PERIODICITY OF JOINT CO-TILES IN Z¢
TOM MEYEROVITCH, SHREY SANADHYA, AND YAAR SOLOMON

ABSTRACT. Given finite subsets F1, ..., F}, in Z%, a joint co-tile is a set A C Z% that satisfies
F;®A=7%orall 1 <j <k. Westudy the structure of joint co-tiles in Z%. We introduce a
notion of independence for a tuple of finite subsets of Z¢. We prove that for any d > 1, any
joint co-tile for d independent sets is periodic. This generalizes a classical result of Newman
stating that any tiling of Z by a finite set is periodic. For a (d — 1)-tuple of finite subsets of
7% that satisfy a certain technical condition that we call property (x), we prove that any
joint co-tile decomposes into disjoint (d — 1)-periodic sets. Consequently, we show that for a
(d — 1)-tuple of finite subsets of Z¢ that satisfy property (), the existence of a joint co-tile
implies the existence of periodic joint co-tile. These results are generalizations to higher
dimensions of Bhattacharya’s theorem (the proof of the periodic tiling conjecture for Z?) and
Greenfeld-Tao’s theorem about the structure of co-tiles in Z2. Conversely, we prove that if a
finite subset F in Z% admits a periodic co-tile A, then there exist (d — 1) additional tiles that
together with F' are independent and admit A as a joint co-tile, and (d — 2) additional tiles
that together with F satisfy the property (x). Combined, our results give a new necessary
and sufficient condition for a finite subset of Z? to tile periodically. We also discuss tilings
and joint tilings in other countable abelian groups.

1. INTRODUCTION

For a countable abelian group I' we write F' € I to indicate that F' is a finite subset of T
For A C T" we denote by

FoA=|H(F+a),
acA
where the notation of the right-hand side stands for a disjoint union of the sets {F + a}.ca.
The notation F'éd A = E thus means that every e € E has a unique representation as
e = f+a where f € F'and a € A. We say that F' tiles I if there exists a collection of disjoint

union of translates of ' whose union is equal to I'. That is, F' tiles I' if there exists a set
A C T such that

FoA=T. (1)

In that case, we say that A is a co-tile for the tile F'. Let g, h : I' — R, where I' is a countable
abelian group. We denote by ¢ * h the usual convolution function given by

gxhx)=> g(y) bz —y).

Using this notation, equation (1) is equivalent to 1+ 14 = 1, where 1x denotes the indicator
function of the set X.
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Let I" be a countable abelian group. Elements gy, ..., gr € I' are called independent if the
only integers ni,...,n; € Z that satisfy Z?:l n;g; = 0 are ny = ... = n, = 0. Recall that
the rank of an abelian group is the maximal size of an independent set.

Suppose that I' is an abelian group of rank d and that £ < d. A set C' C T" is called
k-periodic if there exists a subgroup L < T', with rank(L) > k, such that C'+ L = C'. In the
case that k = d we will also say that C' is periodic instead of d-periodic. We say that a tile
set F' €T tiles I' periodically if there exits a periodic co-tile for F'. If F' tiles I' but does not
admit a periodic co-tile, then the set F' is called aperiodic.

Newman [New77] proved that any tiling of I' = Z by a finite set is periodic. Already for
I' = Z2, it is not difficult to find tilings of I" by a finite set that are not even 1-periodic.
See [GT2la, §1.3] for some examples and a brief discussion. Still, it is natural to ask
for different generalizations of Newman’s theorem to higher-rank abelian groups. It has
been conjectured for some time that for any F € Z9, if there exists A C Z9 such that
F @ A = Z% then there exists a periodic A’ C Z? such that F & A’ = Z¢ [LW96], [GS87].
This conjecture became known as the periodic tiling conjecture. The periodic tiling conjecture
can be interpreted as an attempt to generalize Newman’s theorem. The Z? case of the
periodic tiling conjecture was proved several years ago by Bhattacharya [Bha20]. Other
instances of the periodic tiling conjecture have been proved, under additional assumptions
[BN91, Khe22, Ken92, Sze98, WvL84]. The periodic tiling conjecture has recently been
disproved for sufficiently large d by Greenfeld and Tao [GT22].

In this paper, we study the structure of sets A C Z? that satisfy

FioA=7Z%forall j=1,... k, (2)

for subsets F,...,F, @ Z%. We refer to such an A as a joint co-tile for Fy,..., F. In
[GT21b], sets A C Z% satisfying (2) have been referred to as solutions to the system of tiling
equations. As with ordinary systems of linear equations, it makes sense to introduce a notion
of independence in this setup. For F' € Z¢ we denote

F*:= F\ {0}.

We say that (Fi,..., Fy) is an independent tuple of tiles (or k independent tiles) if each F is
a finite subset of Z¢, with 0 € F}, and for every choice of v; € Fy,... v € F}, the k-tuple
(v1,...,v;) is independent (equivalently here, linearly independent vectors over Q, or similarly
over R or C). Notice that if (F1,..., F}) is an independent tuple of tiles then k < d. Observe
that the existence of a joint co-tile for F, ..., F}, @ Z% implies that |Fy| = |Fy| = ... = | F}|
(see Proposition 2.5).

Building on methods developed in [Bha20], [GT21a] and earlier work, we prove the following:

Theorem 1.1. For every 1 < k < d, the indicator function of any joint co-tile for k
independent tiles in 7% is equal, up to a constant, to a sum of [0, 1]-valued k-periodic functions.

The case k = 1 of Theorem 1.1 was proven in [GT21a]. As a consequence of Theorem 1.1,
we obtain the following generalization of Newman’s result for any dimension:

Theorem 1.2. Any joint co-tile for d independent tiles in 7% is d-periodic. Furthermore, if
1p, * f = 1 holds for d independent tiles (Fy,..., Fy) and a bounded function f : Z* — Z,
then f s d-periodic.

We discuss further generalizations of Newman’s theorem in Section 4 and particularly to
the group Z x (Z/pZ) in Proposition 4.3.
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We say that a set A C Z9 is piecewise k-periodic if there exist Aq,..., A, C Z¢ such
that A = [#f;_, A; and each A; is k-periodic. Note that [Bha20] and [GT21a] used weakly
periodic for piecewise 1-periodic. In [GT21a] it was shown that any A C Z? satisfying
F ® A = 7? is piecewise 1-periodic, whereas in [Bha20] it was shown that almost every
solution to FF & A = 72 is piecewise 1-periodic, with respect to any invariant measure on
the space of solutions. The apriori weaker “almost everywhere” result sufficed to prove the
Z? periodic tiling conjecture. The following result shows that the existence of piecewise
(d — 1)-periodic joint co-tiles implies the existence of d-periodic joint co-tiles. For k =1 and
d = 2 it coincides with the results in [Bha20], [GT21a], deducing 2-periodicity from piecewise
1-periodicity.

Theorem 1.3. Let k and d be positive integers and let Fy, ..., F, € Z%. If FY, ..., F}, admit
a piecewise (d — 1)-periodic joint co-tile, then they admit a d-period joint co-tile.

We now define an additional condition on a tuple of tiles, that is needed for the formulation
of a certain generalization of Bhattacharya’s and Greenfeld-Tao’s theorems to d > 2:

Definition 1.4. Let (Fy,..., Fy_1) be a tuple of tiles in Z%, d > 2. We say that (Fy,..., Fy_1)
has property (%) if it is an independent tuple and for every (vy,...,v4 1), (wy,...,wq_1) €
F} x ... x Fj ; such that

span(vy, ..., v4-1) = span(wy, ..., Wq_1),

we have v; = w; for all 1 <¢<d— 2.

Theorem 1.5. Let (Fy,...,Fy 1) be a tuple of tiles in Z¢ that has property (x). Then any
joint co-tile for Fy, ..., Fy_1 is piecewise (d — 1)-periodic.

The next statement follows immediately from Theorem 1.5 together with Theorem 1.3.

Corollary 1.6. Let (Fy,...,F;1) be a tuple of tiles in Z¢ that has property (x). If
(F1,...,Fy_1) admits a joint co-tile then it admits a d-periodic joint co-tile.

Note that for d = 2, property (%) is vacuous, hence Theorem 1.5 reduces to the statement
that any co-tile for a finite subset of Z? is piecewise 1-periodic (Greenfeld-Tao’s theorem )
and Corollary 1.6 reduces to the statement that any finite subset of Z? that admits a co-tile
also admits a periodic co-tile (Bhattacharya’s theorem). Hence for d > 3, it is natural to ask
whether property (%) is a necessary condition for the existence of a periodic joint co-tile of
(d — 1) tiles of Z% .

We note a particular application of our methods, although not directly related to our main
results:

Theorem 1.7. Suppose that Z decomposes into (d — 1)-periodic subsets Ay, ..., A, C 74,
where at least one of them is not d-periodic. Then there exists I' < Z% of rank d — 1 so that
Aj+T=A; foralll <j<r.

On the other hand, we obtain the following converse results for Theorem 1.2 and Corol-
lary 1.6.

Theorem 1.8. Suppose that {0} ; F € Z% admits a periodic tiling A C Z%, then there exist
Fi,....,F, €Z% with0 € F; andFjGBA:Zd for all 1 < 5 < d, such that

(a) (Fi,...,Fy_1,F) is a d-tuple of independent tiles.
(b) (Fi,...,F4_9,F) has property (*).
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Combining Corollary 1.6 and Theorem 1.8 (b) we obtain the following:

Corollary 1.9. A finite set {0} ; F € 72 tiles Z¢ periodically if and only if there exists
Fi,...,F; 5 @7Z% and A C Z% such that (Fy,. .., Fy_o, F) has property (x), F® A =7 and
F,eA=7% forall1 <j<d-2.

Remark 1.10. Note that F and A play a symmetric role in the equation F & A = Z%, A is
a co-tile for I, but F is also a co-tile for A. Assuming that F' € Z? and that F & A = Z,
the periodic tiling conjecture asks about a specific property of the set of co-tiles of F. In
view of Corollary 1.9, that property is equivalent to a property of the set of co-tiles of A. In
particular for d = 3, let FF @ Z3, A C Z3 such that F'® A = Z3. Then F tiles Z3 periodically
if and only if there is another co-tile F’ for A such that (F’, F') has property ().

The structure of the paper is as follows. Section 2 contains basic background and definitions.
In Section 3 we prove Theorem 3.1, a periodic decomposition theorem for joint co-tiles, which
is a refinement of Theorem 1.1. From Theorem 3.1, we directly deduce Theorem 1.1 and
Theorem 1.2. In Section 4, we discuss generalizations of Theorem 3.1, Theorem 1.1 and
Theorem 1.2 to countable abelian groups. This allows us to extend Newman’s Theorem to
tilings of the group Z x (Z/pZ). In Section 5 we prove Theorem 1.5, which asserts that
property (x) implies piecewise (d — 1)-periodicity of joint co-tiles. Then in Section 6 we prove
Theorem 1.7 and deduce Theorem 1.3. Section 7 is dedicated to the proof of Theorem 1.8.
Finally, Section 8 contains concluding remarks and related questions.

Acknowledgement. We thank Itay Londner for discussions about tilings in cyclic groups
and the Coven-Meyerowitz conditions. We thank Ilya Tyomkin for telling us about the
relation between the dimension of the common complex zeros for a system of multivariate
polynomials with integer coefficients, the tropical variety, and the associated Bieri-Groves set.
We also thank Rachel Greenfeld and Terence Tao for their helpful communications.

2. PRELIMINARIES

A function f : Z¢ — R is called L-periodic, where L < Z<, if for every x € Z? and v € L
we have f(x +v) = f(x). Recall that a set A C Z< is piecewise k-periodic if A is the disjoint
union of k-periodic sets.

Definition 2.1. Let I'y,I'; be abelian groups. For f : 'y — 'y and v € 'y, we define the
discrete derivative of f in direction v, D,f : 'y — I'y, by

Dy, f(w) := f(w) = f(w —wv).
A function P : 'y — I'y is called a polynomial map of degree at most r if
Vo,...,vppmq €l Dy, ...D, P=0

(where for consistency P = 0 is a polynomial of degree —1). Given a subgroup I's < I';, we
say that P : 'y — I's is a polynomial map of degree at most r with respect to I's if

Vvl,...,erEFg,: Dvl--'D P=0.

VUr41

Ur+1
The following basic facts about polynomials will be useful for us. Lemma 2.2 below is due
to Leibman [Lei02, Prop. 1.21]. We include a short proof for the reader’s convenience.

Lemma 2.2. Let P : Z% — R be a polynomial map with respect to a finite index subgroup
L < Z%, which is bounded, then P is constant on cosets of L.
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Proof. Let r € N denote the degree of P, as a polynomial with respect to L. It is clear
from Definition 2.1 that if r is equal to 0, then the restriction of P to each coset of L is a
constant. Similarly, if the degree of P is equal to 1, then the restriction of P to each coset
of L is a constant plus a non-trivial homomorphism (see e.g. [Lei02]). For contradiction,
we may assume that » > 1. Observe that since P is bounded, for every v € L we have
D,P C P(Z%) — P(Z?), thus D,P is bounded. Therefore, for every vi,...,v,_; € L the
function D,, ... D,,_, P is a bounded polynomial map of degree exactly one, with respect to
L. But non-trivial homomorphisms into R are unbounded, a contradiction. [l

Definition 2.3. We say that a bounded function f : Z¢ — R has mean m if

lim ! Z f(v) =m, (3)

noee |Bn| ’UEBn
where B, = {-n,...,n}%

We say that f: Z¢ — R/Z is equidistributed in R/Z if

S o(f(v) = / g(z)dz (4)

’UGBn

.
nSoo | By

holds for every continuous function g : R/Z — R, where we identify g : R/Z — R with
g : R — R such that g(z + 1) = 2z for all x € R.

We will use the following version of Weyl’s equidistribution theorem for multivariate
polynomials, see for instance [Yif22].

Theorem 2.4 (Weyl’s equidistribution theorem for polynomials in several variables). Let
P : 7% — R/Z be a polynomial map with respect to a finite index subgroup T of Z¢. Then
on every coset v+ 1" of T, the restriction of P to v+ 1T is either equidistributed in R/Z or
periodic.

We implicitly rely on the following basic observation:

Proposition 2.5. Let F' € Z4. Suppose that F' C B,,, for some ng € N and that f : Z¢ — R
is a bounded function satisfying 1p x f = 1. Denote by C = |F|(max f — min f). Then for
every n > ng one has

|Bn—no| -C |Bn+no \ Bn—no‘ S |F’ Z f(w) § ’Bn—no| + C |Bn+no \ Bn—no| ) (5)
wEBy,

and thus the function f has mean . In particular, if Fi, Fy € Z% satisfy 1p, +f = 1pxf = 1,

|7
then |F1| = |F2|
Proof. Pick ng € N such that F' C B,,,. Observe that 1y f = 1 implies that for every n > ng
we have
1Bn—n0 - C : ]‘Bn+n0\Bn—n0 S 1F * f|Bn S ]‘Bn—no + C ’ 1Bn+'n0\Bn—nO7
where f|p, denotes the restriction of f to B,. Taking the sum of the values of these

functions over all z € Z¢ implies that (5) holds for every n > ng. Since lim,, |B|’;3‘n’|‘0| =1
IBn+n0\Bn—n0|

and lim,, B = 0, dividing (5) by |F| - |B,| and letting n — oo yields the
assertion. ]
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Remark 2.6. The mean of a function f : I' — R is defined similarly, using (3), for any
countable amenable group I, in which case B, is replaced by a Fglner sequence in I'; and
an analogue of Proposition 2.5 holds in this more general context as well. In Section 8§,
we implicitly apply Proposition 2.5 for countable abelian groups I', which are in particular
amenable.

2.1. Shifts of finite type. The space of co-tiles for a given finite set F' C Z%, or more
generally, the space of joint co-tiles for a given collection of sets, can naturally be endued
with the structure of a compact topological space on which Z? acts by homeomorphisms.
Topological dynamical systems of this kind are called Z¢-subshifts, more specifically subshifts
of finite type. We include here relevant terminology and basic facts from the field of symbolic
dynamics, particularly regarding shifts of finite type. We refer to [LM95] for a comprehensive
introduction to symbolic dynamics.

Let 3 be a finite set (alphabet) and T' a finitely generated abelian group. The set of
functions from I' to 3, denoted X1, is called the full T'-shift. For x € X' and v € T, we use z,
to denote the value of z at v (this is an element of 3J). Also for z € I and v € I we denote
by o,(z) € X' the shift of x by v, which is given by

0u(T) = Tyiap-

Endowing X' with the product topology, where the topology on X is the discrete topology,
makes X' a compact I'-space. A closed, non-empty and I-invariant subset X C XU is called
a [-subshift. For x € XX, the stabilizer of x is defined to be

stab(z) = {v el : o,(x) =z},

which is a (possibly trivial) subgroup of I'. A point x € X! is called k-periodic if stab(x) is
a subgroup of rank k. When I' = Z, we say that x € X2 is periodic if it has a non-trivial
stabilizer.

Definition 2.7. A I'-subshift X C X is called a subshift of finite type (SFT) if there exists
a finite set W C I and a set F C W such that

X={zex: WweT, o,(2)lw ¢ F}.

For every F' €@ Z¢ the space of co-tiles for F is a subshift of finite type, under the natural
identification of the space of co-tiles for F' with

Xp = {xe {0,112 1pxa = 1}.
To see that Xy is indeed an SFT, take W = —F and

f:{pe{o,l}w : Zp(w)#l},

weW
and then ,
Xp = {x € {0,1}% . Yo e Z% o(a)|w & f} .

Since a non-empty intersection of SF'Ts is also an SF'T), it follows that the space of joint
co-tiles for a collection of tiles is an SFT (unless it is empty).

The following simple result is based on a pigeonhole argument. The proof is well-known
and standard, we include it for completeness.

Lemma 2.8. Every Z-subshift of finite type admits a periodic point.
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Proof. Let X C Y% be a Z-subshift of finite type, where ¥ is a finite set. Then by definition,
there exists a finite set W € Z and F C X" such that
X={zeX®: WeZ ofx)lw ¢ F},
and X # (). Fix x € X, and let N € N be an integer bigger than max(W') — min(W). Since

such that

Let p = j — i and define & € X% by

Tp = Tit(n mod p)-

Then Z is a periodic point, and for every n € Z there exists t € {i,...,j — 1} such that
Z|lwan = z|wse. Hence, £ € X, which proves that X admits a periodic point. O

We recall the following result in multidimensional symbolic dynamics.

Lemma 2.9. Let ' be a finitely generated abelian group, Ty < T' a subgroup, and X C X' a
['-subshift. Let

Xr, :={r e X : Ty <stab(z)}. (6)
If Xv, # 0 then it is a T-subshift. Furthermore, if X is a subshift of finite type then Xr, is
also a subshift of finite type.

Proof. First, we show that Xp, is a subshift. Since I' is abelian, for every v € I', vy € I'y and
y € Xr, we have

oo (00(Y)) = 0u(00,(y)) = 00(y).
This shows 0,(y) € Xr, for all v € I" hence Xr, is I'-invariant. To see that Xr, is a closed
subset of X! consider a sequence (y,)nen € Xr, such that

lim y, =y e’
n—oo

in the product topology. Since each y, € Xr, € X and X is a closed subset of X', we get
y € X. Note that for any vy € I,

Uvo(y) = Oy (hm yn) = lim (Uvo(yn)) = lim (yn) =Y,
n—00 n—o00 n—o0
which shows y € X1, and hence Xt is a subshift. Now assuming that X is an SF'T" we show
that Xp, is also an SF'T. Observe that Xr, = X NY where
Y ={zex : Ty <stab(x)}.

Since 'y is a subgroup of a finitely generated abelian group it is also finitely generated. Let
{71,...,7} be a finite generating set for I'y. Then

Y = ﬂ{x exl : YoeT, vy, =1,}.
i=1

To see that Y is an SFT, let W = {0,71,...,7,} and
f:{wEZW: d1 <i<rs.t. woséw%}.

Then
V={zex : weT, o,()lw ¢& F}.

Hence Y is an SFT, which completes the argument.
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From Lemma 2.9 we deduce the following:

Lemma 2.10. Let ' be a finitely generated abelian group of rank d. If X C XU is a I'-subshift
of finite type that admits a (d — 1)-periodic point then it admits a d-periodic point.

Proof. Suppose X C XU is a [-subshift of finite type that admits a (d — 1)-periodic point,
namely a point z € X and a subgroup I'y < T" of rank d — 1 such that stab(z) = I'g. Let
Xr, be given by (6). Then Xr, is non-empty, and by Lemma 2.9 it is a subshift of finite
type. Because rank(I'g) = d — 1, it follows that rank(I'/Ty) = 1. Let v € Z% be a vector
such that k- v & 'y for all £ € N. Then 'y @ Zuv is a finite index subgroup of I'. Let D C T’
be a fundamental domain for I'y & Zv, namely a finite set such that I'c ® Zv & D = T..
Because D & Zv is a fundamental domain for I'g in I, it follows that the restriction map
p: Xr, — YPP2V is injective, where p is given by p(z) = z | paze-

Indeed, the inverse p~! : p(Xt,) — X, is given by p~ (%), = (%), for u € ', where ' is
is the unique element in (D @ Zv) that satisfies u — u’ € I'y. Using the natural identification
P = (RPY2 we can view p(Xp,) as a subset of (XP)%, which we denote by X.

Let us show that X is a Z-subshift of finite type. Because X is a I-subshift of finite
type, there exists a finite set W C I' and F C X" such that X1, is equal to the set of
r € X satisfying o,(z) = 2 and o,(z) |wg F for all v € I';. We can assume without loss
of generality that W is a subset of Zv & D, because Zv @ D is a fundmental domain for I'y.
Let W={neZ: (nv+D)NW % 0}. Then W = |¥,;;-(W N (nv + D)). Thus, there is a
natural bijection between X" and (22)V. Let F denote the image of F under this bijection.
Then it follows directly that

X:{xG(ZD)Z: Yo eZ: o,(x) |W¢]t"}

This proves that X is indeed a Z-subshift of finite type. )
Since X is a Z-subshift of finite type, by Lemma 2.8 there exists a periodic point 2z in X.
Let x = p~!(Z), then z € X is a d-periodic point. O

3. THE PERIODIC DECOMPOSITION THEOREM

The following theorem asserts a certain decomposition for a joint co-tile of k-tuple of tiles in
Z%. The case where k =1 and f is {0, 1}-valued essentially coincides with [GT21a, Theorem
1.7], which is closely related to [Bha20, Theorem 3.3]. In the particular case that the tuple of
tiles is independent, Theorem 1.1 is a direct consequence. Namely, the indicator function of
any joint co-tile of k independent tiles is a sum of k-periodic functions, each taking values
in [0, 1]. The goal of this section is to prove the periodic decomposition theorem for joint
co-tiles and to deduce Theorem 1.1 and Theorem 1.2.

Theorem 3.1 (Periodic decomposition theorem). Let Fy, ..., F, € Z¢, with 0 € F; for all
1<i<k, andlet f:Z* — Z be a bounded function that satisfies 1y x f =1 for all 1 <i < k.
We denote by S := |F\| = ... = |F}| (see Proposition 2.5). Then for every 1 < i < k and
every (v, ...,v;) € Ff x ... x Fy there exists a function ¢y, . ., : Z% — [min f, max f] with
the following properties:

.....
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(a) For i < k we have

¢'U17'--7'Ui =1- E ¢Ul7~-~7vi,vi+1'

Vi1 EF,ZSA

(b) |
f = (_1)Z Z ¢v1,...,vi + Z(_(S - 1))j_1‘

(V1,003 ) EF X X FF

(¢) Let q denote the product of all primes less than or equal to (max f — min f)S, then
(Zquy + ...+ Zqu;) < stab(¢u, . 4,),

(d) 15, % G,y = 1 for all 1 < j < k. In particular, ¢y, ., has mean 1/S.

There are various extensions of Theorem 3.1. Some of these generalizations have further
applications. For the sake of readability, we do not state the most general form and instead
indicate certain generalizations in the following sections, at the expense of some repetition.

The proof of Theorem 3.1 relies on Lemma 3.2 below. Various versions of this lemma,
which is referred to as the dilation lemma, have been proved in [GT21a, Lemma 3.1], [Bha20,
Proposition 3.1] for I' = Z%, d > 1. We also refer our readers to [Tij95, Theorem 1] where this
lemma is proved for integers. The proof is based on some elementary commutative algebra
and it easily extends to countable abelian groups. For the sake of self-containment, we include
a sketch of the proof below. The proof below is nearly identical to [GT21a, Lemma 3.1],
except that we apply the assumption that r is co-prime to the order of torsion elements
directly before eq. (7).

Lemma 3.2 (Dilation lemma). Let I' be a countable abelian group. Let0 € F €', { € N
and f: T — Z a bounded function satisfying

]_F*fzf

Let q be the product of all primes less than or equal to (max f — min f)|F|, let g2 be the
product of all the orders of the torsion elements in (F' — F), and set ¢ = q1q2. Then

17’F * f = g,
for allr € N such that r =1 mod q.

Proof. We use the notation f** = f x...x f. For any prime p we have
—

xp
*p
17 = (Z (5v> = Zé:jp mod p,
veF veF

where the last equality holds by the Frobenius identity (f + ¢)* = f** + ¢** mod p. For
integers p that are co-prime to ¢, we have that p(v; — ve) # 0 for any vy # vy € F, so the
function v — puv is injective on F. Thus:

D=0 =1yp. (7)

veF veEF
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Now convolving both sides of 1z * f = ¢ by 1}}@_1) yields 17 % f = ¢|F|P~!. Combining
the above, for primes p that are co-prime to ¢ we obtain 1,r * f = (|F|P~* mod p. If
additionally p is co-prime to |F'| by Fermat little theorem |F|P~' =1 mod p, thus

1,px f={ mod p.

Note that both 15 * f and 1, * f take values in [|F'|min f, |F| max f]. Recall that £ = 1p* f,
so ¢ € [|F|min f, |F|max f]. Thus, for p that is also greater than the size of that interval,
the above equality holds without the mod p, namely 1,7 * f = £. Finally, for r =1 mod g,
r is a product of primes that satisfy the conditions above, and the result follows by iterating
the equation 1,r x f = £. 0

Proof of Theorem 3.1. For 1 <i <k, (v1,...,v;) € Ff x ... x F} and N € N denote:

N
1
¢S)]1V)v = Ni Z O(14n1q)v1+..+(1+niqyi * f- (8)

ni,...,ni=1

Let g be the product of all primes less than or equal to (max f — min f)S. By applying
Lemma 3.2 for Fj with I' = Z% and ¢ = 1 we get 1.p % f =1 for every r € ¢gN + 1. Since
0 € I} we obtain

le—z&,v*fforeverylgjgk.
”L)GF;

For every N € N setting r = 1 +ng for n € {1,..., N} and taking average we conclude that
for every 1 < j < k we have

N
f =1- Z %Z 5(1+nq)v k f (9)
n=1

veky
Since qzﬁq(,]lv) = % ij:l d(14ng)v, * f this gives (with j = 1):
f=1-> o (10)
’U1EF1*
For 1 < i < k, choose any (vq,...,v;) € Fi' X ... x Ff and 1 < nq,...,n; < N. Setting

=4+ 1in (9) and convolving both sides of the equation by d14n,q)u;+...4(14n:q); We Obtain

1 N

O(1+n1q)or+..+(1+nigy; * [ =1— Z N Z 5(1+n1Q)v1+~-+(1+niQ)vi+(1+ni+1Q)Ui+1 * f.
Vi1 €EF] ngp1=1
By averaging over 1 < nq,...,n; < N and applying the definition in (8) we obtain that
N

1
N N
gbq(;l,.)..,vi =1- Z Ni+l Z (5(1+mq)v1+‘..+(1+m+1Q)vi+1 * f =1- Z ¢1(117.)..,v1-+1‘

Vi1 €FF N1, Nip1=1 Vi1 €F
(11)

Since |F}| =S — 1 for 1 <i <k, using (10), (11) and an inductive argument we obtain
that for every N € N and 1 <17 < k we have

DRV b Ce D DI (12)

(V1,..,0)EFF X .. X F}
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Notice that the functions d(i4n,q)v;+...4+(14niq)w; * f are bounded between min f and max f,

thus by (8), the functions qbq(,]lv)v are bounded between min f and max f for every (vq,...,v;) €
Fy x ... x Ff. In particular, for every (vy,...,v;) € Ff x ... x F the sequence of functions

(40 . )wen is uniformly bounded, hence by ArzelAscoli theorem (or by a Cantor diagonal-
ization argument), it converges along a subsequence. We denote the limit by ¢,, .. Then
for every (vy,...,v;) € Ff x ... x F} we have

min f < ¢y, .0, < max f,

and in view of (11) and (12) we have achieved (a) and (b).
To see (c), using (8), a standard telescoping argument shows that for every w € Z4,
v=(v1,...,v;) € Ff x ... x F¥ and every 1 < j <i we have

2NFk-1 2
|60 L (w+ qu) — o8V (w)| < NF N
Thus for every (vq,...,v;) € Fy x ... x F} the function ¢,, ., is quj-periodic for every
1 < j <. Itis left to see (d). Clearly, since 1p, * f = 1, for every 1 < 4,5 < k,
(v1,...,v) € FY x ... x F} and ny,...,n; € N we have 1p, * (0(14n,q)v,+...(14niq)o; * f) = 1.
Thus, by (8), 1F, * gzﬁz(,]lv)v = 1 for every N € N and therefore 1p, * ¢,, ..., = 1 for every
1 <1i,j < k. In particular, by Proposition 2.5, ¢,, . ,, has mean 1/S. ]

Remark 3.3. Under the assumption that f is {0, 1}-valued, it directly follows from The-
orem 3.1, part (a), that for every 1 < i < k and every (vq,...,v;) € F} x ... x F}, the
sum Z”i+1€F-*+1 Gor,..vswiyq 18 & [0, 1]-valued function. Theorem 3.1, where k = 1 and f is

{0, 1}-valued, coincides with [GT21a, Theorem 1.7]. We will not make use of the property
that 1g; * ¢y, = 1 in this paper. We mention it only for completeness and possibly for

future reference. The fact that the functions ¢,, each have mean 1/S played an implicit role
in [Bha20].

Using the assumption that the tuple of tiles is independent Theorem 1.1 is an immediate
corollary of Theorem 3.1, with f being a {0, 1}-valued function. The proof of Theorem 1.2 is
straightforward.

Proof of Theorem 1.2. Suppose that (Fy, ..., Fy) is an independent tuple of tiles in Z¢ and
that f : Z — 7Z is a bounded function satisfying 15, * f = 1 for all 1 < i < d. By

Proposition 2.5, we have |Fy| = ... = |Fy| := S. Let ¢ be the product of all primes less than
or equal to (max f — min f)S and let
L= ﬂ qlvy + . .. + qluy.

(V1500,0q) EFT X X F

Apply Theorem 3.1 with £ = d. It follows that f is a sum of functions whose stabilizers are
rank d-subgroups, more precisely,

f=(=1¢ > Bor,va + 2(—(5 )

(V15.,00) EFY X X F

and for each (vy,...,v4) € Fy X ... x F we have that ¢Zv, + ...+ qZv, < stab(¢y,,. v,). By
the above, stab(f) contains the intersection of stab(¢,, . ,) over (vy,...,vq) € Fy x ... x F},
that in turn contains L.
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By the assumption that the tuple (F1,..., Fy) is independent, qZv; + . .. 4+ qZuvy is a finite

index subgroup of Z¢ for every (vi,...,vq) € Fy x ... x F;. Since L is an intersection of
finitely many finite index subgroups, L is also a finite index subgroup. This proves that f is
periodic. 0

4. JOINT CO-TILINGS IN FINITELY GENERATED ABELIAN GROUPS

It is natural to ask which of the results about tilings generalize from Z? to more general
groups. An inspection of the proof of Theorem 3.1 reveals that the statement still holds,
and the same proof applies, if we replace Z¢ by an arbitrary countable abelian group I', and
change the value of ¢ in Theorem 3.1 (c¢) by multiplying it with the product of the orders of
all torsion elements in F' — F'.

There is a simple observation that allows one to reduce statements about tilings of countable
abelian groups by a finite set to the finitely generated case: Let I be a countable abelian
group and let F' € I' with 0 € F. Let I'y denote the group generated by the difference set
F — F. The assumption 0 € F' implies that F' € ['y. Then for any co-tile A of F' we have that
ANTyis a co-tile of F in [y, and tilings of I' by F' decompose into tilings of cosets of I'y in

[. A corresponding statement is true also for a tuple of tiles (F},. .., Fi) and a joint co-tile.
Recall that gq,..., g, in a countable abelian group I' are called independent if the equation
Z?Zl n;g; = 0, with ny,...,ng € Z, implies that n; = ... = n; = 0. With this definition,

Theorem 1.1 extends directly as follows:

Theorem 4.1. Let I" be a countable abelian group. For every k € N the indicator function of
any joint co-tile for k independent tiles in I' is equal, up to a constant, to a sum of [0, 1]-valued
functions whose stabilizer has rank at least k.

Similarly, Theorem 1.2 extends as follows:

Theorem 4.2. Let I' be a finitely generated abelian group of rank d. Any joint co-tile for d
independent tiles in I' has a finite orbit.

A quick remark about the condition of independence for a tuple of tiles for finitely generated
abelian groups with non-trivial torsion: If I is of the form I' = Z¢ x G where G is a finite
abelian group and (F}, ..., F}) is an independent tuple of tiles in T", then the only torsion
element in each of the sets F; is 0. For this reason, Newman’s theorem (i.e. any tiling of Z
by a finite set is periodic) does not hold in abelian groups I' that are finite extensions of Z.
Indeed, take I' = Z x G, where G is a finite abelian group. Take F' = {1} x G € T, then the
co-tiles of F' are all the sets A C I of the following form:

A={(n,g,): n€Z}

for some sequence (g, )nez of elements in G. In particular, it is no longer true that any co-tile
of F must be periodic, unless G is trivial. Nonetheless, if GG is a finite cyclic group of prime
order, then the only obstructions to extending Newman’s theorem are of this form.

Proposition 4.3. If ' = Z x (Z/pZ) for some prime number p and F' €T is a finile set,
then every co-tile of F' is periodic, unless F is of the form F'= F x (Z/pZ) for some finite
tile F' € Z, in which case the co-tiles of F' are all of the form

A={(n,gn) :n € A}, g, € Z/pZ, (13)

where A is a co-tile of F € Z, which by Newman’s theorem must be periodic.
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The proof of the proposition relies on the following generalization of Theorem 3.1.

Theorem 4.4. Let T be a countable abelian group, Fy,...,Fy € T' such that |F;| = S,
and 0 € F; for all 1 < i < k, and let f : I' — Z be a bounded function that satisfies
1px f =1 foralll <i < k. Foreveryl <i <k, let FiTor denote the intersection of
F; with the torsion subgroup of T', and let F} = F; \ F;*". Then for every 1 <i < k and
every (vi,...,v;) € FY" X ... X F} there exists a function ¢, ., : I' — [min f, max f] with
the following properties:

(a) For i < k we have

1FEF°1r * ¢’Ul,~~,vi =1- E Qbm,..‘,vi,fui_*_l'

Vi+1 eFi*-Q—l

(b) For every 1 <i < k there is an integer constant C; such that

1F1Tor X000k 1Fl‘Tor * f - <_1)Z Z ¢U17-~7Uz’ + OZ

(V1,0e505) EFT X X FF

(c) Let q; be the product of all primes less than or equal to (max f — min f)S, let g be
the product of all the orders of the torsion elements in the sets F; — F;, for 1 <i <k,
and set ¢ = q1q2. Then

(Zquy + ... + Zqu;) < stab(¢u, . 4,),
(d) 15, % G,y = 1 for all 1 < j < k. In particular, ¢y, ., has mean 1/S.

The proof of Theorem 4.4 below is a minor adaptation of the proof of Theorem 3.1. Note
that in the case where I is a torsion free abelian group, F/ " = {0}. In particular, when
I' = Z¢, Theorem 4.4 coincides with Theorem 3.1.

Proof. By applying Lemma 3.2 for F; with ¢ = 1 and ¢ as in (c¢) we get 1,5, * f = 1 for every
r € gN+ 1. Because r = 1 mod ¢, we have rF1°" = F1°. Since F; = F['" & I} we have

lprorx f=1— Zém*fforeverylgigk.
velr”

For every N € N| setting r = 1 +ng for n € {1,..., N} and taking average we conclude that
for every 1 < j < k we have

N
1
1F]’_I‘or * f — 1 - Z N Z 5(1+njq)vj * f (14)

vjeijk nj=1

Applying (14) with j = i + 1, convolving both sides by 0(14n,g)vi+..+(14niq)w; and taking
1 N

average over 7 Y .

A =1 Yields

N
1
1FZ-T+°1r>l< Ni Z 5(1+n1q)v1+-~-+(1+niQ)vi*f -

n1,...,n;=1

N
1
1 - Z Ni+1 Z (5(1+”161)U1+-~~+(1+H¢Q)Ui+(1+m+1Q)Ui+1 * f

Vi1 €F N1y, M1 =1




14 TOM MEYEROVITCH, SHREY SANADHYA, AND YAAR SOLOMON

Defining gzﬁ,(flv)v = % Z,]:[ it 0041 @or et (1maqy, * a8 in (8), we obtain

]_FTor * ¢v17 i 1— Z ¢1()]1\i.)..,vi,vi+1' (15)

i+1
U¢+1€Fi*+1

Note that (14) with j = 1 becomes 1 prror f=1- ZvleFf qu,]lV’. Convolving both sides by
1pgor and using (15) with i = 1 gives

1FiTor k 1F§‘or * f FTOI' Z ].FTor X ¢ N) |FTOI‘| - Z 1 - Z ¢1(}]1\{1))2

’U1€F* v1€F1* 'UQEFQ*

By an inductive argument we obtain that for every N € N and 1 <14 < k there is a constant
C; € Z, that does not depend on N, such that

1FiTor X ... 1F,LTOT * f = 07, + (_1>Z Z (bg)jl\i)yvz (16)

(V1500505 EFT X X FE

Items (a) and (b) follow from (15) and (16) respectively. The rest of the proof is completely
identical to the proof of Theorem 3.1 and therefore omitted. 0

Lemma 4.5. Let p be a prime number and let ) # Fy ?Ct Z/pZ. Then 1g, is an invertible
element of the ring Q%% where multiplication in the ring is convolution. In other words,
there exists g € Q%/P% such that g * 15, = do.

Proof. Consider the ring Q[z]/(z? — 1) (with operations of addition and multiplication of
polynomials). It is easy to check that this ring is isomorphic as a ring to Q*/P%, with the
operations of pointwise addition and convolution. The isomorphism is given by identifying
an element

Z_:aixi + (2P — 1) € Q[z]/(«* — 1)

with the function f € Q%P given by f(i + pZ) = a;.

Let Fy C Z/pZ be a non-empty proper subset of Z/pZ. Then 1p, € Q%/P” is naturally
identified with the coset of the polynomial P(z) = >, scr, z' in Q[z]/{(xz? — 1). Then the
assumption that Fj is a non-empty proper subset of Z/pZ implies that the polynomial P
is co-prime to the cyclotomic polynomial of order p, ¢, = f;& x'. Since P(1) = |Fy| # 0
it follows that P is co-prime to x — 1. Because 2? — 1 = ®,(z)(xz — 1), it follows that P is
co-prime to z? — 1. Hence there exists polynomials @1, Qs € Q[z] such that

1= Qu(z)P(x) + Qo) (2" — 1).
This means that in the ring Q[z]/(z? — 1), the coset of Q1 (x)P(x) is the same as the coset
of the polynomial 1. Since the coset of the polynomial 1 in Q[z]/(z? — 1) corresponds to
5o € Q%P2 this implies that g * 1z, = &, where g € Q?/P% is the element corresponding to
the coset of Q). ([l

Proof of Proposition 4.3. Let p be a prime number and F' € Z x (Z/pZ) be a finite set.
Suppose A C Z x (Z/pZ) satisfies 1 * 14 = 1. Applying Theorem 4.4 with I' = Z x (Z/pZ)
k=1, Fy = F and f = 14, we conclude that 1pror * 14 is a sum functions having infinite
stabilizer, hence 1zmor % 14 is periodic.
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First, assume that there is a set F' € Z such that F = FxZ/pZ. Solp = 15y oy Lioyx(z/p2)-
Thus lpx{o} * 1i0vx(z/pz) * 14 = 1. This implies that 101« zxpz) * 14 < 1, so for every n € Z
there exists at most one element g,, € Z/pZ such that (n,g,) € A. Hence, in this case, A is
of the form (13) for some set A C Z. It follows that 1z % 1; = 1, where the convolution here
is with respect to the group Z.

Now suppose that F'is not of the above form. This means that there exists n € Z such
that F'N ({n} x Z/pZ) is a non-empty proper subset of {n} x (Z/pZ). By translating F' we
can assume without loss of generality that F™ is neither empty nor equal to {0} x (Z/pZ).
Then there exists a non-empty proper subset Fy C Z/pZ such that FT = {0} x F,. In this
case, by Lemma 4.5, there exists g : Z/pZ — Q such that g * 15, = dy, where the convolution
isin (Z/pZ). Let §: Z x Z/pZ — Q be given by §(0,i) = g(i) for ¢ € Z/pZ and g(n,i) =0
for every n € Z \ {0} and i € Z/pZ. Then g * 1prer = dg, where this time the convolution is
in Z x (Z/pZ). Since 1pror * 14 is periodic, so is §* 1pror % 14 = 14.

We have thus shown that in the case that F is not of the form F = F x (Z/pZ) for some
Fez, every co-tile is periodic. [l

5. PROPERTY (%) IMPLIES (d — 1)-PIECEWISE PERIODICITY

In this section, we use property () to deduce Theorem 1.5. To this end, we will use
Theorem 2.4, which is a version of Weyl’s equidistribution theorem for polynomials in several
variables. The relevance of Weyl’s equidistribution theorem to our setting comes from
Lemma 5.1 below. We note that similar arguments have appeared earlier in [Bha20], [IKXS20]
and [GT21al.

Lemma 5.1. Suppose g, g1, -..,9m : I't = Iy are functions, where I'y, 'y are abelian groups,
such that Y"1" | gi = g. Suppose g is a polynomial of degree at most r € N with respect to a
subgroup T'o < T';. For any 1 <i < j < m define the group L, ; = stab(g;) + stab(g;), and let
L= ﬂ1§i<j§m L;;NTy. Then each g; is a polynomial of degree at most max{m — 1,7} with
respect to L. In particular, if g and L; ; has finite index in I'y for every 1 <1 < j < m, then
L has finite index in I'y, and each g; is a polynomial with respect to a finite index subgroup
Of Fl .

Proof. We prove the claim by induction on m. If m = 1 then g; = ¢, so the claim holds.
For m > 1, take v € L, then in particular v € Ly, NIy and thus v = v; + vy for some
v € stab(g;) and vy € stab(gy). Note that for every function f : I'y — 'y, the identity
D,f = D,, f ooy, + Dy, f holds, where o, : I'y — I'; denotes the shift by u, o,(w) = w — u.
Since D,, g1 = 0, applying this identity to g1 = — > 1", g; + ¢ ylelds

Dygr = Dyyg1 = =D, (Z 9i — g) :
1=2

Since D,,go = 0 we have

Dvgl+zDv29i :DUQQ' (17)

i=3
Note that vo € T'g, hence D,,g is a polynomial of degree at most r — 1 with respect to ['y. So
by the induction hypothesis, each summand on the left-hand side in (17) is a polynomial of
degree at most max{m — 2,7 — 1} with respect to a subgroup L', defined in a similar way
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to L using the functions D,g1, D, 93, . .., Dy, gm. In particular, for every v € L the function
D, g, is a polynomial of degree at most max{m — 2,r — 1} with respect to L’.

Now observe that for every f: 'y — I'y and v € I'; we have stab(f) C stab(D, f), thus
L < L' and for every v € L we, in particular, have that D,g; is a polynomial of degree at
most max{m — 2,r — 1} with respect to L. In a similar way for 2 < i < m and every v € L,
each D,g; is a polynomial of degree at most max{m — 2,r — 1} with respect to L, which
completes the proof.

OJ

Lemma 5.2. Suppose g : Z% — [0,1] is a function such that:

(1) g mod 1 is a polynomial with respect to a finite index subgroup of Z.
(2) g is a sum of finitely many non-negative (d — 1)-periodic functions.

Then there exists a finite index subgroup I' < Z¢ such that the restriction of g to each coset
of T is (d — 1)-periodic.

Proof. Suppose g = Y " | gi, where g; : Z% — [0, 1] and rank(stab(g;)) > d — 1. In case that
rank ()%, stab(g;)) > d — 1, the function g is (d — 1)-periodic and the assertion follows.
Otherwise, by summing together some of the g;’s we can assume without loss of generality
that stab(g;) + stab(g;) is a finite index subgroup of Z¢, for every i # j. By Lemma 5.1,
because g modulo 1 is a polynomial with respect to a finite index subgroup, we conclude that

each of the ¢g;’s modulo 1 are polynomials with respect to a finite index subgroup I'y < Z9.
Let

'=TIynN ﬂ (stab(g;) + stab(g;)) -
i#j
We will show that g is (d — 1)-periodic on each coset of I". Since I' < T'y, each ¢g; modulo 1 is
also a polynomials with respect to I". Hence by Weyl’s equidistribution theorem (Theorem 2.4),
every g; modulo 1 is either equidistributed or periodic, on each coset of T'.
Fix u € Z. Let g™ : (u+T) — [0, 1] denote the restriction of g to this coset. We consider
3 cases:

(1) Suppose there exists 1 <i <m and v € (u+ I') such that g;(v) = 1. Then because
0 < g(v) <1 and g;j(v) > 0, we conclude that g;(v) = 0 for all j # i. But g;(v) =1
implies that g;(v+w;) = 1 for all wy € stab(g;) so by the same argument g;(v+w;) =0
for all wy € stab(g;). Thus, g;(v + wy + ws) = 0 for all w; stab(g;) and wy € stab(g;).
Since I' < stab(g;) + stab(g;), we conclude that g; is zero on the coset u + I', for
all j # 4. This shows that in this case ¢ = ¢; on u + I', and in particular ¢ is
(d — 1)-periodic. So in the remaining cases we can assume that none of the g;’s are
equal to one, hence the g;’s obtain values in the interval [0, 1).

(2) Suppose there exists 1 < i < m such that g; is equidistributed modulo 1 on u+T'. Let
0 < e < 1 be smaller than all the non-zero values obtained by the (possibly empty)
set of g; that are periodic modulo 1. Because g; is equidistributed modulo 1 on u + 1T,
there exists v € u 4+ I' such that g;(v) > 1 —e. Thus, g;(v) < € for all j #i. As in
the previous part, using I' < stab(g;) + stab(g;), we conclude that g;(w) < € for all
j # 1 and all w € w4+ I'. This tells us that in particular that g; is not equidistributed
modulo 1 on u + I'. By the choice of ¢, g;(w) = 0 for every periodic j # i and every
w € u +I'. We conclude also in this case that ¢ = ¢; on u + I' and particular ¢ is
(d — 1)-periodic.
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(3) The remaining case is that all the g;’s modulo 1 are periodic on u 4 I, but since they
take values in [0, 1), the g;’s themselves are all d-periodic. It follows in this case that
g" is d-periodic, as the sum of d-periodic functions (and in particular (d — 1)-periodic).

O

Proof of Theorem 1.5. We conveniently assume d > 2, because the case d = 2 is covered by
[GT21a]. Suppose that A C Z< satisfies F;A = Z for all 1 <i < d—1, where (Fy,...,F; 1)

cey

as in Theorem 3.1, applied for k =d — 1 and f = 1,4. Given (v1,...,v4-2) € F}' X ... X F} ,
and a (d — 1)-dimensional subspace V < R? such that vy,...,v4.9 € V, define

1/}‘/ - Z ¢U1,..‘,Ud,2,wd,1'

wd_léFd*_lﬂV

Note that by the independence of (F1,..., Fy_1), every (d — 1)-tuple in F}" x ... x Fj |
spans a (d — 1)-dimensional subspace. Denote by H the set (counted without multiplicity) of
all (d — 1)-dimensional subspaces of R? spanned by (d — 1)-tuples in F} x ... x Fj |, and
for (vi,...,v4-2) € FY x ... x Fi_, let H(vy,...,u4—2) C H be the set of such subspaces
of dimension (d — 1) that contain vy, ...,v4 2. Thus, for every fixed tuple (vy,...,v4.2) €

Fy x ... x Fj , we have
Z ¢v1,...,vd72,wd,1 = Z wV (18>

wg_1€F]_| VeH (v1,...,v4—2)

By property (), {H(v1,...,v4-2) = (v1,...,04-2) € F} x ... x Fj ,} is a partition of H,

therefore
Z ¢v1,...,vd_1 = Z 77Z}V' (19)

(v1yeyvq—1)EFY X X F}_ | VeH

It follows that the functions vy possess the following three properties:
(i)
1— ¢vl,...,vd72 = Z wv-
VEH(’Ul,...,vd,Q)
(ii) stab(¢y) is a rank (d — 1) subgroup of V N Z%.

(iii) 1y modulo 1 is a polynomial with respect to a finite index subgroup of Z.

Indeed, property (i) is a direct consequence of Theorem 3.1 part (a) with i = d — 1, combined
with (18). Property (ii) follows from Theorem 3.1 part (c). Setting ¢y = 1y mod 1, the
equation in Theorem 3.1 part (b) (with f =14 and i = d — 1), combined with (19), yields
that > ..y ¥v = 0. By property (ii), stab(¢v) + stab(¢y~) is a finite index subgroup of Z¢
whenever V, V' € H and V' # V'. Thus property (iii) follows from Lemma 5.1.

In view of these three properties, Lemma 5.2 can be applied to g =1 — ¢y, 4, ,, for any
(v1,...,v4-9) € Ff x ... x Fj ,. This implies that there is a finite index subgroup I'y_5 < Z¢
such that each ¢,, ., , is a polynomial with respect to I';_o, and its restriction to every
coset u + ['y_5 is (d — 1)-periodic.

Next, we iterate the above argument using the recursion formula in part (a) of Theorem 3.1
combined with Lemma 5.2. In turn, this yields a finite index subgroup I'; < Z? such that
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each ¢,, is a polynomial with respect to I'y, and its restriction to every coset u + I'; is
(d — 1)-periodic. By part (b) of Theorem 3.1 with ¢ = 1 we have that

L—14= Y ¢y
U1€F1*

So applying Lemma 5.2 to g = 1 — 14, we obtain a finite index subgroup I' < Z% such that
the restriction of 1 — 14 to each coset of I' is (d — 1)-periodic. Hence the restriction of 14 to

each coset of I' is (d — 1)-periodic. Thus, if uy, ..., u, are cosets representatives of I' in Z¢,
setting A,, = AN (u; +T') C Z? yields a decomposition A = A,, &...w A,, of A into finitely
many (d — 1)-periodic sets, as required. O

6. FROM PIECEWISE (d — 1)-PERIODICITY TO d-PERIODICITY

The following lemma extracts an idea that appears within the proof of [GT21a, Theorem

5.4].

Lemma 6.1. Suppose that fi,..., [, f : Z* — R are bounded functions satisfying f =
Sy fij. Assume additionally that:

(1) stab(f;) + stab(f;) is a finite index subgroup of Z for all 1 <i < j <r.

(2) stab(f) is a finite index subgroup of Z°.
Then, for each 1 < j <r, the group stab(f;) is of finite index in Z°.

Proof. Let g1 = fi— f and g; = fj for 2 < j <r. Then g;+...+g, = 0 and stab(g;) +stab(g;)
is a finite index subgroup of Z< for all 1 < i < j < r. Using the fact that 0 is a polynomial,
and applying Lemma 5.1, we get that each g; is a polynomial with respect to a finite index
subgroup of Z¢. But each g¢; is bounded. By Lemma 2.2, a polynomial with respect to a
finite index subgroup of Z¢ that is bounded must be constant on cosets of this finite index
subgroup. This implies that for each 1 < j < r the group stab(f;) is of finite index in Z¢. O

Theorem 1.7 is a direct consequence of the above lemma, as shown below.

Proof of Theorem 1.7. Set f; = 14;, then 22:1 f; = 1. Let L; < Z¢ be the subgroups of rank

at least d — 1 that stabilizes A;. Note that for every two such subgroups L;,, L;, < Z% either
their intersection has rank d — 1 or their sum has finite index in Z¢. Assume by contradiction
that the intersection of all L;’s is of rank less than d — 1. By unifying some of the A;’s we
can assume without loss of generality that L;, + Lj, is a finite index subgroup of Z? for all
1 <i < j <r. In this case, the conditions of Lemma 6.1 hold but the conclusion fails, by the

initial assumption. Thus the assumption that rank (ﬂ;zl Lj) < d—1 is false. U

We would also need the following lemma.

Lemma 6.2. Suppose that ¥ € R is a finite set of real numbers, gi,...,qg, : Z¢° — R are
finitely supported functions and f: Z* — ¥ is a (d — 1)-periodic function such that g; * f is
d-periodic for every 1 < j <r. Then there exists a d-periodic function f : 74 — % such that
gix f=gjxf foreveryl <j<r.

Proof. Consider the space

X={zex? : VI<j<r g«i=g;*f}
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and let I' = ﬂ;zl stab(g; * f). Then X is a I'-shift of finite type, and by definition f € X is

a (d — 1)-periodic point in X. Apply Lemma 2.10 to conclude that there exists f € X that is
d-periodic. Any such point f satisfies the conclusion of the lemma. ([l

At this stage, we are prepared to present the proof of Theorem 1.3.

Proof of Theorem 1.3. Suppose that A C Z% is a piecewise (d — 1)-periodic joint co-tile for
Fi,...,F, @Z% That is, there exists functions fi,..., f, : Z% — {0,1}, each f; is (d — 1)-

periodic, and 14 = Z;Zl fj- Notice that we may assume that rank (ﬂ] stab(fj)> <d-1.
Indeed, if rank (ﬂj stab(fj)) >d—1then 14 =737, f;isa (d— 1)-periodic point in the

shift of finite type ﬂle Tile(Fy; Z%), and thus by Lemma 2.10 it contains a d-periodic point.
Also note that for every two subgroups Ly, Ly < Z% having rank at least d — 1, either their
intersection has rank at least d — 1 or L; + L, has finite index in Z?. So as before, by possibly
summing some of the f;’s we can assume without loss of generality that stab(f;) + stab(f;)
is a finite index subgroup of Z? for all 1 <[ < j < r. Now consider the functions 1p, * f;.
Observe that for every 1 < i < k we have Z;Zl 1g * f; =1, and for every 1 < j < r we have
stab(f;) < stab(1p *f;). Thus setting A; ; := stab(1p, * f;) yields that rank (A; ;) > d—1 and
A;;+ A, is a finite index subgroup of Z¢, for every 1 <i <k and 1 <! < j <r. Applying
Lemma 6.1 for each 1 <17 < k separately we see that each A, ; is a finite index subgroup of
Z®. That is, each one of the functions 1f, * f; is d-periodic. For any fixed 1 < j < r, applying
Lemma 6.2 with g; = 15, and f = f; and ¥ = {0, 1}, yields a d-periodic function f] /A
that satisfies 1p, * fj = 1p, * fj, for all 1 < i < k. In particular, the function f : Z? — Z

defined by f := Z;Zl f;j is bounded, d-periodic, and it satisfies

V1<i<kh: 1Fi*f:1Fi*<ij) =Y Agxfi=) 1n*fi=1,
j=1 j=1 j=1

Since f := > i1 f; is a sum of {0, 1}-valued functions and 1p, * f = 1, it follows that f itself
is {0, 1}-valued, hence A is an indicator of a set A such that F; @ A = Z%. Since each f; is

d-periodic, so is A. This completes the proof.
O

7. CONSTRUCTING INDEPENDENT TILES WITH THE 1-HYPERPLANE REPETITION
PROPERTY FOR A PERIODIC CO-TILE

In this section, we prove Theorem 1.8. We repeatedly rely on the following basic fact.

Lemma 7.1. Let L < Z% be a finite index subgroup and let Uy, ..., U, C R? be affine
subspaces of dimension strictly smaller than d. Then the set L\ |J;_, U; is infinite.

Proof. For n € N let B, = {-n,...,n}% Then there exist c¢,c,...,c, > 0 such that
|B, N L| > cn® while |B, NU;| < ¢;ndimUi < ¢;nd=1. In particular, |B, N (L \ J;_, U;)| tends
to infinity as n tends to infinity. 0

Lemma 7.2. Let F € Z%, let A C Z% such that F & A = Z¢ and let L < Z% be a subgroup
satisfying A+ L = A. Then for every function f : F — L the tile set

Fr={v+ f(v) : veF}
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satisfies Fy & A = 7.

Proof. Given a function f: F' — L, we show that Fy & A = Z¢. The condition F' & A = Z?
can be rewritten as Z¢ = |, (v + A). Since A+ L = A and f(v) € L for every v € F, it
follows that f(v) + A = A. Thus,

Z'=Hw+A) =@+ f)+4) = [H @+A4).

veF veF BeFy
This proves that Fy & A = Z<. O
Lemma 7.3. Suppose we are given d,m € N, (vy,...,v,) € Z% and a finite index subgroup

L < 7% Given a subset J C {1,...,m} and a subspace W < R?, let Viy(g,J) denote the
subspace of RY/W obtained by projecting span{v; + g(j) : j € J} into R*/W wvia the map
v = v+ W. Then for every finite collection W of proper subspaces of R¢ there erists a
function g : {1,...,m} — L so that for every J C {1,...,m} and every W € W we have
dim (Viy (g, J)) = min{d — dim(W), |.J|}.
Proof. We prove the claim by induction on m. For m = 1, we only need to choose g(1) € L such
that v1+¢(1) € W for any W € W. This is possible by Lemma 7.1. Assume by induction that
g(1),...,g(m) € L have been defined so that the conclusion holds for every J C {1,...,m}
and every W € W. Using Lemma 7.1 we can choose g(m+1) € L that is not contained in any
affine hyperplane of the form U := —v,,,41 +span{v; +g(j) : j € J} + W, where W € W and
J ranges over subsets of {1,...,m} of size at most d — dim(W) — 1. We need to show that
for any J C {1,...,m+ 1} and W € W we have dim (Viy (g, J)) = min{d — dim(W), |J|}.
Fix some J C {1,...,m + 1} and W € W. The assertion follows from the induction
hypothesis in case (m + 1) € J, so suppose (m + 1) € J. By the induction hypothesis,
dim (Viy (g, J \ {m + 1})) = min {d — dim(W), |J \ {m + 1}|}. If |J\{m+1}| > d—dim(W),
then dimy (V (g, J)) = d — dim(W), as required. Otherwise, we have that
dim(Viy (g, J\ {m +1})) = [J\{m + 1} = [J| - 1.

By our choice of g(m+1), we have that v,,,+1+g(m+1) & span{v; + g(v;) : j € J\ {m+1}},
S0

dimy (V (g, J)) = dim(Viy (g, J \ {m +1})) + 1 = | J].
This completes the induction step, hence the proof. 0
Proof of Theorem 1.8. Suppose F@ A = Z% where L € Z% is a finite index subgroup satisfying
A+ L = A Write F* = {wy,...,wx}. We apply Lemma 7.3 with m = (d — 1)k and
(V1,..., V), where vy, = w; for 0 < j < d—2,and 1 < i <k, and W = {span{v} : v e F}
to obtain a function g : {1,...,m} — L as in the statement of Lemma 7.3. For 0 < j < d —2
we set
Fioi ={0}U{vgjpi+gkj+i): 1 <i<k}={0}U{w;+g(kj+1i):1<i<k}.

By Lemma 7.2 we indeed have F; & A = Z% for every 1 < j < d — 1. To see that
(Fy,...,Fy 4, F)isad-tuple of independent tiles, note that for any choice of (uy, ..., uqs_1,v) €
Fy¥ x ... x Fj | X F there exists iy,...,iq-1 € {1,...,k} so that

uj = Vi), + 9k = 1) +45).
Hence, there exists a set J C {1,...,k(d — 1)} so that
span{u; + W,. .. jug_1 + W} = Viy (g, J),
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where W = span{v}. By the property of g, it follows that dim(span{uy,...,uq 1,v}) =d.
Let us check that {F},..., F;_, F'} has the property (x). Choose two distinct (d — 2)-tuples

(ul,...,’U,d,2>,(ﬂ,1,...,fbd,2) S Fl* X ... X Fc>l|;27

and v,0 € F. As before, it follows that there exists subsets J, JC {1,...,m} with J # J
and |J| = |J| = d — 2 so that

{ur, ... ug—o} ={v;: j€J}and {tu,...,0q-—2} ={v; : j€ J}

Since J # J and || = |j| = d — 2, there exists / € j\ J. It follows from the property of the
function g that for any v € F*

dim(span({v; : je J}U{v}) =d—1
and
dim(span({v; : j € J}U{v}U{v}) =d.
This shows that v, & span ({v; : j € J} U{v}). In particular, there does not exist v € F™*
such that
span ({1, ..., Uq—o}) C span ({u, ..., ug_2,v}).
This shows that there does not exist v, v € F* so that

span ({1, ..., Ug_2,0}) = span ({ug, ..., uqg_2,v}),
which proves that (Fi,..., Fy_o, F') has property (x). O

8. FURTHER COMMENTS AND QUESTIONS

8.1. Integer-valued co-tiles. Given F' € I', we say that a bounded function f: ' — Z is
an integer-valued co-tile for I if 1z % f = 1. Observe that our proof of Theorem 1.3 holds for
integer-valued co-tile as well, thus we have:

Proposition 8.1. Let k and d be positive integers and let F, ..., F, € Z. Suppose that
Fi, ..., Fy admit an integer-valued joint co-tile f and that f = >_, f., where each f; : Z¢ —
Z is bounded and (d — 1)-periodic. Then Fi,..., Fy, admit a d-period integer-valued joint
co-tile.

It is natural to ask whether the existence of an integer-valued co-tile for F' € I" implies
the existence of a set A C I for which 1z %14 = 1?7 The simple example below shows that
this is not true even for I' = Z (or for I' a finite cyclic group, here Z/18Z). Let F} = {0, 1},
FQ = {0,3,6} and F' = F1 ©® F2 = {0, 1,3,4, 6, 7}

0 1 3 4 6 7
® ¢ O e ¢ O o o
We claim that F' does not tile Z, but it does admit an integer-valued co-tile. Note that for

Ay =27 and Ay = {0, 1,2} & 9Z we have

oA =FHo A =17
Furthermore, if fll is a co-tile for F} then 1211 must be a translate of A;. To see that F' does
not tile Z, suppose by contradiction that F' & A = Z then F| @ (Fy & A) = Z, so we must

have that F» @ A is a coset of 27, but this is clearly impossible since F5 is not contained in a
coset of 2Z. Now take

f=14 —14,.
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Then using 1p = 1p, % 1p, and 15, % 1 = |F;| we get:

]-F*f = 1F2 % (]_F1 X 1A1) — 1F1 * (1F2 % 1A2) = |F2| — |F1| =1.

8.2. Conditions for joint tilings for d independent tiles in Z?. In view of Theorem 1.2,
the classical Wang argument (see [Ber66], [Rob71]) implies that it is algorithmically decidable
whether a set of d independent tiles in Z¢ admit a joint co-tile: Indeed, any such tiling
must be periodic so we can exhaust the possible periodic co-tiles. As in [GT21a], from an
upper bound for the period of a co-tile one can directly deduce an upper bound for the
computational complexity of the tiling problem. It is of interest to find explicit necessary
and sufficient conditions for a d-tuple of independent subsets of Z¢ to admit a joint co-tile.
In view of Theorem 1.8, the previous problem is closely related to the more basic question of
finding explicit necessary and sufficient conditions for a finite set of Z¢ to tile periodically.

Conversely, one can ask about necessary and sufficient conditions for an infinite subset of
7 to be a joint co-tile for d-independent tiles. In view of Theorem 1.2 and Theorem 1.8
this is equivalent to the question of finding necessary and sufficient conditions for a periodic
subset of Z4 to be a co-tile for a finite tile.

A complete solution to the above questions involves the factorization of finite abelian
groups, namely understanding solutions for A @ B = (G, where G is a finite abelian group.
This is a difficult problem even in the cyclic case G = Z/M?7Z, which comes up in tilings of Z.

Coven and Meyerowitz [CM99] found explicit and efficiently verifiable sufficient conditions
for tiling the integers by a finite set. It has been conjectured that these conditions are also
necessary. This conjecture has been verified in some specific cases recently [L1.22a, L1.22b].
The necessity of the Coven-Meyerowitz conditions would imply an efficient algorithm for
determining if a given finite subset F' € Z can tile Z, see [KKM09].

8.3. Higher level tilings. A level ¢ co-tile of Z¢ by a finite set set F € Z¢ is a set A C Z¢
such that 1z %14 = ¢. Both Theorem 1.1 and Theorem 1.2 generalize to level ¢ tilings. A

suitable modification of Proposition 2.5 implies that if 1z % f = ¢ then f has mean ‘—ﬁ‘. A

proof can be obtained via a relatively routine modification of Theorem 3.1 as follows:

Theorem 8.2. Let {y,... .0, €N, F\,....F, @7 with0 € F; for all 1 <i <k, and let
f:Z% — 7 be a bounded function that satisfies 1, * f = €; for all 1 < i < k. Then for
every 1 <i <k and every (vy,...,v;) € FY x ... x F} there exists a function ¢y, . ., 7% —
[min f, max f] with the following properties:

(a) Fori < k we have

¢U1,...,’vi = €i+1 - E ¢v1,...,vi,vi+1-

Vi+1 €41

()
i 7 j—1
F=C00 Y buw ) GRS
(V1,005)EFY X X} j=1 t=1 s=1

(¢) Let q denote the product of all primes less than or equal to max;<;<x {x(max f —
min f) maxi<i<y [Fi|, then

(qul + ...+ qul) S Stab(gém,u.,vi)a
(d) 1p, % ¢u,,.., = i for every 1 < j < k. In particular, it has mean {;/|F;|.



PERIODICITY OF JOINT CO-TILES IN 7Z? 23

8.4. Piecewise 1-periodicity of co-tiles in Z* x (Z/pZ). By applying the arguments of
Section 4, the methods of [GT21a] directly give:

Theorem 8.3. Let p be a prime number, I' = Z? x (Z/pZ) and F €T be a finite set. Then
one of the following holds:

(1) Any A CT salisfying F & A =T is piecewise 1-periodic.
(2) There exist a finite set F C Z* such that F = F x (Z/pZ).

In fact, using Theorem 4.4 and the results of Section 5, we can deduce the following: For
any rank 2 abelian group I and any F' € I, if F ® A =T then the set FT" @ A is piecewise
1-periodic, whereas in Section 4, FT°" is the intersection of F with the torsion subgroup of I'.
Then in the case I' = Z* x Z/pZ with p prime, Lemma 4.5 implies Theorem 8.3.

Corollary 8.4. Let p be a prime number, I' = Z* x (Z/pZ) and F €T be a finite set. If F
tiles T', then F tiles I' periodically.

Rachel Greenfeld and Terence Tao have informed us in private communication that they
also obtained Corollary 8.4.

8.5. A Fourier-analytic and algebraic-geometric approach. Fourier analytic methods
are a natural approach to translational tiling problems, see [GT2la, Remark 1.8]. Let
g5, 94 : Z% — C be finitely supported functions, by which we mean that g;(v) = 0 for all
but finitely many v € Z?. Suppose f : Z¢ — C is a bounded function that satisfies g; * f = 1
for all 1 <14 < d. Taking distributional Fourier transform on both sides yields

~

gi - [ = do.
Thus, the distributional Fourier transform of f is supported on 0 and the intersection of the
zeros of g;. In particular, if ¢y, ..., g4 have finitely many common zeros, and f must be the

Fourier transform of a multivariate trigonometric polynomial, hence periodic.
The set of common zeros for d polynomials in d variables is “generically” a finite set.

Given v = (ny,...,ng) € Z% let X" := 27" -...- 2 denote the corresponding monomial in d
variables x1,...,x4. Given a finite set F' € Zi, let Pp:= ) . X" denote the corresponding
multivariate polynomial. We conclude that whenever Fi,... F; € Zi are subsets such that

the algebraic variety

d
V(PFl,..-,PFd> = m{(xl,...,xd) € Cd : PFi(ZL’l,...,l‘d) :0}
i=1
has a finite intersection with the d-sphere, then any joint co-tile for Fi, ..., Fy is periodic.

This raises the question: Is it true that for an independent d-tuple (Fy, ..., F,) in Z% the
algebraic variety V(Pp, ..., Pp,) is finite?

We note that it can be shown that V(Pp,..., Pp,) is finite if we impose the somewhat
stronger condition that (Fy — Fi, ..., Fy — Fy) is an independent d-tuple in Z<¢. This follows
from the equality of the tropical variety with the Bieri-Groves set of the variety (see Theorem
2.2.5 and Corollary 2.2.6 in [EKLO06]), combined with [EKL06, Theorem 2.2.3] and an explicit
direct computation. This connection was kindly explained to us by Ilya Tyomkin. This
argument gives an alternative derivation of the conclusion of Theorem 1.2, under the slightly
stronger assumption that (Fy, — F, ..., Fy — F,) is an independent tuple of tiles on Z<.
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