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Abstract. We prove that in every compact space of Delone sets in Rd which is min-
imal with respect to the action by translations, either all Delone sets are uniformly
spread, or continuously many distinct bounded displacement equivalence classes are rep-
resented, none of which contains a lattice. The implied limits are taken with respect to
the Chabauty–Fell topology, which is the natural topology on the space of closed sub-
sets of Rd. This topology coincides with the standard local topology in the finite local
complexity setting, and it follows that the dichotomy holds for all minimal spaces of
Delone sets associated with well-studied constructions such as cut-and-project sets and
substitution tilings, whether or not finite local complexity is assumed.

1. Introduction

A set Λ Ă Rd is called a Delone set if it is both uniformly discrete and relatively dense,
that is, if there are constants r, R ą 0 so that every ball of radius r contains at most one
point of Λ and Λ intersects every ball of radius R. We refer to r and R as the separation
constant and the packing radius of Λ, respectively. Two Delone sets Λ,Γ Ă Rd are said to
be bounded displacement (BD) equivalent if there exists a bijection φ : Λ Ñ Γ satisfying

sup
xPΛ

}x´ φpxq} ă 8.

Such a mapping φ is called a BD-map. Note that since norms in Rd are equivalent, this
definition does not depend on the choice of norm. Lattices in Rd with the same covolume
are BD-equivalent, and a Delone set Λ is called uniformly spread if it is equivalent to a
lattice, or equivalently, if there is a BD-map φ : Λ Ñ αZd, for some α ą 0.

Fix a metric ρ on Rd and consider the space C pRdq of closed subsets of Rd. The
Chabauty–Fell topology on C pRdq is the topology induced by the metric (see Appendix A)

D pΛ0,Λ1q
def
“ inf

˜#

ε ą 0
ˇ

ˇ

ˇ

Λ0 XBp0, 1{εq Ă Λ
p`εq
1

Λ1 XBp0, 1{εq Ă Λ
p`εq
0

+

Y t1u

¸

, (1.1)

where Bpx, Rq is the open ball of radius R ą 0 centered at x P Rd with respect to the
metric ρ, and Ap`εq is the ε neighborhood of the set A. In this work we only consider
metrics ρ that are determined by norms on Rd, and although different choices of norms
result in different metrics D, they all define the same topology. We remark that in the
aperiodic order literature, this topology, which was introduced by Chabauty [Ch] for
C pRdq as well as for a more general setting, and later extended by Fell [Fe], is often
referred to as the natural topology or the local rubber topology, see e.g. [BG, §5]. See also
[LSt] for the relation to the Hausdorff metric.

Delone sets in Rd are elements of C pRdq, and we may consider compact spaces of Delone
sets, where the implied limits are taken with respect to the Chabauty–Fell topology. Such
a space X of Delone sets in Rd is minimal with respect to the Rd action by translations if
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the orbit closure of every Delone set Λ P X is dense in X. Minimality of X is equivalent
to the recurrence of patches in each Delone set Λ P X, where a patch is a finite subset
of a Delone set. This important geometric consequence of minimality is called almost
repetitivity, and a precise definition and additional details will be given in §3. For a
proof of this equivalence see [FR, Theorem 3.11] and [SS, Theorem 6.5], and see also the
discussion included in [KL].

Denote the cardinality of the set of BD-equivalence classes represented in X by BDpXq.
The following dichotomy is our main result.

Theorem 1.1. Let X be a space of Delone sets in Rd, and assume it is compact with
respect to the Chabauty–Fell topology and minimal with respect to the action of Rd by
translations. Then either

(1) there exists a uniformly spread Delone set in X (and so every Λ P X is uniformly
spread and BDpXq “ 1),
or

(2) BDpXq “ 2ℵ0,

where 2ℵ0 denotes the cardinality of the continuum.

Observe that the minimality assumption is essential, as shown by the following simple
example. Consider Λ “ p´2Nq \ t0u \ N, a Delone set in R. Then the orbit closure X
of Λ under translations by R and with respect to the Chabauty–Fell topology, consists of
translations of Λ, the orbit closure of Z and the orbit closure of 2Z. Therefore BDpXq “ 3,
and indeed X is not minimal.

Let us describe the proof of Theorem 1.1. The implication in the brackets of (1) is
a direct consequence of [La, Theorem 1.1], see also [FG, Theorem 3.2] for a sketch of a
similar proof that holds for general minimal spaces of Delone sets. A uniformly discrete
set in Rd with separation constant r ą 0 is BD-equivalent to a subset of the lattice r

2
Zd,

hence the upper bound BDpXq ď 2ℵ0 is trivial. We prove the remaining implication
according to the following steps. Given a non-uniformly spread Delone set in a minimal
space X, we construct in §4 a sequence of pairs of patches consisting of an increasingly
deviant number of points. by §3, choosing a patch from each pair, which corresponds to
the choice of a word on a two letter alphabet, gives rise to a Delone sets in X with certain
properties. Finally, it is shown in §5 that using the equivalent condition for non-BD
equivalence of two Delone sets established in §2, two Delone sets defined using words that
differ in infinitely many places are BD-non-equivalent, and so X contains continuously
many BD-equivalence classes. y many places must be BD-non-equivalent.

Recall that a Delone set Λ has finite local complexity (FLC) if for every R ą 0 the
number of distinct patterns that are contained in balls of radius R in Λ up to translations
is finite. In such case every Delone set in the orbit closure of Λ under translations,
sometimes called the hull of Λ, also has FLC. The hull itself is then called FLC, and the
Chabauty–Fell topology on X coincides with the local topology, see [BG, §5]. It follows that
Theorem 1.1 holds also for FLC spaces with respect to the local topology, and constitutes
a new result both in the FLC and non-FLC setup. In particular, it answers question (1)
in [FG, §7] in the strongest possible way.

In addition to Theorem 1.1, we establish in Theorem 2.3 a useful equivalent condition
for two Delone sets to be non-BD equivalent. This result is the converse of the implication
of Theorem 2.2 which first appeared in [FSS], and may be of interest in its own right.
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Delone sets are mathematical models of atomic positions, and BD-equivalence offers
a natural way of classifying them. BD-equivalence for general discrete point sets was
previously considered mainly in the context of uniformly spread point sets, see e.g. [DO1,
DO2, La] and [DSS]. In recent years, BD-equivalence emerged as an object of study for
Delone sets that appear in the study of mathematical quasicrystals and aperiodic order,
see [BG] for a comprehensive introduction to such constructions. For cut-and-project sets,
BD-equivalence was studied in [HKW], and links to the notions of bounded remainder
sets and pattern equivariant cohomology appeared in [FG, HK, HKK] and in [KS1, KS2],
respectively. For Delone sets associated with substitution tilings, sufficient conditions for
a set to be uniformly spread were provided in [ACG], [S1] and [S2]. In addition, for the
multiscale substitution tilings introduced by the authors in [SS], it was shown that any
Delone set associated with an incommensurable tiling cannot be uniformly spread.

Recently, questions regarding BD-non-equivalence between two Delone sets were con-
sidered in [FSS], where a sufficient condition for BD-non-equivalence was established. It
was later shown in [S3] that if the eigenvalues and eigenspaces of the substitution ma-
trix satisfy a certain condition, then the corresponding substitution tiling space contains
continuously many distinct BD-classes.

The following less restrictive equivalence relation on Delone sets is often studied in par-
allel to the BD-equivalence relation. We say that two Delone sets Λ and Γ are biLipschitz
(BL) equivalent if there exists a biLipschitz bijection between them. Namely, a bijection
ϕ : Λ Ñ Γ and a constant C ě 1 so that

@x,y P Λ
1

C
ď
}ϕpxq ´ ϕpyq}

}x´ y}
ď C.

It was shown by Burago and Kleiner [BK1] and independently by McMullen [McM], that
there exist Delone sets in Rd, d ě 2, that are not BL-equivalent to a lattice in Rd. It was
shown in [Mag] that there are continuously many Delone sets that are pairwise BL-non-
equivalent, and a hierarchy of equivalence relations on Delone sets, which includes BD
and BL equivalence, was recently introduced in [DK]. It would be interesting to obtain
an analogue of our Theorem 1.1 in this context.

Question. Does Theorem 1.1 hold if BD-equivalence is replaced by BL-equivalence?

In view of the sufficient condition for BL-equivalence to a lattice given by Burago and
Kleiner in [BK2] and the constructions in [CN] and [Mag], we remark that the results
given in §3 and §4 regarding densities and discrepancy estimates may be relevant also in
the study of BL-non-equivalence and the question stated above.

1.1. Consequences of Theorem 1.1. Theorem 1.1 directly implies that BDpXq “ 2ℵ0

for many special families of minimal spaces of Delone sets which are central in the theory
of aperiodic order, and for which the BD-equivalence relation was previously considered.

1.1.1. Substitution tilings: For primitive substitution tilings of Rd, we denote by λ1 ą

|λ2| ě . . . ě |λn| the eigenvalues of the substitution matrix, and we let t ě 2 be the
minimal index such that the eigenspace of λt contains non-zero vectors whose sum of
coordinates is not zero. Under the assumption that tiles are bi-Lipschitz homeomorphic
to closed balls, it was shown in [S2, Theorem 1.2 (I)] that if

|λt| ą λ
pd´1q{d
1 (1.2)
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then the Delone sets corresponding to the tilings in the tiling space are not uniformly
spread. Under the assumption (1.2) and an additional assumption regarding the existence
of certain patches, it was recently shown in [S3] that BDpXq “ 2ℵ0 . Given the above
result of [S2], and since substitution tiling spaces are minimal (see [BG]), the following
strengthening of the main result of [S3] is a direct consequence of our Theorem 1.1.

Corollary 1.2. Let X be a primitive substitution tiling space with tilings by tiles that
are bi-Lipschitz homeomorphic to closed balls. Assume that condition (1.2) holds, then
BDpXq “ 2ℵ0.

Note that in the context of tilings, we say that two tilings are BD-equivalent if their
corresponding Delone sets, which are obtained by picking a point from each tile, are BD-
equivalent. In addition to the above, [S2] contains an example of a substitution rule, for
which the eigenvalues of the substitution matrix satisfy

|λ2| “ λ
pd´1q{d
1 (1.3)

and the corresponding Delone sets are not uniformly spread, see [S2, Theorem 1.2 (III)].
Note that in this example the main result of [S3] cannot be applied.

Corollary 1.3. There exists a primitive substitution tiling space X for which condition
(1.3) holds and BDpXq “ 2ℵ0.

1.1.2. Cut-and-project sets: Theorem 1.2 in [HKW] concerns the BD-equivalence relation
in the context of cut-and-project sets that arise from linear toral flows (which constitute
an equivalent method of constructing cut-and-project sets, see [ASW, Proposition 2.3]).
Since the hull of a cut-and-project set is minimal, the corollary below follows directly from
[HKW, Theorem 1.2 (III)] and our Theorem 1.1. We refer to [HKW] for more details on
the construction and terminology.

Corollary 1.4. For almost every pk ´ dq-dimensional linear section S, which is a par-
allelotope in the k-dimensional torus, there is a residual set of d-dimensional subspaces
V for which the hull of the corresponding cut-and-project set contains continuously many
distinct BD-classes.

The half-Fibonacci sets were introduced in [FG, §6]. These are cut-and-project sets in
R that belong to the same hull and are BD-non-equivalent. In particular, they are not
uniformly spread (see [FG, Theorem 3.2]). We thus obtain the following result.

Corollary 1.5. Let X be the hull of the half-Fibonacci sets from [FG]. Then BDpXq “ 2ℵ0.

1.1.3. Multiscale substitution tilings: Multiscale substitution tilings were recently studied
in [SS]. Under an incommensurability assumption on the underlying substitution scheme
the corresponding tiling spaces are minimal [SS, §6], and combined with a mild assumption
on the boundaries of the prototiles which holds for example for polygonal tiles, their
associated Delone sets, which are never FLC, are also never uniformly spread [SS, §8].

Corollary 1.6. Let X be an incommensurable multiscale polygonal tiling space. Then
BDpXq “ 2ℵ0.

A proof of Theorem 1.1 in the FLC setup was given in [FGS], which appeared after the
first version of this paper came out. Their work is independent of ours.

Acknowledgments. We are grateful to the anonymous referee for many insightful sug-
gestions and remarks.



A DICHOTOMY FOR BD EQUIVALENCE OF DELONE SETS 5

2. Necessary and sufficient conditions for BD-non-equivalence

2.1. Notations. Bold figures will be used to denote vectors in Rd, and we will use the
supremum norm }¨}

8
on Rd throughout this document. Note that with respect to this

norm, balls are (Euclidean) cubes, and we use both terms interchangeably. We denote
by BA, |A| and volpAq the boundary, cardinality and Lebesgue measure of a set A Ă Rd,
respectively, and we denote by #S the cardinality of a finite set S. Given ε ą 0 and
A Ă Rd we denote the ε-neighborhood of A by

Ap`εq
def
“ tx P Rd

| distpx, Aq ď εu,

where distpx, Aq “ inft}x´ a}
8
| a P Au. For an integer m ą 0 we denote by

Qdpmq
def
“

#

d
ą

i“1

rai, ai `mq | a1, . . . , ad P mZ

+

,

the collection of all half-open cubes in Rd with edge-length m and with vertices in mZd,
and we denote by Q˚

dpmq the collection of finite unions of elements from Qdpmq. In the
case m “ 1 we simply write Qd and Q˚

d. For A P Qd the notation vold´1pBAq stands
for the pd ´ 1q-Lebesgue measure of BA. The following lemma is a direct consequence of
Lemmas 2.1 and 2.2 of [La].

Lemma 2.1. Let F be a translated copy of an element of Q˚
d and let s ą 0, then

vol
`

pBF qp`sq
˘

ď c0 ¨ s
d
¨ vold´1pBF q, (2.1)

where c0 depends only on d.

2.2. BD-equivalence. The following condition for non-BD-equivalence of two Delone
sets in Rd was given in [FSS].

Theorem 2.2. [FSS, Theorem 1.1] Let Λ0,Λ1 be two Delone sets in Rd and suppose that
there is a sequence pAmqmPN of sets, Am P Q˚

d, for which

|#pΛ0 X Amq ´#pΛ1 X Amq|

vold´1pBAmq
mÑ8
ÝÝÝÑ 8.

Then there is no BD-map φ : Λ0 Ñ Λ1.

We show that the converse also holds (compare [La, Lemma 2.3]).

Theorem 2.3. The following are equivalent for two Delone sets Λ0,Λ1 in Rd.

(i) There is no BD-map between Λ0 and Λ1.
(ii) There is a sequence pAmqmPN of sets, which are translated copies of elements of

Q˚
d, such that

|#pΛ0 X Amq ´#pΛ1 X Amq|

vold´1pBAmq
mÑ8
ÝÝÝÑ 8. (2.2)

Proof. The implication piiq ñ piq follows from Theorem 2.2, since translating the sets Am
by at most

?
d changes the numerator by at most a constant times vold´1pBAmq.

For piq ñ piiq, suppose that there is no BD-map between Λ0 and Λ1, that is, no bijection
φ : Λ0 Ñ Λ1 that satisfies

sup
xPΛ0

}x´ φpxq}
8
ă 8.
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For every m P N consider the bipartite graph Gm
def
“ pΛ0 \ Λ1, Emq, where

Em “
!

tx,yu | x P Λ0,y P Λ1, }x´ y}
8
ď 2m

)

.

The existence of a perfect matching in Gm for some m would imply the existence of a
BD-map between Λ0 and Λ1, contradicting our assumption. Thus by Hall’s marriage
theorem (see e.g. [Ra]), for every m P N there is a set Xm Ă Λim , im P t0, 1u, so that

#Xm ą #pX
p`2mq
m X Λ1´imq. Fix m P N, and assume without loss of generality that

im “ 0. Set

Am
def
“

ď

tQ P Qdpmq | QXXm ‰ ∅u P Q˚
dpmq.

For Q P Qdpmq let Q1 be a cube of edge-length 3m which is concentric with Q, and set

Bm
def
“

ď

tQ1 | Q P Qdpmq, QXXm ‰ ∅u P Q˚
dpmq.

Clearly Bm Ą Am Ą Xm, and by the triangle inequality we have X
p`2mq
m Ą Bm. Therefore

#pΛ0 X Amq ą #pΛ1 XBmq “ #pΛ1 X Amq `#pΛ1 X pBm r Amqq,

which implies

#pΛ0 X Amq ´#pΛ1 X Amq ą #pΛ1 X pBm r Amqq.

It is left to show that #pΛ1XpBmrAmqq{vold´1pBAmq
mÑ8
ÝÝÝÑ 8, which is a consequence

of the following argument, taken from the proof of [La, Lemma 2.3]. Suppose that BAm
consists of s faces of cubes in Qdpmq. For each such face, let Pj be the cube in Qdpmq
contained in Bm r Am with boundary containing that face. Note that P1, . . . , Ps are not
necessarily distinct and that each cube has 2d faces, and so

2d ¨ volpBm r Amq ě
s
ÿ

j“1

volpPjq “ s ¨md
“ m ¨ s ¨md´1

“ m ¨ vold´1pBAmq.

The relative denseness of Λ1 implies that #pΛ1XpBmrAmqq ě c ¨volpBmrAmq for some
constant c ą 0 independent of m, and the proof follows. �

Corollary 2.4. Let pAmqmPN be a sequence of sets as in (2.2), then for every R ą 0 there
exists M ą 0 so that for every m ěM each Am contains a ball of radius R.

Proof. Let R ą 0 and suppose that there is a sequence mj Ñ 8 such that for every j the
set Amj

does not contain a ball of radius R. Then for every j we have Amj
Ă pBAmj

qp`Rq

and thus by Lemma 2.1

volpAmj
q ď c0 ¨R

d
¨ vold´1pBAmj

q.

Since Λ0 and Λ1 are uniformly discrete and relatively dense, there exist constants a, b ą 0
so that for every j

a ¨ volpAmj
q ď #pΛ0 X Amj

q,#pΛ1 X Amj
q ď b ¨ volpAmj

q.

Combining the above implies that for every j we have

|#pΛ0 X Amj
q ´#pΛ1 X Amj

q|

vold´1pBAmj
q

ď pb´ aqc0 ¨R
d,

contradicting (2.2). �
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3. The topology on spaces of Delone sets

We consider the dynamical system pX, d,Gq, where pX, dq is a compact metric space
and G is a group acting on X. The dynamical system pX, d,Gq is called minimal if every

G-orbit, G.x
def
“ tg.x | g P Gu for x P X, is dense in pX, dq. A set S Ă G is called syndetic

if there is a compact set K Ă G so that for every g P G there is a k P K with kg P S.
Note that when G “ Rd this notion coincides with our definition of a relatively dense set.
A point x0 P X is said to be uniformly recurrent if for every open neighborhood U of x0

the set of ‘return times’ to U , tg P G | g.x0 P Uu, is syndetic. As shown in [Fu, Theorem
1.15], in minimal systems every point is uniformly recurrent.

Recall that given a metric ρ on Rd we may use (1.1) to define a metric D on C pRdq, the
space of closed subsets of pRd, ρq, and that this metric induces the Chabauty–Fell topology.
Here and in what follows we take ρ to be the metric defined by the supremum norm }¨}

8

on Rd. Note that replacing it with any other norm on Rd, such as the Euclidean norm,
would change the metric D but not the induced topology, also known as the local rubber
topology in the context of aperiodic order. It is known that D is a complete metric on
C pRdq, and the space

`

C pRdq, D
˘

is compact, see e.g. [dH], [LSt].

Let X be a collection of Delone sets in Rd. Under the additional assumptions that X is
a closed subset of C pRdq and that Rd acts on X by translations, the space pX, D,Rdq is
a compact dynamical system. We say that Λ P X is almost repetitive if for every x P Rd

and ε ą 0 there exists R “ Rpε,xq ą 0 such that every ball Bpy, Rq in Rd contains a
vector v P Rd that satisfies

DpΛ´ x,Λ´ vq ă ε.

In words, for every x P Rd and ε ą 0 there exists R ą 0 so that a copy of Bp0, 1{εqXpΛ´xq
can be found in every R-ball, up to wiggling each point by at most ε. We also refer to
[FR, Definitions 2.8, 2.13, 3.5] and to [LP] for distinctions between similar definitions of
repetitivity.

The observation in Lemma 3.1 is useful when working with the metric D in spaces of
uniformly discrete point sets.

Lemma 3.1. Suppose that Λ0,Λ1 Ă Rd are uniformly discrete sets with separation con-
stant r ą 0, and that D pΛ0,Λ1q ă ε for 0 ă ε ă r{2. Then for every set A Ă Bp0, 1{εq
that is a translated copy of an element of Q˚

d, there exist injective maps

ϕ0 : Λ0 X AÑ Λ1 X A
p`εq, ϕ1 : Λ1 X AÑ Λ0 X A

p`εq,

that satisfy

@x P Λ0 X A : }x´ ϕ0pxq}8 ă ε, @y P Λ1 X A : }y ´ ϕ1pyq}8 ă ε. (3.1)

In particular, there is a constant c1 that depends on d and r so that

|#pΛ0 X Aq ´#pΛ1 X Aq| ď c1 ¨ ε
d
¨ vold´1pBAq. (3.2)

Proof. Given A Ă Bp0, 1{εq as above, since D pΛ0,Λ1q ă ε, the existence of ϕ0, ϕ1 sat-
isfying (3.1) follows directly from the definition of D in (1.1). Note that the maps are
injective since ε ă r{2. Therefore

|#pΛ0 X Aq ´#pΛ1 X Aq| ď #
`

Λ0 X pBAq
p`εq

˘

`#
`

Λ1 X pBAq
p`εq

˘

.

Since Λ0 and Λ1 are uniformly discrete and in view of Lemma 2.1, (3.2) follows. �
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We remark that if Λ is a Delone set in Rd with separation constant and packing radius
r, R ą 0, and if X is the orbit closure of Λ with respect to D, then every Γ P X is a Delone
set with separation constant at least r and packing radius at most R.

The following lemma shows that minimal spaces are uniformly almost repetitive. Namely,
the radius Rpx, εq from the definition of almost repetitivity above does not depend on x.

Lemma 3.2. Let X be a compact space of Delone sets so that the dynamical system
pX, D,Rdq is minimal. Then for every 0 ă ε ă 1 there exists R “ Rpεq ą 0, so that for
every Λ,Γ P X and y P Rd, there exists some v P Bpy, Rq for which

DpΓ,Λ´ vq ă ε.

Proof. Let ε ą 0, and let Λ P X and x P Rd. By minimality, the set Λ ´ x is uniformly

recurrent. For η ą 0 denote Ux
η

def
“ tΛ1 P X | DpΛ ´ x,Λ1q ă ηu, then the set tv P Rd |

Λ´v P Ux
ε{2u is relatively dense (syndetic). In other words, there exists Rx

ε{2 ą 0 such that

every cube of edge-length Rx
ε{2 in Rd contains some v P Rd satisfying DpΛ´x,Λ´vq ă ε{2.

By minimality again, the collection tΛ ´ x | x P Rdu is dense in X. Thus tUx
ε{2uxPRd

is an open cover of X, and by compactness there exists a finite sub-cover Ux1

ε{2, . . . , U
xn

ε{2.

Then for every Γ P X these exists some j P t1, . . . , nu so that Γ P U
xj

ε{2, and hence

DpΓ,Λ ´ xjq ă ε{2. Setting R
def
“ maxtRx1

ε{2, . . . , R
xn

ε{2u, it follows that for every y P Rd

there exists some v P Bpy, R
xj

ε{2q Ă Bpy, Rq such that DpΛ ´ xj,Λ ´ vq ă ε{2. Then by

the triangle inequality DpΓ,Λ´ vq ă ε, as required. �

In Proposition 3.3 below we consider a Delone set Λ in a minimal space, and show that
if sets Am in Q˚

d grow sufficiently fast, then there exist translation vectors um so that
the patches Qm “ pΛ X Amq ´ um converge to a limit object that “almost” contains all
of the Qm’s. The idea of the proof is simply to use the almost repetitivity property to
inductively find an “almost” copy of Qm´1 inside Λ X Am, and to set um so that it is
centered accordingly, namely so that the copy we find “almost” agrees with Qm´1. Note
that every sequence of sets that grows in a reasonable sense has a subsequence that grows
fast enough to satisfy conditions (1) and (2) in Proposition 3.3.

Proposition 3.3. Let X be a minimal space of Delone sets in Rd, Λ P X, pAmqmPN
a sequence of sets in Q˚

d and pεmqmě0 a decreasing sequence of positive constants with
ε0 ă mint1, rpΛq{2u, where rpΛq is the separation constant of Λ. For every m ě 0 choose

Rpεmq satisfying Lemma 3.2 and set Rm
def
“ maxtRpεmq, 1{εmqu. Assume that the following

properties hold for every m P N:

(1) There exists xm P Rd such that Am Ă Bpxm, 1{2εmq.
(2) There exists ym P Rd such that Bpym, 2Rm´1q Ă Am.

Then there exist um P Bpym, Rm´1q and patches Qm
def
“ pΛXAmq´um such that limmÑ8Qm “

Γ P Rd.Λ “ X. Moreover, for every m ě 2

Bp0, Rm´1q Ă Am ´ um Ă Bp0, 1{εmq, (3.3)

DpΛ´ um´1,Λ´ umq ă εm´1, (3.4)

DpQm,Γq ă εm´1 (3.5)
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and there exists c2 ą 0 so that

|# pΓX pAm ´ umqq ´#Qm| ď c2 ¨ ε
d
m ¨ vold´1pBAmq, (3.6)

where c2 depends on the dimension d and separation constant rpΛq.

Proof. First observe that by assumptions (1) and (2)

εm`1 ď
1

4Rm

ď
1

4
εm (3.7)

holds for every m P N. In particular, the series
ř8

m“1 εm is convergent.
We define the vectors um, and hence the patches Qm, inductively.

‚ By (1), A1 is in particular contained in a ball of radius 1{ε1. Let u1 be such that
Q1 “ pΛX A1q ´ u1 is contained in Bp0, 1{ε1q.

Assume that the vectors uj, and thus the patches Qj “ pΛ X Ajq ´ uj, are defined for
j P t1, . . . ,mu such that for every 2 ď j ď m we have

(i) Bp0, Rj´1q Ă Aj ´ uj Ă Bp0, 1{εjq.
(ii) DpΛ´ uj,Λ´ uj´1q ă εj´1.

We define um`1 as follows.

‚ By (2), Am`1 contains a ball of the form Bpym`1, 2Rmq. By Lemma 3.2, let
um`1 P Bpym`1, Rmq be a vector satisfying

DpΛ´ um,Λ´ um`1q ă εm.

Thus (ii) for j “ m ` 1 holds. Note that since Bpym`1, 2Rmq Ă Am`1 and
um`1 P Bpym`1, Rmq we have

Bp0, Rmq Ă Am`1 ´ um`1.

By (1), Am`1´um`1 Ă Bpxm`1´um`1, 1{2εm`1q and so Am`1´um`1 contains the
origin. Then by the triangle inequality, Am`1´um`1 is contained in Bp0, 1{εm`1q,
completing the proof of (i) for j “ m` 1.

This completes the construction of the vectors um and the patches Qm. Next we show that
the sequence pQmqmPN is a Cauchy sequence. Fix some ε ą 0 and letM be so that 2εM ă ε.
Let m ą n ą M , and note that by property (ii) we have DpΛ ´ uk`1,Λ ´ ukq ă εk, for
every k ěM . Then by the triangle inequality,

DpΛ´ um,Λ´ unq ď
m´1
ÿ

k“n

DpΛ´ uk`1,Λ´ ukq ă
m´1
ÿ

k“n

εk ă 2εn ă 2εM ă ε, (3.8)

where the third inequality follows from (3.7). By property (i), for every j P N the point
sets Qj and Λ ´ uj in particular coincide on the ball Bp0, 1{εj´1q. Since m,n ą M , the
sets Λ ´ un and Qn coincide on Bp0, 1{εq, and similarly for Λ ´ um and Qm. Therefore,
relying on (3.8), for every m ą n ąM we have

DpQm, Qnq ď D
´

pΛ´ umq XBp0, 1{εq, pΛ´ unq XBp0, 1{εq
¯

ă ε. (3.9)

Thus pQmqmPN is a Cauchy sequence. The space pX, Dq is complete, as a compact metric

space, hence the limit Γ
def
“ limmÑ8Qm “ limmÑ8 Λ´ um exists and belongs to X.

It is left to prove (3.3), (3.4), (3.5) and (3.6). First observe that (3.3) and (3.4) follow
immediately from the construction, see properties (i) and (ii). To see (3.5), let m P N



10 YOTAM SMILANSKY AND YAAR SOLOMON

and let k ą m be so that DpQk,Γq ă εm. Repeating the computations in (3.8) and (3.9)
yields that DpQm, Qkq ă 2εm, and by (3.7) we have

DpQm,Γq ď DpQm, Qkq `DpQk,Γq ă 3εm ă εm´1.

Finally, we prove (3.6). By (3.3) we have Am ´ um Ă Bp0, 1{εmq and by (3.5) we have
DpΓ, Qm`1q ă εm. Thus by Lemma 3.1 with A “ Am ´ um we obtain

|#pΓX pAm ´ umqq ´#pQm`1 X pAm ´ umqq| ď c1 ¨ ε
d
m ¨ vold´1pBAmq. (3.10)

By (3.4) we have DpΛ´um,Λ´um`1q ă εm, and applying Lemma 3.1 once again we get

|# ppΛ´ um`1q X pAm ´ umqq ´# ppΛ´ umq X pAm ´ umqq| ď c1 ¨ ε
d
m ¨ vold´1pBAmq.

By the definition of the Qm’s, and since Am´um Ă Am`1´um`1 by (3.3), this is exactly

|# pQm`1 X pAm ´ umqq ´#Qm| ď c1 ¨ ε
d
m ¨ vold´1pBAmq.

Combining this with (3.10) yields (3.6) and completes the proof of the theorem. �

4. Finding patches with large discrepancy

The goal of this section is to prove the following proposition, which will be used in our
proof of Theorem 1.1 in §5.

Proposition 4.1. Let Λ Ă Rd be a non-uniformly spread Delone set. Then there exist a
sequence pAmqmPN of sets in Q˚

d and a sequence pxmqmPN of vectors in Zd so that

|#pΛX Amq ´#pΛX pAm ` xmqq|

vold´1pBAmq
mÑ8
ÝÝÝÑ 8. (4.1)

Let Λ Ă Rd be a Delone set. We define the central lower density and the central upper
density of Λ respectively by

∆˚pΛq
def
“ lim inf

tÑ8

# pBp0, tq X Λq

volpBp0, tqq
∆˚
pΛq

def
“ lim sup

tÑ8

# pBp0, tq X Λq

volpBp0, tqq
.

If the limit limtÑ8 # pBp0, tq X Λq {volpBp0, tqq exists, it is called the central density of Λ
and is denoted by ∆pΛq.

We begin with the following lemma.

Lemma 4.2. Let Λ be a Delone set, γ ą 0 and A P Q˚
d. Then for every ε ą 0 there exists

K ą 0 such that for every integer k ě K:

(1) if #pΛXBp0,kqq
volpBp0,kqq

ě γ then the ball Bp0, kq contains A`x, a translated copy of A with

x P Zd, such that

#pΛX pA` xqq

volpAq
ě γ ´ ε.

(2) if #pΛXBp0,kqq
volpBp0,kqq

ď γ then the ball Bp0, kq contains A`x, a translated copy of A with

x P Zd, such that

#pΛX pA` xqq

volpAq
ď γ ` ε.
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Proof. This is a simple averaging argument. We prove property (1), the proof of property
(2) is similar.

Denote by ρ the diameter of the set A. For a large integer k we write Bp0, kq “
Br´ρs \ pBBqr`ρs, where Br´ρs, pBBqr`ρs P Q˚

d are defined by

Br´ρs
def
“

ď

tQ P Qd | Q Ă Bp0, kq,distpQ, BBp0, kqq ą ρu

pBBqr`ρs
def
“ Bp0, kqrBr´ρs,

(4.2)

where distpX, Y q
def
“ inft}x´ y}

8
| x P X,y P Y u.

Given ε ą 0 we pick K P N large enough so that for every integer k ě K we have

vol
`

pBBqr`ρs
˘

volpBp0, kqq
ă
ε

2
. (4.3)

Let k ě K such that
#pΛXBp0, kqq

volpBp0, kqq
ě γ, (4.4)

and let Nk
def
“ tx P Zd | A` x Ă Bp0, kqu. By way of contradiction, assume that

@x P Nk : # pΛX pA` xqq ă pγ ´ εqvolpAq. (4.5)

Notice that the number of cubes from Qd that form A is volpAq. Then by counting
the points of Λ (with multiplicity) in all the sets A` x, x P Nk, the points in every unit
lattice cube in Br´ρs is counted exactly volpAq times. Thus

#Nkpγ ´ εqvolpAq
(4.5)
ą

ÿ

xPNk

#pΛX pA` xqq ě volpAq ¨#
`

ΛXBr´ρs
˘

. (4.6)

Note that #Nk ď volpBp0, kqq, then dividing both sides of (4.6) by volpAq ¨ volpBp0, kqq
yields

γ ´ ε ą
#
`

ΛXBr´ρs
˘

volpBp0, kqq

(4.2)

ě
# pΛXBp0, kqq

volpBp0, kqq
´

#
`

ΛX pBBqr`ρs
˘

volpBp0, kqq

(4.3),(4.4)
ą γ ´

ε

2
,

a contradiction. �

Lemma 4.3. Suppose that Λ is a Delone set in Rd and that ∆˚pΛq ă ∆˚pΛq. Then there
exist α ă β, integers ak Ñ 8 and xk P Zd such that

# pΛXBp0, akqq

volpBp0, akqq
ď α and

# pΛXBpxk, akqq

volpBpxk, akqq
ě β.

Proof. By the assumption on the densities, there exist sequences ak, bl Ñ 8 so that

lim
kÑ8

# pΛXBp0, akqq

volpBp0, akqq
“ α̃ and lim

lÑ8

# pΛXBp0, blqq

volpBp0, blqq
“ β̃,

where α̃ ă β̃. Since Λ is uniformly discrete, and since the pd´ 1q-volume of the boundary
of a cube grows slower than the cube’s volume, we may assume that the numbers ak, bk
are integers. Let δ ă β̃´α̃

3
and fix K P N such that for every k, l ě K we have

# pΛXBp0, akqq

volpBp0, akqq
ď α̃ ` δ and

# pΛXBp0, blqq

volpBp0, blqq
ě β̃ ´ δ. (4.7)
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For every k, applying Lemma 4.2 with A “ Bp0, akq, ε “
β̃´α̃

3
´ δ ą 0, and β̃ ´ δ in the

role of γ, and combining this with (4.7), we find a large enough l “ lk and xk P Zd so that
Bp0, blq contains the ball Bpxk, akq, which satisfies

# pΛXBpxk, akqq

volpBpxk, akqq
ě pβ̃ ´ δq ´ ε “ β̃ ´

β̃ ´ α̃

3
. (4.8)

Setting α
def
“ α̃ ` β̃´α̃

3
and β

def
“ β̃ ´ β̃´α̃

3
, the assertion follows from (4.7) and (4.8). �

Proof of Proposition 4.1. Let Λ Ă Rd be a non-uniformly spread Delone set. In view of

Lemma 4.3 we may further assume that ∆
def
“ ∆pΛq exists. For α ‰ ∆´1{d the Delone

sets αZd and Λ do not have the same central density and hence there is no BD-map
between them (see e.g. [FSS, Corollary 3.2]). By our assumption on Λ, there is no BD-
map between Λ and ∆´1{dZd as well. Applying Theorem 2.3 on these two Delone sets we
obtain a sequence pAmqmPN of sets in Q˚

d that satisfies
ˇ

ˇ#p∆´1{dZd X Amq ´#pΛX Amq
ˇ

ˇ

vold´1pBAmq
mÑ8
ÝÝÝÑ 8.

By passing to a subsequence of pAmqmPN we may assume that

#p∆´1{dZd X Amq ´#pΛX Amq

vold´1pBAmq
mÑ8
ÝÝÝÑ 8, (4.9)

and complete the proof using (1) of Lemma 4.2. In the case that #p∆´1{dZd X Amq ă
#pΛ X Amq for all large values of m, the proof is similar using (2) of Lemma 4.2 instead
of (1).

For every m P N we pick εm such that

εmvolpAmq ă vold´1pBAmq (4.10)

and apply Lemma 4.2 with γ “ ∆´ εm, A “ Am and ε “ εm. Note that since ∆pΛq “ ∆

exists, the condition #pΛXBp0,kqq
volpBp0,kqq

ě ∆ ´ εm is satisfied for any sufficiently large k. By (1)

of Lemma 4.2, in particular, there exists a vector xm P Zd so that

# pΛX pAm ` xmqq

volpAmq
ě ∆´ 2εm. (4.11)

By (4.9)

#p∆´1{dZd X Amq ´# pΛX pAm ` xmqq

vold´1pBAmq
`

# pΛX pAm ` xmqq ´#pΛX Amq

vold´1pBAmq
mÑ8
ÝÝÝÑ 8.

(4.12)
Note that

#p∆´1{dZd X Amq ď ∆ ¨ volpAmq ` c ¨ vold´1pBAmq,

where c depends on d and ∆, and by (4.11) we also have

pΛX pAm ` xmqq ě p∆´ 2εmqvolpAmq.

Then

#p∆´1{dZd X Amq ´# pΛX pAm ` xmqq ď c ¨ vold´1pBAmq ` 2εmvolpAmq

(4.10)

ď c1 ¨ vold´1pBAmq,

where c1 depends on d and ∆. Plugging this in (4.12) completes the proof. �
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5. Proof of Theorem 1.1

Given a non-uniformly spread Delone set Λ Ă Rd, let Am P Q˚
d and xm P Zd be as in

Proposition 4.1. Let εm ą 0 be so that Am is contained in a ball of radius 1{2εm. Passing
to subsequences, by Corollary 2.4 combined with (4.1) we may assume that Am contains
a ball of radius 2Rm´1, where Rm is as in Proposition 3.3. We thus have

B pym, 2Rm´1q Ă Am Ă B pzm, 1{2εmq (5.1)

for some ym, zm P Rd. Denote

Bm
def
“ Am ` xm, pm

def
“ ym ` xm, qm

def
“ zm ` xm. (5.2)

Then
B ppm, 2Rm´1q Ă Bm Ă B pqm, 1{2εmq (5.3)

and so pAmqmPN and pBmqmPN both satisfy Proposition 3.3.
By (4.1), there is a sequence of constants µm Ñ 8 such that

|#pΛX Amq ´#pΛX pAm ` xmqq| “ µm ¨ vold´1pBAmq. (5.4)

Since µm Ñ 8, by passing to a further subsequence, we may assume that µm approaches
infinity at an extremely fast rate. In particular, by defining every element in the sequence
with dependence on the previous one, we may assume that

Rd
m´1

µm

mÑ8
ÝÝÝÑ 0. (5.5)

Using these notations, Theorem 1.1 follows from Lemmas 5.1 and 5.2 below.

Lemma 5.1. Let X be a minimal space of Delone sets and assume that there exists Λ P X
that is non-uniformly spread. Let pAmqmPN and pBmqmPN be the sequences of sets in Q˚

d

defined in Proposition 4.1 and in (5.2), with respect to Λ. For every word ω P tA,BuN let
pCmqmPN be the sequence of sets in Q˚

d defined by

Cm
def
“

#

Am, ωpmq “ A

Bm, ωpmq “ B,
(5.6)

where wpmq is the m’th letter in w. Then there exists a sequence pumqmPN of vectors in
Rd so that Λω “ limmÑ8pΛX Cmq ´ um is a Delone set in X,

um P

#

Bpym, Rm´1q, ωpmq “ A

Bppm, Rm´1q, ωpmq “ B,
(5.7)

and
@m ě 2 : |#pΛω X pCm ´ umqq ´#pΛX Cmq| ď c3 ¨ vold´1pBCmq, (5.8)

where c3 is a constant that depends on d and on the separation constant rpΛq.

Proof. Given ω P tA,BuN, consider the sequence pCmqmPN of sets in Q˚
d defined by

(5.6). By (5.1) and (5.3), conditions (1) and (2) of Proposition 3.3 are being satis-
fied for pCmqmPN, with pεmqmPN as described at the beginning of this section. Applying
Proposition 3.3 we obtain vectors um satisfying (5.7), for which the sequence of patches

Qm
def
“ pΛXCmq´um is convergent. Setting Λω to be the limit set, by (3.6) of Proposition

3.3 for every m ě 2

|# pΛω X pCm ´ umqq ´#Qm| ď c3 ¨ ε
d
m ¨ vold´1pBCmq,
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where c3 depends on d and on rpΛq. Clearly #Qm “ #pΛX Cmq, and (5.8) follows. �

Lemma 5.2. Let X be a minimal space of Delone sets and assume that there exists Λ P X
that is non-uniformly spread. Let η, σ P tA,BuN be two words that differ in infinitely many
places. Then the Delone sets Λη and Λσ defined in Lemma 5.1 are BD-non-equivalent.

Proof. Taking a subsequence if necessary, we may assume without lose of generality that
η and σ are everywhere different. We use an upper index of η or σ on elements of Q˚

d and
on vectors, e.g. Cη

m and uσm, to distinguish between those elements that come from the
construction of Λη and of Λσ in Lemma 5.1.

Denote Fm
def
“ Cη

m ´ uηm. By (5.8) for w “ η we obtain

@m ě 2 : |#pΛη X Fmq ´#pΛX Cη
mq| ď c3 ¨ vold´1pBFmq. (5.9)

Observe that for every m ě 2 there exists some vm P Rd so that

rFm ´ vm “s pCη
m ´ uηmq ´ vm “ Cσ

m ´ uσm and }vm}8 ď 2Rm´1. (5.10)

Indeed, assume without loss of generality that ηpmq “ A and σpmq “ B. Combining
(5.2), (5.6) and (5.7) yields that Cη

m “ Am, C
σ
m “ Am ` xm, uηm P Bpym, Rm´1q and

uσm P Bpym ` xm, Rm´1q, which implies (5.10). It follows that

@m ě 2 : pCσ
m ´ uσmq4Fm Ă BF p`2Rm´1q

m ,

and hence by (2.1)

@m ě 2 : |#pΛσ X Fmq ´#pΛσ X pC
σ
m ´ uσmqq| ď c4 ¨R

d
m´1 ¨ vold´1pBFmq,

where c4 depends on d and on rpΛq. Again by (5.8), this time with w “ σ, we obtain

@m ě 2 : |#pΛσ X Fmq ´#pΛX Cσ
mq| ď

`

c3 ` c4 ¨R
d
m´1

˘

vold´1pBFmq.

Combining this with (5.9), the triangle inequality yields that for every m ě 2

|#pΛη X Fmq ´#pΛσ X Fmq| ě

|#pΛX Cη
mq ´#pΛX Cσ

mq| ´ |#pΛη X Fmq ´#pΛX Cη
mq| ´ |#pΛσ X Fmq ´#pΛX Cσ

mq| ě

|#pΛX Cη
mq ´#pΛX Cσ

mq| ´ c5 ¨R
d
m´1 ¨ vold´1pBFmq,

where c5 depends on d and rpΛq. Since Cη
m “ Am, Cσ

m “ Am ` xm and vold´1pBAmq “
vold´1pBFmq, combined with (5.4) we have

|#pΛη X Fmq ´#pΛσ X Fmq| ě
`

µm ´ c5 ¨R
d
m´1

˘

vold´1pBFmq,

and together with (5.5) we thus obtain

|#pΛη X Fmq ´#pΛσ X Fmq|

vold´1pBFmq
ě µm

ˆ

1´
c5 ¨R

d
m´1

µm

˙

mÑ8
ÝÝÝÑ 8.

Theorem 2.3 then implies that the sets Λη and Λσ are BD-non-equivalent, as required. �

Proof of Theorem 1.1. Let X be a minimal space of Delone sets. If there exists a uniformly
spread Λ P X, then as noted in §1 every Λ P X is uniformly spread, and (1) holds.

Otherwise, there exists some Λ P X that is non-uniformly spread. Consider the equiva-
lence relation on tA,BuN in which η „ σ if η and σ differ in only finitely many places, and
let Ω Ă tA,BuN be a set of equivalence class representatives. Since every equivalence class
in this relation is countable, |Ω| “ 2ℵ0 . For every two distinct words η, σ P Ω, Lemma 5.2
implies that Λη and Λσ are BD-non-equivalent, therefore BDpXq ě 2ℵ0 . As explained in
§1 the upper bound is trivial, and so the proof is complete. �
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Appendix A. Dp¨, ¨q is a metric

It is known that the function Dp¨, ¨q in (1.1) constitutes a metric on C pRdq when it is
capped by 1{

?
2 instead of 1, see e.g. [LSo, §7]. We show that it is indeed a metric also

when capped by 1. The proof is essentially the same.

Proposition A.1. The function Dp¨, ¨q in (1.1) is a metric on C pRdq.

Proof. The triangle inequality is the only property that is not immediate. Let X, Y, Z P
C pRdq be three closed sets and let ε, δ ą 0 so that

DpX, Y q ď ε and DpY, Zq ď δ. (A.1)

We must show that DpX,Zq ď ε ` δ. Clearly this is true if ε ` δ ě 1, and so we may
assume in what follows that ε` δ ă 1. We have

X XB

ˆ

0,
1

ε` δ

˙

“ X XB

ˆ

0,
1

ε

˙

XB

ˆ

0,
1

ε` δ

˙

(A.1)
Ă Y p`εq XB

ˆ

0,
1

ε` δ

˙

(A.2)

Note that since δ ă ε` δ ă 1, the expression

1

δ
´

1

ε` δ
´ ε “

ε` δ ´ δ ´ εδpε` δq

δpε` δq
“

εp1´ δpε` δqq

δpε` δq

is positive, and so ε ` 1
ε`δ

ă 1
δ
. By the triangle inequality, if Bpx, εq X B

`

0, 1
ε`δ

˘

‰ ∅
then ρp0,xq ă ε` 1

ε`δ
ă 1

δ
. Therefore

Y p`εq XB

ˆ

0,
1

ε` δ

˙

Ă

ˆ

Y XB

ˆ

0,
1

δ

˙˙p`εq
(A.1)
Ă

`

Zp`δq
˘p`εq

Ă Zp`pε`δqq,

Combining this with (A.2) finishes the proof. �
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