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Abstract. We extend a discrepancy bound of Lagarias and Pleasants for local weight
distributions on linearly repetitive Delone sets and show that a similar bound holds
also for the more general case of Delone sets without finite local complexity if linear
repetitivity is replaced by ε-linear repetitivity. As a result we establish that Delone
sets that are ε-linear repetitive for some sufficiently small ε are rectifiable, and that
incommensurable multiscale substitution tilings are never almost linearly repetitive.

1. Introduction

The property of linear repetitivity plays a central role in the study of mathematical
models of quasicrystals and in particular in the study of aperiodic tilings and Delone sets.
This is due both to the various dynamical and geometric implications of linear repetitivity,
as well as to the fact that several well-studied constructions in aperiodic order are known
to have this property, including primitive self-similar tilings of finite local complexity [bS]
and certain cut-and-project sets [HKoWa, KW]. In this paper we consider Delone sets
and tilings of infinite local complexity, which have seen a surge of interest in recent years
with examples including [Da, Fr, FrRo, FrS1, FrS2, FrRi, LS, Sa, SS1] and [SS2], and for
which a suitable extension of the notion of linear repetitivity is required. Our study is
motivated by the question of rectifiability of Delone sets of infinite local complexity, and
in particular those defined by multiscale substitution tilings.

A set Λ Ă Rd is Delone if it is uniformly discrete and relatively dense, that is, if there
exist constants r, R ą 0 so that every ball of radius r contains at most one point of Λ
and Λ intersects every ball of radius R. In our setup balls and distances are taken with
respect to the metric induced by the sup-norm, denoted by }¨}. We also define rΛ and
RΛ, the packing constant and the covering constant of Λ, respectively, by

rΛ “ inft}x1 ´ x2} | x1 ‰ x2,x1,x2 P Λu, RΛ “ supt}x´ y} | x P Λ,y P Rd
u.

We will assume without loss of generality that Λ has covering radius RΛ “ 1. For t ą 0
and x P Λ, let Bpx, tq be the ball of radius t centered at x, then the set Λ X Bpx, tq is
the t-patch of Λ at x. A Delone set has finite local complexity (FLC) if for every t ą 0 its
collection of t-patches is finite modulo translations, and it is repetitive if for every r ą 0
there exists an R “ Rprq ą 0 so that every R-patch of Λ contains translated copies of
every r-patch of Λ. Repetitivity is equivalent to the minimality of the hull of Λ, XpΛq,
which is the orbit closure of Λ with respect to translations, see [BG, Prop. 5.4] and [LP,
Theorem 3.2] for precise statements. Finally, a repetitive Delone set is linearly repetitive
if Rprq can be chosen to be a linear function.

A Delone set Λ Ă Rd is rectifiable if there exists a biLipschitz bijection between Λ
and Zd. While Burago and Kleiner’s well-known rectifiability condition ([BK2] for d “ 2,
[ACG] for d ě 3, included below as Theorem 3.1) can be used to establish rectifiability
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for a large family of constructions, examples include certain sets constructed via substitu-
tion tilings [yS1] and the cut-and-project method [HKeWe], the pursue of non-rectifiable
Delone sets is known to be a difficult problem. The question whether such Delone sets
exist was posed by Gromov in [Gr, p. 23], and according to [BK2] it was also posed by
Furstenberg in connection with Kakutani equivalence for R2-actions. It was answered
on the affirmative independently by Burago and Kleiner in [BK1] and by McMullen in
[McM]. Concrete examples of such Delone sets were later provided in [CN], based on
the construction in [BK1], see also [Ga] and [Mag]. It was shown in [ACG] that linear
repetitive Delone sets satisfy Burago and Kleiner’s condition and are therefore rectifiable.
In fact, in this case the implied biLipschitz bijection can be extended to a biLipschitz
homeomorphism of Rd, see [N], though it remains unknown if this is always the case,
see [ADG`, Problem 2.6.1]. It follows that non-linear repetitive Delone sets emerge as
natural candidates for non-rectifiable Delone sets with a minimal hull. This remains true
also when moving beyond the FLC setup, as we will see below.

While sets of infinite local complexity can never be repetitive, they can nevertheless be
ε-repetitive. Recall that the Hausdorff distance between two compact subsetsK1, K2 Ă Rd

is defined by

DH pK1, K2q “ inf

#

ε ą 0
ˇ

ˇ

ˇ

K1 Ă K
p`εq
2

K2 Ă K
p`εq
1

+

, (1.1)

where Ap`εq “
Ť

xPABpx, εq, the ε neighborhood of the set A. We say that K1 is an ε-copy
of K2 if it is of distance at most ε of some translation of K2.

Definition 1.1. Let ε ą 0. A Delone set Λ Ă Rd is ε-repetitive if for every r ą 0 there
exists R “ Rpr, εq ą 0 such that every R-patch of Λ contains an ε-copy of every r-patch
of Λ. If there exists Crep “ CreppΛ, εq for which this holds for R “ Crep ¨ r, then Λ is
ε-linearly repetitive. It is almost repetitive if it is ε-repetitive for every ε ą 0, and almost
linearly repetitive if it is ε-linearly repetitive for every ε ą 0.

Lagarias and Pleasants showed in [LP] that linear repetitivity implies certain discrep-
ancy bounds, which in turn imply uniform patch frequency and hence unique ergodicity
of the hull, see also [DL, Corollary 4.6]. Further connections between linear repetitiv-
ity and dynamics include [AC, B, BBL, CDP, DL] and [Du], and we refer the reader to
[ACCDP] for a comprehensive discussion and for many additional references. In parallel
with the FLC setup, almost repetitivity of Λ is equivalent to the minimality of the hull
of Λ in the infinite local complexity case, see [FrRi, Theorem 3.11]. Adapting ideas from
[DL] and [LP], and in particular the approach of [DL] and their weight function, Frettlöh
and Richard showed in [FrRi] that if Λ is almost linearly repetitive then the hull of Λ
is uniquely ergodic. Our first result is the following upper bound on the discrepancy for
ε-linearly repetitive Delone sets, adapting the approach of Lagarias and Pleasants from
[LP] and the study of their weight distribution functions in the FLC case.

A box B in Rd is a set of the form
Śd

i“1rai, bis with ai ă bi for every i. Denote by
volpBq the Lebesgue measure of a box B and by `pBq “ mintbi´ai | 1 ď i ď du its width.

Theorem 1.2. Let Λ Ă Rd be a Delone set and assume that Λ is ε-linearly repetitive for
some fixed ε ă rΛ. Then there exist an asymptotic density µ and constants α ą 0 and
0 ă δ ă 1{2 such that for every box B we have

|#pΛXBq ´ µ ¨ volpBq| ď α ¨
volpBq

`pBqδ
. (1.2)
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where α and δ depend on d, ε and Λ.

Note that since δ ă 1{2 the discrepancy bound in Theorem 1.2 is greater than the
surface area of B, which for a cube would correspond to the value δ “ 1. An extension of
this result to finite unions of unit cubes is given below in Theorem 4.2. These discrepancy
bounds are applied to deduce the two corollaries stated below as Theorems 1.3 and 1.5.
The first is an immediate consequence of Theorem 1.2, when combined with Burago and
Kleiner’s condition and with the argument of Navas in [N].

Theorem 1.3. Let Λ Ă Rd be a Delone set and assume that Λ is ε-linearly repetitive
for some fixed ε ă rΛ. Then Λ is rectifiable and, moreover, there exists a biLipschitz
homeomorphism F : Rd Ñ Rd such that F pΛq “ Zd.

Theorem 1.3 extends the results established in [ACG] and [N] on the rectifiability of
linear repetitive Delone sets. Indeed, rectifiability is a large-scale property and should not
be affected by moving each point a small distance.

Remark 1.4. A related large-scale property is uniform spreadness, where a Delone set
Λ Ă Rd is uniformly spread if there exists a bijection between Λ and Zd that moves every
point in Λ a bounded distance. It is not hard to see that a uniformly spread Delone set
is always rectifiable. We note that uniformly spreadness and ε-linear repetitivity imply
distinct but similar discrepancy bounds, compare Laczkovich’s condition [L] and Theorem
1.2. The two properties are independent: the examples of non-uniformly spread Delone
sets associated with primitive substitution tilings that were described in [yS2] are linear
repetitive by [bS], and a uniformly spread Delone set Λ that is not ε-linear repetitive for
any ε ă rΛ can be constructed by appropriately perturbing all points in Zd.

Theorem 1.5 concerns with incommensurable multiscale substitution tilings, a class of
tilings of infinite local complexity that was recently introduced by the authors in [SS1].
The construction of such tilings will be recalled in §5 together with the terms used in the
following statement.

Theorem 1.5. Let σ be an irreducible incommensurable multiscale substitution scheme
in Rd, with polytope prototiles, and let T P Xσ be a multiscale substitution tiling. Then
T is not ε-linearly repetitive for any sufficiently small ε. In particular, incommensurable
multiscale substitution tilings are never almost linearly repetitive.

Theorem 1.5 is another manner in which incommensurable multiscale substitution
tilings defer from the classical construction of substitution tilings, compare with [bS]. In
view of Theorem 1.3, Theorem 1.5 strengthens the candidacy of sets associated with in-
commensurable multiscale tilings for non-rectifiability. These are never uniformly spread,
and furthermore, certain examples do not satisfy Burago and Kleiner’s aforementioned
rectifiability condition, which is already not a trivial result, see [SS1, §8]. While the rec-
tifiability of primitive substitution tilings was established in [yS1], the following question
remains:

Question 1.6. Does there exist a non-rectifiable multiscale substitution tiling?

Remark 1.7. As mentioned above, almost linear repetitivity of a Delone set implies the
unique ergodicity of its hull, and by [SS1] unique ergodicity holds also in the case of
incommensurable multiscale substitution tilings. In view of this we note that Theorem
1.5 points to a large family of constructions whose hulls are uniquely ergodic despite being
not almost linearly repetitive, adding to the earlier examples that appeared in [CN].
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We note that it is our belief that the assumption on the tiles in Theorem 1.5 is not
restrictive. An example of an incommensurable multiscale substitution tiling with non-
polytope tiles has yet to be discovered. We believe that this is impossible, and we pose
the following question:

Question 1.8. Does there exist an irreducible incommensurable multiscale substitution
scheme on a finite set of non-polytope prototiles?

Acknowledgments. We thank the anonymous referees for a careful reading of the paper
and for helpful comments and suggestions.

2. Lagarias-Pleasants for almost linear repetitivity

We denote the volume and the surface area of a box B “
Śd

i“1rai, bis by volpBq and
ApBq. Setting `i “ bi ´ ai for i “ 1, . . . , d we have therefore

volpBq “
d
ź

i“1

`i , ApBq “ 2volpBq
d
ÿ

i“1

1

`i
. (2.1)

In addition, we define the width and the middle point of B by

`pBq “ min
1ďiďd

`i , mpBq “
a` b

2
,

where a “ pa1, . . . , adq and b “ pb1, . . . , bdq. Definition 2.1 below is similar to [LP,
Definition 5.2], the only difference being the appearance of ε ą 0 in item (b).

Definition 2.1. Let Λ Ă Rd be a Delone set, let p P N and fix ε, t0 ą 0. An ε-weight
distribution is a function w with values in Rp, whose domain is the collection of all boxes
B in Rd with `pBq ě t0, for which there is a constant Cw ě 1 so that the following three
properties hold for every box B in its domain:

(a) (boundedness)
›

›

›

wpBq
volpBq

›

›

›
ď Cw.

(b) (almost approximate invariance) For any v P Rd, if pB X Λq ´ v and pB ´ vq X Λ
are ε-copies then }wpB ´ vq ´wpBq} ď Cw ¨ApBq.

(c) (approximate additivity) If B “ B1 Y ¨ ¨ ¨ Y Bk is a union of boxes with pairwise
disjoint interiors in the domain of w, then

›

›

›

›

›

wpBq ´
k
ÿ

j“1

wpBjq

›

›

›

›

›

ď Cw ¨

˜

k
ÿ

j“1

ApBjq

¸

.

For t ą 0, we denote by Bptq the collection of all “squarish” boxes in Rd, boxes for
which all side lengths are between t and 2t. For ε, t0 ą 0 and a Delone set Λ Ă Rd, let w
be a real valued ε-weight distribution. Then for any t ě t0, the upper density and lower
density of w are defined by

µ`ptq :“ sup
BPBptq

wpBq

volpBq
and µ´ptq :“ inf

BPBptq

wpBq

volpBq
. (2.2)

Theorem 2.2. Let ε ą 0 and let Λ Ă Rd be an ε-linearly repetitive Delone set. Then
there exist constants alpha ą 0 and 0 ă δ “ δpΛ, εq ă 1{2 such that every ε-weight
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distribution w on Λ has an asymptotic weight density µ P Rp for which every box B with
`pBq ě 2Crep in the domain of w satisfies

›

›

›

›

wpBq

volpBq
´ µ

›

›

›

›

ď α ¨ `pBq´δ, (2.3)

where α may depend on d, ε, Λ and w, and Crep ě 1 is as in Definition 1.1.

Theorem 2.2 is analogous to [LP, Theorem 5.1]. The proof can be extended to our more
general context, but since some small changes are needed we include it below. The proof
requires the following Lemma 2.3, which was established by Lagarias and Pleasants relying
only on properties (a) and (c) of local weight distributions in [LP, Definition 5.2]. Since
these are identical to properties (a) and (c) in our Definition 2.1 of ε-weight distributions
given above, we do not repeat the proof.

Lemma 2.3 ([LP], Lemma 5.1). Let ε ą 0 and let w be a real-valued ε-weight distribution
on a Delone set Λ Ă Rd. Then the limits µ` “ limtÑ8 µ

`ptq and µ´ “ limtÑ8 µ
´ptq exist.

Proof of Theorem 2.2. Let w be an ε-weight distribution defined on all boxes with `pBq ě
t0. Considering each coordinate individually, it suffices to prove the assertion under the
assumption that w “ w is real-valued.

First, we show that µ` “ µ´. Let t ě t1 :“ maxtt0, 2Crepu, then by the definition of
µ´ptq there exists some box B11 P Bptq that satisfies

wpB11q

volpB11q
ď µ´ptq `

1

t
. (2.4)

Set B12 :“ BpmpB11q, 2tq, a ball of radius 2t (in the sup-norm) that contains B11 positioned
such that B11 is at distance of at least t from the boundary of B12. By ε-linear repetitivity,
every ball of radius Crep ¨ 2t, and in particular every box B P BpCrep ¨ 2tq, contains a
ball B2 of radius 2t for which B2 X Λ is an ε-copy of B12 X Λ. In particular, if we set
B1 :“ B11 ´mpB12q `mpB2q Ă B2, then B1 X Λ is an ε-copy of B11 X Λ. By property (b)
of Definition 2.1 with v “ ´mpB12q `mpB2q we obtain

|wpB1q ´ wpB
1
1q| ď Cw ¨ApB1q. (2.5)

Combining (2.4) and (2.5), every box B P BpCrep ¨ 2tq contains a box B1 P Bptq that is
positioned inside B at distance of at least t from its boundary, that satisfies

wpB1q

volpB1q
ď µ´ptq `

2dCw ` 1

t
, (2.6)

where the upper bound 2d{t of ApB1q{volpB1q follows from (2.1). Consider a partition
B “ B1 Y . . . Y Bk of B into boxes with pairwise disjoint interiors in Bptq, one of which
is B1. Such a partition exists because of the way B1 is positioned inside B. Denote
C1 “ volpB1q{volpBq. Combining (2.6) and property (c) of Definition 2.1 we get

wpBq

volpBq
ď

řk
j“1wpBjq ` Cw

´

řk
j“1 ApBjq

¯

volpBq

ď C1
wpB1q

volpB1q
`

k
ÿ

j“2

ˆ

wpBjq

volpBjq

volpBjq

volpBq

˙

` Cw

˜

k
ÿ

j“1

ApBjq

volpBjq

volpBjq

volpBq

¸

ď C1

ˆ

µ´ptq `
2dCw ` 1

t

˙

` p1´ C1qµ
`
ptq `

2dCw
t

.

(2.7)
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This inequality holds for all B P BpCrep ¨ 2tq, thus

µ`pCrep ¨ 2tq ď C1

ˆ

µ´ptq `
2dCw ` 1

t

˙

` p1´ C1qµ
`
ptq `

2dCw
t

. (2.8)

Letting tÑ 8 and in view of Lemma 2.3, we conclude that µ` ď µ´ and so µ :“ µ` “ µ´.
We now bound the error term. Repeating the above argument, switching the rolls of

µ` and µ´ and replacing B1 and C1 with suitable rB1 and rC1 yields

µ´pCrep ¨ 2tq ě rC1

ˆ

µ`ptq ´
2dCw ` 1

t

˙

` p1´ rC1qµ
´
ptq ´

2dCw
t

. (2.9)

Denote C2 “ 2Crep and define ∆ptq :“ µ`ptq´µ´ptq. Since p2C2q
´d ď C1, rC1 ď pC2{2q

´d,
(2.8) and (2.9) imply that

∆pC2 ¨ tq ď p1´ C1 ´ rC1q∆ptq `
8dCw
t

ď p1´ 2 ¨ p2C2q
´d
q∆ptq `

8dCw
t

, (2.10)

for every t ě t1.
Next, we apply the relation on ∆ptq in (2.10) to establish the result for the case B P Bptq

with t ě t1. Let C3 ą 0 be a constant chosen so that

∆ptq ď C3 ¨ t
´δ (2.11)

holds for every t1 ď t ď C2 ¨ t1 and so that C3 ą 8dCw ¨ p2C2q
d, where

δ “
logp1{p1´ p2C2q

´dqq

logC2

. (2.12)

It is straightforward to check that since Crep, d ě 1 we have δ ď logp4{3q{ log 2 ă 1{2.
Assume as an induction hypothesis that (2.11) holds for all t1 ď t ď Ck

2 t1, which holds
for k “ 1, and let t1 ď t ď Ck`1

2 t1. Then by (2.10)

∆ptq ď p1´ 2p2C2q
´d
q∆pt{C2q `

8dCw
t{C2

.

Note that since Crep ě 1 and C2 “ 2Crep we deduce that 0 ă δ ă 1. Combined with the
induction hypothesis on C3, and since t ě C2, the inequality can be extended to get

∆ptq ď p1´ p2C2q
´d
qC3pt{C2q

´δ
“ C3t

´δ,

and so by induction (2.11) holds for all t ě t1.
Note that for every s ě t ě t1, every box B P Bpsq can be subdivided into boxes

of Bptq. By a computation similar to (2.7) one sees that µ`psq ď µ`ptq ` d2dCw{t and
µ´psq ě µ´ptq´d2dCw{t, where we use property (c) of Definition 2.1 and naive bounds on
the volumes and surface areas of boxes in Bpsq and Bptq. Since this is true for arbitrarily
large values of s we deduce that for C4 “ d2dCw

µ´ptq ´
C4

t
ď µ ď µ`ptq `

C4

t
.

In view of (2.11), for every box B P Bptq for t ě t1 we have obtained
ˇ

ˇ

ˇ

ˇ

wpBq

volpBq
´ µ

ˇ

ˇ

ˇ

ˇ

ď ∆ptq `
C4

t
ď C5 ¨ t

´δ

for a constant C5 that depends on w, ε, Λ and d, implying the assertion for B P Bptq.
For an arbitrary box B with width `pBq ě t1, we partition B into boxes Bi in Bp`pBqq.

Then by property (c) of Definition 2.1, and using simple approximations similar to those
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mentioned above, there exists α ą 0, that depends on w, ε, Λ and d, so that for any B
with width `pBq ě t1 we have
ˇ

ˇ

ˇ

ˇ

wpBq

volpBq
´ µ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

wpBq

volpBq
´

ř

iwpBiq

volpBq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ř

iwpBiq

volpBq
´ µ

ˇ

ˇ

ˇ

ˇ

ď
Cwd2d

`pBq
`

C5

`pBqδ
ď α ¨ `pBq´δ,

finishing the proof. �

In view of the above, our main result follows. Given a Delone set Λ Ă Rd we consider
the function

NΛpAq :“ #pAX Λq. (2.13)

Proof of Theorem 1.2. Observe that NΛpAq is defined on every subset A Ă Rd, and its
restriction to boxes is clearly an ε-weight distribution for any 0 ă ε ă rΛ. It is enough to
prove the assertion for boxes B with sufficiently large width `pBq, which follows directly
from Theorem 2.2 upon multiplying by volpBq. �

3. Rectifiability of ε-linearly repetitive, non-FLC, Delone sets

The following is an equivalent reformulation of Burago and Kleiner’s sufficient condition
for rectifiability, established for d “ 2 in [BK2] and for d ě 2 in [ACG].

Theorem 3.1 ([ACG], [BK2]). Let Λ Ă Rd be a Delone set. If there exists ρ ą 0 for
which the sum

8
ÿ

k“1

«

sup
xPZd

ˇ

ˇ#pΛXBpx, 2kqq ´ ρ ¨ vol
`

Bpx, 2kq
˘ˇ

ˇ

vol pBpx, 2kqq

ff

(3.1)

is convergent, then Λ is rectifiable.

Proof of Theorem 1.3. Let Λ Ă Rd be an ε-linearly repetitive Delone set with ε ă rΛ.
Applying Theorem 1.2 and plugging ρ “ µ in (3.1) yields the series

α
8
ÿ

k“1

2´kδ,

where δ ą 0 is fixed and depends on ε and Λ. Then by Theorem 3.1 rectifiability follows.
Observe that the second part of the statement of Theorem 1.3 is an immediate conse-

quence as well. It was pointed out by Navas in [N] that for every linearly repetitive Delone
set Λ Ă Rd there is a biLipschitz homeomorphism F : Rd Ñ Rd satisfying F pΛq “ Zd. In
fact, the FLC assumption played no part in the proof, and it was actually shown that the
above holds for any Λ that satisfies Burago and Kleiner’s condition in Theorem 3.1. Then
in view of the proof of the first part of Theorem 1.3, the second part is obtained. �

4. Discrepancy bounds for unions of cubes

In this section we extend the discrepancy bound established in §2 to sets that are finite
unions of unit lattice cubes. We denote by

Cd :“
 

ra1, a1 ` 1q ˆ . . .ˆ rad, ad ` 1q | pa1, . . . , adq P Zd
(

the set of all half-closed unit lattice cubes in Rd, by UCd the collection of all finite unions
of elements of Cd, and by volpUq and ApUq the volume and surface area, respectively, of
an element U P UCd. Let

Dyadicd :“
 

r2ka1, 2
ka1 ` 2kq ˆ . . .ˆ r2kad, 2

kad ` 2kq | k P Zě0, pa1, . . . , adq P Zd
(
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denote the set of all half-closed dyadic cubes in Rd with vertices in 2kZd, for some k P N.
The following notion was introduced in [L, p. 41]. Given a collection A of elements of
Dyadicd, define SpA q to be the closure of A under the operations of disjoint union and
proper difference with the restriction that each element of A can be used at most once.
We rely on the following result by Laczkovich.

Lemma 4.1 ([L], Lemma 3.2). Let

U P UCd, B P Dyadicd, such that U Ă B, volpUq ď
1

2
volpBq. (4.1)

Then there exist B1, . . . , Bm P Dyadicd contained in B, so that U P S ptB1, . . . , Bmuq and

#ti | `pBiq “ 2ku ď C6 ¨
ApUq
2kpd´1q

(4.2)

for every k P Zě0, where C6 depends only on the dimension d.

Let NΛ be as in (2.13). The main result of this chapter is the following.

Theorem 4.2. Let ε ą 0 and let Λ Ă Rd be an ε-linearly repetitive Delone set. Let
U P UCd and let B P Dyadicd that relates to U as in (4.1). Then

|NΛpUq ´ µ ¨ volpUq| ď β ¨ `pBq1´δ ¨ApUq, (4.3)

where δ and µ are as in Theorem 2.2 and β depends on d, ε and Λ.

Remark 4.3. The proof of Theorem 4.2 holds for other ε-weight distributions w that
are defined on elements of UCd in a similar way to Definition 2.1 that also satisfy

wpU1 Y U2q “ wpU1q `wpU2q

for all disjoint U1, U2 P UCd. Another example for such a function is the patch counting
function NΛ,P pUq that counts the number of centers of a given patch P in the set U . Also
note that in the particular case that U is a box in Bptq for some t, the bound in (4.3)
differs from the bound given in Theorem 2.2 by a constant only.

Lemma 4.4. For every U P UCd, if B1, . . . , Bm P Dyadicd and U P SptB1, . . . , Bmuq

then for any ρ P R we have

|NΛpUq ´ ρ ¨ volpUq| ď
m
ÿ

i“1

|NΛpBiq ´ ρ ¨ volpBiq| . (4.4)

Proof. The proof is straightforward from the definition of SptB1, . . . , Bmuq and the fol-
lowing two simple observations, that hold for every ρ ą 0 P R and every U1, U2 P UCd:
If U1 X U2 “ ∅ then

|NΛpU1 Y U2q ´ ρ ¨ volpU1 Y U2q| ď |NΛpU1q ´ ρ ¨ volpU1q| ` |NΛpU2q ´ ρ ¨ volpU2q| ,

and if U2 Ă U1 then

|NΛpU1 r U2q ´ ρ ¨ volpU1 r U2q| ď |NΛpU1q ´ ρ ¨ volpU1q| ` |NΛpU2q ´ ρ ¨ volpU2q| ,

and the result follows. �

Proof of Theorem 4.2. Let U P UCd. Applying Lemma 4.1 with respect to some cube B
that satisfies (4.1), we obtain B1, . . . , Bm P Dyadicd that are contained in B, and for
which U P S ptB1, . . . , Bmuq and (4.2) is satisfied for every k P N. In addition, (4.4) is
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also satisfied by Lemma 4.4. Applying Theorem 1.2 on each of the boxes Bi in (4.4) with
ρ “ µ, and using (4.2) and the formula for a geometric sum, we obtain

|NΛpUq ´ µ ¨ volpUq| ď α
m
ÿ

i“1

volpBiq

`pBiq
δ

ď αC6

log2 `pBq
ÿ

k“0

2kd

2kδ ¨ 2kpd´1q
ApUq

“ αC6
21´δ`pBq1´δ ´ 1

21´δ ´ 1
ApUq

ď β ¨ `pBqp1´δqApUq,
where β ą 0 depends on d, ε and Λ. �

5. Incommensurable multiscale substitution tilings are not almost
linearly repetitive

A multiscale substitution scheme σ in Rd consists of a finite set τσ “ pT1, . . . , Tnq of
prototiles of unit volume, and substitution rules %pTiq each a partition of Ti P τσ into
finitely many rescaled copies of elements of τσ. Tilings of Rd arise as limits of patches
that are generated by σ in the following way, where a patch is a finite union of tiles.
Position a prototile Ti P τσ around the origin, and define the patch FtpTiq by inflating Ti
by a factor of et, while substituting every tile that appears in the process according to
σ once its volume is greater than the unit volume. A new tile that arises as a rescaled
copy of a prototile Tj P τσ is said to be of type j. The patches tFtpTiq : t ě 0u exhaust
the space, and limits taken with respect to the natural topology on the space C pRdq of
closed subsets of Rd, which is closely related to the Hausdorff distance described in (1.1)
and is discussed in more detail for example in [FrRi, SS1, SS2], define a tiling space Xσ

of multiscale substitution tilings of Rd. A multiscale substitution scheme σ is irreducible
if for every 1 ď i, j ď n there exists t ą 0 so that FtpTiq contains a tile of type j. It is
incommensurable if there exists a prototile Ti P τσ and t1, t2 ą 0 so that t1 R t2Q, and
Ft1pTiq and Ft2pTiq both contain a copy of the prototile Ti. A patch of an irreducible
incommensurable multiscale substitution tiling in R2 is illustrated below in Figure 1. For
more details, examples, illustrations and equivalent definitions of incommensurability,
multiscale substitutions schemes and the geometric objects they generate, the reader is
referred to [Sm1] and [SS1].

Let T be a tiling of Rd. For A Ă Rd we denote the patch that consists of all the tiles
of T that intersect A by rAsT . Given t ą 0 and x P Rd, the t-patch of T at x is the
patch rBpx, tqsT . For a patch P in T we denote by supppP q the support of P , which is
the subset of Rd that is covered by the tiles in P , by BP the union of all the boundaries
of tiles in P and by #P the number of tiles it consists of. We say that a patch P1 is an
ε-copy of a patch P2 if BP1 is of distance at most ε of some translate of BP2, with respect
to the Hausdorff distance (1.1).

Suppose that every tile T in a tiling T is assigned with a type 1 ď i ď n so that T
is similar to a prototile Ti, as is the case with multiscale substitution tilings. Marking
a single point in the interior of each of the n prototiles gives rise to a Delone set ΛT ,
where each point of ΛT is contained in a distinct tile of T , with position relative to the
position of the marked point in the associated prototile. More precisely, if T “ gT pTiq
for a similarity gT of Rd, and xi P Ti is the marked point in the prototile Ti, then the
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Figure 1. A patch of an incommensurable multiscale substitution tiling.

corresponding point in ΛT is gT pxiq P T . The ε-linear repetitivity of all Delone sets ΛT
defined by the above procedure, as defined by Definition 1.1, is equivalent to the ε-linear
repetitivity of the tiling T as given by Definition 5.1 below.

Definition 5.1. Let ε ą 0. A tiling T of Rd is ε-linearly repetitive if for every r ą 0 there
exists Crep “ CreppΛ, εq such that every pCrep ¨ rq-patch of T contains an ε-copy of every
r-patch of T . It is almost linearly repetitive if it is ε-linearly repetitive for every ε ą 0.

Consider an irreducible incommensurable multiscale substitution scheme σ in Rd. For
our proof of Theorem 1.5 we will need the following two results from [SS1].

Lemma 5.2 ([SS1], Theorem 6.1). The dynamical system pXσ,Rdq is minimal.

Lemma 5.3 ([SS1], Lemma 8.5). For every t0 ą 0 and prototile Ti P τσ there exist t ě t0
and ε0 ą 0 such that for every ε P p0, ε0s we have

#Ft`εpTiq ´#FtpTiq ě C7 ¨
etd

tk
,

where C7 ą 0 and 0 ă k P N depend only on the parameters of σ.

Proof of Theorem 1.5. In view of Lemma 5.2 it is enough to show that there exists a tiling
T P Xσ that is not ε-linearly repetitive for any sufficiently small ε.

Pick a prototile T P τσ, and consider a patch of the form FtpT q for some t ą 0. Note
that for every patch of the form FtpT q there exists some T P Xσ that contains a translated
copy of FtpT q, positioned so that supppFtpT qq covers the origin (see [SS1, equation (4.5)]).
Let T P Xσ be such a tiling and let ΛT be a Delone set associated with T in the way
described above. We have

volpsupppFtpT qqq “ volpT q ¨ etd “ etd, and diampFtpT qq “ diampT q ¨ et,
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where diampP q is the diameter of the support of the patch P . Note that since T is a
polytope, the boundary of supppFtpT qq has finite pd´ 1q-dimensional Lebesgue measure,
and therefore also finite pd´ 1q-dimensional Hausdorff measure. Let Ut P UCd denote the
union of all unit lattice cubes that intersect supppFtpT qq. By standard Hausdorff measure
arguments, see e.g. [Mat, p. 57], we have

ApUtq ď C8 ¨ e
tpd´1q, (5.1)

where C8 depends on d and σ. Let B1t P Dyadicd be the smallest dyadic cube that
contains Ut and let Bt P Dyadicd be the dyadic cube with `pBtq “ 2`pB1tq that contains
B1t, then Ut and Bt satisfy the requirements (4.1). In addition, note that

2diampT q ¨ et ď `pBtq ď C9 ¨ e
t, (5.2)

where C9 depends on the parameters of σ.
Let ε ă rΛT and assume by way of contradiction that ΛT is ε-linearly repetitive. Ap-

plying Theorem 4.2 with Ut and Bt, combined with (5.1) and (5.2), we obtain

|NΛT pUtq ´ µ ¨ volpUtq| ď β ¨ `pBtq
1´δ
¨ApUtq ď C10 ¨ e

tpd´δq, (5.3)

where C10 depends on d, ε and σ, and NΛT pAq “ #pA X ΛT q for A Ă Rd. Both
|NΛT pUtq ´#FtpT q| and |volpUtq ´ volpsupppFtpT qqq| are bounded by a constant times
ApUtq, and so we deduce that there is a constant C11 for which

|#FtpT q ´ µ ¨ volpsupppFtpT qqq| ď C11 ¨ e
tpd´δq, (5.4)

and this holds for any arbitrarily large t ą 0.
On the other hand, combining Lemma 5.3 and the triangle inequality, and since T is a

polytope, for every t0 ą 0 there exists t ě t0 for which

|#FtpT q ´ µ ¨ volpsupppFtpT qqq| ě C12 ¨
etd

tk
,

where C12 and k P Ně1 depend only on σ. This contradicts (5.4), completing the proof.
�

Remark 5.4. For explicit formulas for the implied asymptotic density µ in terms of σ
see [Sm2]. We note that one may also consider complexity estimates similar to those that
appear in [FrS2, §5,§A.5] to show that the number of distinct patches in an incommensu-
rable multiscale substitution tiling T that can appear inside a big ball, up to distance ε,
is of order strictly greater than the volume of the ball. This is of course impossible if T
is ε-linear repetitive, thus offering another approach to Theorem 1.5.
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