorem 1.3 follows from the following statements:

Proposition 6.5. Assuming (i), (ii), there are x2,x3 ∈ R2 such that Λ1 ∪
(x2 + Λ2) ∪ (x3 + Λ3) is uniformly discrete.

Proposition 6.6. Assuming (iii), for any η > 0 there is c > 0 such that for
any ε > 0, any x ∈ R2, any M > c/ε5+η, and any slope σ ∈ [−1, 1], the set
Λ1 ∪ (x+ Λ2) comes within ε of any ‘nearly vertical’ line segment

{y + tu : t ∈ [0,M ]}, where u = (σ, 1)T .

A similar statement holds replacing Λ2 with Λ3 and u with (1, σ)T (that is,
Λ1 ∪ (x+ Λ3) comes ε-close to ‘nearly horizontal’ segments).

Proposition 6.7. There are examples of numbers α, β, γ, δ satisfying hypothe-
ses (i)–(iii). For instance, one can define

α
def
=
√

2, β
def
= 3−

√
2 +
√

3−
√

6, γ
def
=
√

3, δ
def
= − 3 +

√
6.

Proof of Proposition 6.5. In light of Proposition 2.1, it is enough to show that
none of the three sets

Λ1 + Λ2, Λ1 + Λ3, Λ2 + Λ3

are dense in R2. This is clear for Λ1 + Λ2 (respectively, Λ1 + Λ3), since the
second (resp. first) coordinate of any vector in this set is an integer. For Λ2+Λ3

we note that by (ii),

det

(
α + γ 1

1 δ + β

)
= 0,
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and hence the two vectors (α + γ, 1)T ∈ Λ2, (1, δ + β)T ∈ Λ3 are collinear. Let

` denote the line perpendicular to (α + γ, 1)T . Note that u2 = (γ, 0)T ∈ Λ2 and
u3 = (0, δ)T ∈ Λ3. Then the following calculation shows that the projections
of u2,u3 onto ` are nonzero and commensurable:

u2 · (−1, α + γ)T

u3 · (−1, α + γ)T
=

−γ
δ(α + γ)

∈ Q.

This implies that the projection of Λ2 + Λ3 onto ` is not dense and in par-
ticular Λ2 + Λ3 6= R2. �

Proof of Proposition 6.6. We work with Λ1 ∪ (x + Λ3) and ‘nearly horizontal’
segments, the proof for nearly vertical segments being similar. Let

L = {`(t) : t ∈ [0,M ]} , where `(t) = (y1 + t, y2 + σt)T ∈ R2,

with
y1, y2, σ ∈ R and |σ| ≤ 1.

Also let x = (x1, x2)T .
As we saw in the proof of Proposition 5.5, if

(m · π (σ))1≤m≤M is ε-dense in T1 (6.7)

then Λ1 comes ε-close to L. By a similar argument, if(
m · π

(
σ − β
δ

))
1≤m≤M

is
ε

δ
-dense in T1 (6.8)

then x + Λ3 comes ε-close to L. Indeed, setting tm
def
= m − {y1 − x1} (where

{x} denotes the fractional part of x ∈ R), j = jm = m+ by1 − x1c (where bxc
denotes the integer part of x ∈ R), we have that

`(tm) =

(
y1 − {y1 − x1}+m
y2 − σ{y1 − x1}+ σm

)
=

(
x1 + j

y2 − σ{y1 − x1}+ σm

)
is ε-close to

x+ Λ3 =

{(
x1 + j

x2 + jβ + kδ

)
: j, k ∈ Z

}
when 〈

1

δ
(y2 − σ{y1 − x1} − x2 − βby1 − x1c) +m

(
σ − β
δ

)〉
<
ε

δ
.

So it remains to show that for M > c/ε5, for any σ ∈ R, at least one
of (6.7), (6.8) holds. If not, then by Lemma 6.1 there are q1, q2 ∈ Z with
1 ≤ |q1| ≤ (ε/2)−1, 1 ≤ |q2| ≤ (ε/2δ)−1 and p1, p2 ∈ Z such that

|q1σ − p1| <
1

M
and

∣∣∣∣q2

(
σ − β
δ

)
− p2

∣∣∣∣ < 1

M
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(note indeed that the set Cd(η, q) appearing in Lemma 6.1 is easily described
when d = 1 : it is the set of rationals p/q such that 1 ≤ |q| ≤ η−1 whenever
gcd(p, q) = 1). Multiplying the first formula by q2 and the second one by q1δ
and using the triangle inequality we obtain

|q1q2 β + q1p2δ − p1q2| <
2δ

εM
. (6.9)

Now set P = q1q2, Q = q1p2, and invoke assumption (iii), with η/2 in place of
η. At the possible expense of replacing M with its constant multiple, we see
that (6.9) cannot happen when M > c/ε5+η. �

Proof of Proposition 6.7. It is easy to check that (i) and (ii) are satisfied by
α, β, γ, δ. With these choices, α is an irrational in Q(

√
2), γ is an irrational

in Q(
√

3), and β, δ are in Q(
√

2,
√

3) such that 1, β, δ are linearly independent
over Q. Now requirement (iii) follows from a theorem of Schmidt, see [19, Cor.
1E, p.152]. �

7. A metric theory of uniformly Diophantine s–tuples

Throughout this section, Φ is a non-increasing function tending to zero at
infinity, s ≥ d+ 1, and Θ = Θs,d is an s-tuple of vectors in Rd.

7.1. Uniformly Diophantine s-tuples and multilinear algebra. Our goal
is to provide a sufficient condition for Θ to belong to the set UDT ds (Φ). We will
require some preliminaries from multilinear algebra. We introduce the required
notions and facts, referring to [8, Chap.3] for proofs and more details.

Equip Rs with its usual scalar product and let {ei}1≤i≤s be the standard
basis. The Grassmann algebra is the vector space∧

Rs def
=

s⊕
r=0

r∧
Rs

equipped with the inner product for which the set of wedge products ei1 ∧· · ·∧
eir , where

1 ≤ i1 < i2 < . . . < ir ≤ s and 0 ≤ r ≤ s,

is an orthonormal basis. A multivector X ∈
∧r Rs is said to be decomposable

if there exist x1, . . . ,xr in Rs such that X = x1∧ · · · ∧xr. The Cauchy-Binet
formula shows that the scalar productX ·Y between two pairs of decomposable
vectors X = x1 ∧ · · · ∧ xr and Y = y1 ∧ · · · ∧ yr is given by

X · Y = det (xi · yj)1≤i,j≤r .
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From now on, the notation ‖ . ‖ will be reserved for the norm derived from this
inner product (note that its restriction to

∧1Rs ' Rs is the usual Euclidean
norm ‖ . ‖2 in Rs).

Let P(
∧
Rs) be the space of lines in

∧
Rs, and for any subspace V of Rs,

given a basis v1, . . . ,vr of V , define XV ∈ P(
∧
Rs) as the line spanned by

v1 ∧ · · · ∧ vr ∈
∧r Rs. It is easily seen that this is well-defined (independent

of the choice of the basis), and it is known that the map V 7→ XV (which is
called the Plücker embedding) is a bijection between the set of r-dimensional
linear subspaces in Rs and the set of lines spanned by nonzero decomposable
multivectors in

∧r Rs. For any nonzero u ∈ Rs, the length of the projection of
u on the space orthogonal to V is given by

‖XV ∧ u‖
def
=
‖X̂V ∧ u‖
‖X̂V ‖

, where X̂V = v1 ∧ · · · ∧ vr,

and this is again independent of choices. The quantity ‖XV ∧u‖
‖u‖ is sometimes

called the projective distance between V and the line spanned by u. See [10,
§3] and [17, §2] for more details.

Given an integer T ≥ 1, define Vs,d(T ) to be the set of s×d integer matrices{
(u1, . . . ,us)

T ∈ Zs×d : ∀i ∈ {1, . . . , s}, ui ∈ Zd and 1 ≤ ‖ui‖∞ ≤ T
}
.

(7.1)
Furthermore, given a matrix U = (u1, . . . ,us)

T ∈ Vs,d(T ), define

tU (Θ)
def
= (u1 · θ1, . . . ,us · θs)T ∈ Rs (7.2)

and set for simplicity XU = Xcolspan(U), where colspan(U) is the subspace of
Rs spanned by the colums of the matrix U .

The main result in this section is then the following:

Proposition 7.1. Assume that Θ /∈ UDT ds (Φ). Then there exist T ≥ 1, p ∈
Zs and U ∈ Vs,d(T ) such that

|pi| ≤ 4
√
d · ‖ui‖2 ·max{1, ‖θi‖∞} (7.3)

for all i ∈ {1, . . . , s} and

yp (U ,Θ) = p+ tU (Θ) (7.4)

satisfies

‖XU ∧ yp (U ,Θ)‖ <
√
s · Φ(T ). (7.5)

In particular, Θ ∈ UDT ds (Φ) as soon as

inf
T≥1

min
U∈Vs,d(T )

inf
p∈Zs

(√
s · Φ(T )

)−1 · ‖XU ∧ yp (U ,Θ) ‖ ≥ 1. (7.6)



QUASICRYSTALS, LATTICES AND DENSE FORESTS 27

This condition should be compared with those appearing in the theory of
approximation of vectors by rational subspaces. Let y ∈ Rs be a nonzero
vector. In the standard theory (see [10, 17] and the references therein), one
is interested in showing the existence of rational s × d matrices U of a given
rank 1 ≤ r ≤ d for which the inequality ‖XU ∧ y‖ ≤ Φ(T ) holds under
the assumption that the so–called ‘Weil height’ of the subspace colspan(U) is
bounded by T (this height is at most (T ′)r if the columns of U have Euclidean
norms at most T ′). In the problem we are considering, the vector y is not fixed
but rather varies along with the approximant U , via formula (7.4).

Proposition 7.1 justifies a claim made after Theorem 5.2; namely that a pair

(α, β)T ∈ R2 such that σ
def
= β − α is a badly approximable number belongs to

UDT 1
2 (3). Indeed,

V2,1(T ) =
{

(q, v)T ∈ Z2 : 1 ≤ |q| , |v| ≤ T
}
.

From condition (7.6), the claim is easily seen to be implied by the existence of
a constant c = c (σ) > 0 such that for T ≥ 1,

min
1≤|q|,|v|≤T

〈qvσ〉√
q2 + v2

≥ c

T 3
·

This follows from the assumption that σ is a badly approximable number; that
is, from the relation infm∈Z\{0} |m| · 〈mσ〉 > 0.

Proof of Proposition 7.1. The condition Θ 6∈ UDT ds (Φ) means that there exist
T ≥ 1 and ξ ∈ Rd such that for each index 1 ≤ i ≤ s, one can find an integer
pi and an integer vector ui satisfying the relations

1 ≤ ‖ui‖∞ ≤ T and ui · ξ = pi + ui · θi + δi, with |δi| < Φ(T ). (7.7)

The pi here satisfy the bound (7.3). Indeed, we may assume (translating ξ by
an integer vector if necessary) that ‖ξ − θi‖∞ ≤ 1. Thus for any 1 ≤ i ≤ s, by
the Cauchy–Schwarz inequality,

|pi| ≤ ‖ui‖2 · (‖ξ‖2 + ‖θi‖2) + |δi|

≤ ‖ui‖2 ·
√
d · (1 + 2 ‖θi‖∞) + 1,

where the trivial bound Φ(T ) ≤ 1 guaranteed by (5.6) is used to obtain the
last inequality. Now define

• U as the s× d matrix U
def
= (u1, . . . ,us)

T ;

• p as the s-dimensional integer vector p
def
= (p1, . . . , ps)

T ;

• δ as the s-dimensional vector δ
def
= (δ1, . . . , δs)

T ;
• tU (Θ) as the s-dimensional vector (7.2).
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The system of equations (7.7) can then be rewritten as

Uξ = p+ tU (Θ) + δ (7.8)

with

U ∈ Vs,d(T ) and ‖δ‖∞ < Φ(T ). (7.9)

Consider ξ as the unknown in the linear system of s equations in d vari-
ables (7.8). Assume furthermore thatU has rank 1 ≤ r ≤ d, and let v1, . . . ,vr ∈
Zs denote r linearly independent columns of the matrix U . From the the-
ory of Gaussian elimination, the system (7.8) admits a solution if and only if
p+ tU (Θ) + δ ∈ span {v1, . . . ,vr}; that is, if and only if(

r∧
i=1

vi

)
∧ (p+ tU (Θ) + δ) = 0.

This equation can be rewritten as

X̂U ∧ (p+ tU (Θ)) = −X̂U ∧ δ,

where X̂U = v1∧ . . . ∧vr. Hadamard’s inequality (see [22, eq. (13) p.49]) then
implies that ∥∥∥X̂U ∧ (p+ tU (Θ))

∥∥∥ ≤ ∥∥∥X̂U

∥∥∥ · ‖δ‖2

<
(7.9)

√
s · Φ(T ) ·

∥∥∥X̂U

∥∥∥ ,
whence the Proposition. �

7.2. Towards a metric theory of uniformly Diophantine s-tuples. The
goal of this section is to establish Theorem 5.3. This will be done with the
help of several lemmas.

Lemma 7.2. Let r ∈ {1, . . . , s}, let X ∈
∧r Rs be a nonzero decomposable

multivector, and let x ∈ Rs. Then

‖X ∧ x‖ = ‖X‖ ·
∥∥P⊥X (x)

∥∥ ,
where P⊥X denotes the orthogonal projection onto the orthocomplement of the
subspace represented by X.

Proof. This is well–known. See [22, Chap.1. §15] for details. �

The following is an easy consequence of the compactness of the Grassmann
variety of k-dimensional subspaces in Rs. Note that an explicit value of the
constant cs below can be worked out from [18, Theorem 1] (one can for instance
take cs = 2−s−1).
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Lemma 7.3. There is a constant cs > 0 such that for any k ∈ {1, . . . , s}
and any k-dimensional subspace H ⊂ Rs, the following holds. Denote by PH
the orthogonal projection onto H and by (e1, . . . , es) the standard basis of
Rs. Then there exist indices 1 ≤ i1 < i1 < · · · < ik ≤ s such that for any
x ∈ span{eij}1≤j≤k,

‖PH (x)‖2 ≥ cs‖x‖2.

We will also need a consequence of the Brunn-Minkowski inequality (see [20,
§10.1] for a more detailed discussion).

Lemma 7.4. Let C and K be centrally symmetric convex bodies in Rk. Then
for any x ∈ Rk,

Vol (C ∩ (K + x)) ≤ Vol (C ∩K) . (7.10)

Proof. Let
C = {y ∈ Rk : C ∩ (K + y) 6= ∅},

and let
fC,K : C → R, fC,K(x)

def
= Vol (C ∩ (K + x))1/k .

Fix t ∈ (0, 1) and x,y ∈ C. Since

C ∩ (K + (1− t)x+ ty)) = C ∩ ((1− t) (K + x) + t (K + y))

⊃ (1− t) (C ∩ (K + x)) + t (C ∩ (K + y)) ,

the Brunn-Minkowski inequality implies that fC,K is concave on C. If x /∈ C
then (7.10) is immediate, so let x ∈ C. Since C and K are centrally symmetric,
we have fC,K(−x) = f−C,−K(−x) = fC,K(x), and thus the concave function

t ∈ [−1, 1] 7→ fC,K (tx)

is even. It therefore reaches its maximum when t = 0. �

With the notation of Proposition 7.1, given positive integers N, T and U ∈
Vs,d(T ), let E

(N)
s,d (U , T ) be the set of d× s-matrices Θ satisfying

‖Θ‖∞ < N (7.11)

and such that for some p ∈ Zs, (7.5) holds, and

|pi| ≤ 4
√
dN ‖ui‖2 for all i ∈ {1, . . . , s}. (7.12)

Note that this is just a reformulation of inequality (7.3) taking into account
assumption (7.11). Then we have:

Lemma 7.5. With the above notation,

Vol
(
E

(N)
s,d (U , T )

)
= O

(
T r · Φ(T )s−r

)
,

where r = rank(U ) and the implicit constant depends on s, d and N .
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Proof. Write the d × s matrix Θ = Θs,d ∈ E
(N)
s,d (U , T ) as in (5.2), and let

u1, . . . ,us ∈ Zd\{0} denote the transposes of the (nonzero) rows of U . Fix an

integer vector p
def
= (p1, . . . , ps)

T ∈ Zs for which (7.12) holds.
Each θi, i ∈ {1, . . . , s} can be written uniquely as

θi = λi ·
ui
‖ui‖2

+wi ∈ B∞ (0, N) , with wi · ui = 0, λi ∈ R. (7.13)

By the orthogonality in (7.13), upon identifying u⊥i with Rd−1, the volume
element on Rd can be decomposed in the coordinates (7.13) as

dθi = dλi · dwi, (7.14)

and moreover

|λi| <
√
dN and ‖wi‖∞ <

√
dN. (7.15)

From the condition Θ ∈ E(N)
s,d (U , T ) we will derive a restriction on the coeffi-

cients λ = (λi)i=1,...,s; for the vectors wi we will not have any further restriction
beyond the bound on the right-hand side (7.15), i.e., they are bounded by con-
stants depending only on d and N .

Let H(U) be the orthocomplement of the subspace of Rs spanned by the
columns of U , so that H(U) has dimension s − r, and let IU ⊂ {1, . . . , s} be
the set of s−r indices obtained when applying Lemma 7.3 to H(U). Denoting
by P the orthogonal projection onto H(U ), Lemma 7.2 and inequality (7.5)
imply that

‖P (yp (U ,Θ))‖ = ‖XU ∧ yp (U ,Θ)‖

< ρ
def
=
√
s · Φ(T ). (7.16)

In terms of the standard basis e1, . . . , es of Rs and using (7.2), (7.4) and (7.13),
this yields

‖P (yp (U ,Θ))‖ =

∥∥∥∥∥P
(

s∑
i=1

(λi ‖ui‖2 + pi) ei

)∥∥∥∥∥
2

< ρ,

which we can rewrite as∥∥∥∥∥∑
i∈IU

λi ‖ui‖2 · P (ei) + x

∥∥∥∥∥
2

< ρ, (7.17)

where

x =
∑
i∈IU

pi · P (ei) +
∑
i 6∈IU

(λi ‖ui‖2 + pi) · P (ei) ∈ H(U).
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Define the centrally symmetric polytope

Cλ
def
=

{∑
i∈IU

λi ‖ui‖2 · P (ei) : |λi| <
√
dN for all i ∈ IU

}
.

Then (7.17) shows that for Θ ∈ E(N)
s,d (U , T ), the coefficients λ satisfy

B2 (0, ρ) ∩ (Cλ + x) 6= ∅. (7.18)

Note that x only depends on (λi)i/∈IU and that Cλ depends only on (λi)i∈IU .
An immediate consequence of Lemma 7.4 is that the volume of the inter-

section (7.18) is less than the volume obtained when setting x = 0. In other
words, for each fixed x,

Vol
({

(λi)i∈IU ∈ R
s−r : (7.17) holds

})
≤ Vol

(λi)i∈IU :

∥∥∥∥∥P
(∑
i∈IU

λi ‖ui‖2 · ei

)∥∥∥∥∥
2

< ρ


 .

From Lemma 7.3 and the choice of the index set IU we find that∥∥∥∥∥∑
i∈IU

λi ‖ui‖2 · ei

∥∥∥∥∥
2

< κsρ (7.19)

for some constant κs > 0 depending only on s. From (7.16), the measure of the
ellipsoid determined by (7.19) is, up to a multiplicative constant depending on
the parameters s, d, r and N ,∏

i∈IU

Φ(T )

‖ui‖2

=
Φ(T )s−r∏
i∈IU ‖ui‖2

· (7.20)

This upper bound is independent of the remaining r coordinates (λi)i 6∈IU . When
integrating this bound against these r coordinates when they vary within
the range (7.15), one obtains that the measure of the set of vectors λ ∈
(−
√
dN,
√
dN)s such that (7.16) holds for a fixed integer vector p is, up to

another multiplicative constant depending on s, d, r and N , again bounded
above by (7.20).

Note that from (7.12), there are at most
(

16
√
dN
)s
×
∏s

i=1 ‖ui‖2 vectors p

to be taken into account. Also, from the definition of the set Vs,d(T ) in (7.1),
the inequality ‖ui‖2 ≤ T holds for all i ∈ {1, . . . , s}. The measure of the set

of vectors λ ∈ (−
√
dN,
√
dN)s such that (7.16) holds for some integer vector
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p is thus, up to a multiplicative constant depending on s, d, r and N , at most

Φ(T )s−r ·
∏
i 6∈IU

‖ui‖2 ≤ Φ(T )s−r · T r.

The lemma then follows upon integrating this bound according to the decom-
position (7.14) taking into account the right-hand side of (7.15). �

Completion of the proof of Theorem 5.3. Under the assumptions of Theorem 5.3,
using Proposition 7.1, it is enough to prove that for almost all matrices Θ ∈
Rd×s, there are only finitely many values of T ≥ 1 such that the relation (7.5)

holds for some matrix U ∈ Vs,d(T ) and some vector p = (p1, . . . , ps)
T ∈ Zs

satisfying (7.3).
Given an integer m ≥ 1 such that 2m ≤ T < 2m+1, it follows from the

monotonicity of the function Φ and from assumption (5.9) that

Φ (T ) ≤ Φ (2m) ≤ κΦ
(
2m+1

)
for some κ > 0 and for all m large enough. Since, clearly, Vs,d(T ) ⊂ Vs,d (2m+1),
this shows that it suffices to consider the case that T is a power of 2.

Fix an integer N ≥ 1. Then we see that Theorem 5.3 is implied by

Vol

lim sup
m→∞

 ⋃
U∈Vs,d(2m)

E
(N)
s,d (U , 2m)

 = 0. (7.21)

To establish this, decompose Vs,d (T ) as the disjoint union

Vs,d (T ) =
d⋃
r=1

V(r)
s,d (T ) ,

where V(r)
s,d (T ) denotes the set of matrices in Vs,d (T ) with rank r and note that

the number of integral s× d matrices of norm at most T is O(T sd). Thus

Vol

 ⋃
U∈Vs,d(2m)

E
(N)
s,d (U , 2m)

 ≤ d∑
r=1

∑
U∈V(r)

s,d(2m)

Vol
(
E

(N)
s,d (U , 2m)

)

�
(Lemma 7.5)

2msd
d∑
r=1

2mr · Φ (2m)s−r

� 2m(s+1)d · Φ (2m)s−d ,

where the last relation follows from the trivial bound Φ(T ) ≤ 1 guaranteed
by (5.6). Now (5.10) in conjunction with the Borel–Cantelli Lemma (see e.g.
[9, Lemma C.1]) imply (7.21). �
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8. Some open questions

In this section we collect some questions left open by our discussion.

(1) What is the actual optimal bound on the visibility function in Peres’
original example? Note that Peres gave a bound of O(ε−4), which
we improved to O(ε−3), but it is possible that this bound is also not
tight. More generally, can one improve the visibility bounds of the sets
F (Θs,d) for appropriate choices of Θs,d? Similarly, can one prove bet-
ter visibility bound for the uniformly discrete dense forest discussed in
Theorem 1.3?

(2) As was pointed out by the referee, the discovery of the intriguing phys-
ical properties of twisted bilayer graphene (see [7, 11] and references
therein) motivates the particular study of unions of translated lattices
of the following form. Let

Λ = spanZ

((
1
0

)
,

( 1
2√
3

2

))
⊂ R2

(the honeycomb lattice), let θ1, . . . , θk ∈ S1, let rθi : R2 → R2 be the
corresponding rotation matrices, and let x1, . . . ,xk ∈ R2. With this
data, consider the union

TBG (k, (xi) , (θi))
def
=

k⋃
i=1

(rθi(Λ) + xi) .

• What is the smallest k for which one can find θi and xi so that
TBG (k, (xi) , (θi)) is a dense forest? In particular, can one can
take k = 2? Can one obtain uniformly discrete dense forests with
k = 3 (note that by Corollary 2.2, k = 2 is impossible).
• Is there k for which TBG (k, (xi) , (θi)) is a dense forest, for a.e.

choice of θi and xi?
• What visibility bounds can be obtained for fixed k and for large
k?

It is likely that all of these questions can be fruitfully studied by adapt-
ing the techniques of this paper.

(3) For appropriate choices of the subspace V , give visibility bounds for
the uniformly discrete example of Theorem 2.5.

(4) What is the best rate that the function Φ can attain for the set UDT ds (Φ)
to be nonempty?



34 FAUSTIN ADICEAM, YAAR SOLOMON, AND BARAK WEISS

(5) Explicit examples of badly approximable numbers / vectors / matrices
are known: they are constructed from sets of algebraic conjugates. Can
one find explicit examples of elements in UDT ds (Φ)?

(6) The notion of uniformly Diophantine set of vectors has not been consid-
ered before, but well-studied questions of Diophantine approximation
are of interest here. For example, the Hausdorff dimension of UDT ds (Φ)
for various choices of Φ. Also, for which choices of Φ does UDT ds (Φ)
intersect nondegenerate analytic manifolds nontrivially? Note that be-
sides its explicit interest, this is likely to be relevant to Question 1 above,
as the conditions under which a union of lattices is uniformly discrete
leads to the consideration of submanifolds in the space of lattices; see
conditions (i) and (ii) of §6.1.
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