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Abstract

We study properties of infinite discrete subsets of Euclidean spaces. The basic

objects that we study are called separated nets, which are uniformly discrete and

relatively dense subsets of Rd. There is a correspondence between separated nets

and tilings of Rd by finitely many translation equivalent tiles. This correspon-

dence matches between tilings and separated nets, up to a bounded displacement

(BD) of the net, namely moving each point a bounded distance. A significant

part of our research deals with three equivalence relations on the set of separated

nets: BD equivalence, BD equivalence after dilation, and biLipschitz equivalence,

where BD equivalence is the most delicate of these three. Considering the above

correspondence between tilings and separated nets, which is up to BD equiva-

lence, it suffices to consider separated nets that come from tilings when studying

those three equivalence relations.

Most of the questions that we answer in this dissertation are trivial for periodic

tilings. We focus on a specific family of tilings that are called substitution tilings.

These are tilings with finitely many translation equivalent tiles, that possess

strong self-similarity properties, and many of their qualities can be derived out of

them. These tilings are generated by a process of substituting each tile by some

tessellation, using the same type of tiles, but with a smaller scale. Repeating those

substitutions over and over again produces tilings of larger and larger regions,

which as limits give rise to tilings of the whole space. The limiting objects are

called substitution tilings. One of the reasons to study these tilings is that they

are usually non-periodic, and in fact this is one of a very few procedures that we

have to produce non-periodic tilings.

In §2 we answer a question that we were asked privately by McMullen, which

was motivated by the results of the author MSc thesis, on biLipschitz equivalence

of separated nets that arise from substitutions. The results of this chapter are in

[S11b]. As it was shown by McMullen in [McM98], and by Burago and Kleiner

in [BK98], there is a tight connection between the following two questions:

(1) Given a separated net Y ⊆ Rd, is it biLipschitz to Zd?

1



2 CONTENTS

(2) Given a positive function f ∈ L∞(Rd), is it the Jacobian of a biLipschitz

homeomorphism of Rd a.e.?

Given a tiling τ of Rd consider the function fτ : Rd → R, which is constant

1/V ol(T ) on the interior of every tile T . It is not difficult to show that wherever

fτ is a Jacobian as in (2), any separated net that corresponds to τ is biLipschitz

to Zd. We show that for substitution tilings τ , fτ is a Jacobian wherever a local

condition is satisfied for each of the basic tiles. We also show that our condition is

satisfied for tilings by star-shaped domains in the plane, and therefore the theorem

holds for such tilings, and in particular fτ is a Jacobian for every Penrose Tiling

τ .

Chapter 3 deals with the BD equivalence relation on separated nets that arise

from substitution tilings of Rd, and describes the results of [S12]. BD equivalence

of separated nets implies biLipschitz equivalence, which is an equivalence relation

that was vastly studied, for instance in [BK98], [BK02], [McM98], [Gr93]. The

study of the BD equivalence relation began at the author’s MSc thesis, see [S11a],

and attracted other authors to consider it, see [ACG11], [HKW12], and [S12]. We

study separated nets that corresponds to substitution tilings, and ask when such

a net is BD to a lattice? This question was considered before in [S11a] and

[ACG11], and our results here improve these previous results and answer the

question for almost all possible cases. Moreover, we show that the answer of

whether the net is BD to a lattice or not does not depend on the tiling itself, but

only on the properties of the dissection rule of the basic tiles, or more specifically

the eigenvalues and eigenspaces of the matrix that it defines. The main step that

allows the improvement in our proof here is Proposition 3.3.5. By the nature of

the definition of substitution tilings, if τ is such a tiling and H is the substitution

rule on the tiles, then for every m ∈ N there is a tiling τm with Hm(τm) = τ . In

Proposition 3.3.5 we prove that any finite patch P in τ can be presented as unions

and proper differences of tiles from different generations τm, with good estimates

on the number of tiles taken from every generation. Using these estimates we

can apply a theorem of Laczkovich from [L92] and deduce the conclusion on the

BD equivalence.

In Chapter 4 we work on the Danzer problem, which is an open problem for

nearly sixty years already. There are several different phrasings for this problem,

and the following is the original one, which is due to Danzer: Is there a set

D ⊆ Rd, with growth rate O(T d), that intersects every convex set of volume 1?

Despite the fact that this question can be presented in one line, and no prior

knowledge in required to approach it, the only previous result that we know of is

in [BW71]. In that paper Bambah and Woods have one negative and one positive

results regarding Danzer sets, namely sets that intersect all convex sets of volume

1. They first show that any finite union of grids cannot be a Danzer set, and then

they construct a Danzer set in Rd with growth rate O(T d(log T )d−1). We also
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have here one negative and one positive result. We show that discrete sets that

arise from substitution tilings of Rd by choosing one point in each basic tile are

not Danzer sets. Then we show that the Danzer problem is actually equivalent

to a well-known, difficult, combinatorial problem, and use partial result of that

problem to deduce a construction of a Danzer set in Rd of growth rateO(T d log T ).
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Chapter 1

Introduction

This dissertation deals with different properties of tilings and infinite discrete sub-

sets of Euclidean spaces. We usually focus on non-periodic discrete sets, and try

to understand properties which are usually obvious for the periodic case. There

is a simple duality between tilings and discrete subsets of Euclidean spaces, and

it turns out to be efficient to use properties and classifications of one for studying

the other. One of our main directions is to study discrete subsets that correspond

to families of non-periodic tilings. That way we get the non-periodicity on one

hand, and have additional interesting structure on the other.

1.1 History and Motivation

One of the motivations for studying these objects is the work of Shechtman et

al [SBGC84] on quasicrystal with no translational symmetry. The patterns that

are obtained in an electron diffraction of these materials are nice examples for

the discrete point sets that we are looking at, and this work shed more light

on these materials from the mathematical point of view. Another reason for

this research is to understand better the well known Penrose Tiling, see for in-

stance [DeB81], [Gar77], [GS87], [P74], [P79]. This was the one of first examples

of a non-periodic tiling of the plane, and it uses only two non-isometric tiles.

Our results of the following three chapters also hold specifically for the Penrose

Tiling. One other motivation comes from Geometric Group Theory, where metric

spaces are sometimes considered up to the equivalence relation of quasi-isometry.

Our research focuses on separated nets, sets of points which are both uniformly

discrete and relatively dense, and it can be shown that two metric spaces are

quasi-isometric if and only if they contain biLipschitz equivalent separated nets.

This observation gives rise to the following question by Gromov, see [Gr93], p.

23: Is every separated net in Rd biLipschitz equivalent to Zd (d > 1)? The themes

7
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that are discussed in Chapters 2 and 3 are closely related to this question. One

last motivation to study infinite discrete sets is the connections to questions in

combinatorics. As we show in Chapter 4, the question that we deal with there is

equivalent to a difficult question in combinatorics and computational geometry,

and might also have applications in machine learning.

1.2 Separated Nets and BiLipschitz Equivalence

We denote by Rd the d-dimensional Euclidean space, and by d(·, ·) the Euclidean
metric on it.

Definition 1.2.1. A set Y ⊆ Rd is uniformly discrete if there exists r > 0 such

that for any y1, y2 ∈ Y we have d(y1, y2) ≥ r. It is relatively dense if there exists

R > 0 such that for any x ∈ Rd there is some y ∈ Y with d(x, y) ≤ R. Y is called

a separated net, or a Delone set, if it is both uniformly discrete and relatively

dense.

The first example of a separated net in Rd is Zd, or a bit more generally,

lattices. As mentioned above, our work is motivated by Gromov’s question: Is

every separated net in Rd biLipschitz equivalent to Zd? Where two separated

nets Y1 and Y2 are called biLipschitz equivalent if there exists a constant K ≥ 1

and a bijection φ : Y1 → Y2 that satisfies

1

K
≤ d(φ(y), φ(y′))

d(y, y′)
≤ K,

for every two distinct y, y′ ∈ Y1. This question was settled in 1998 by Burago and

Kleiner [BK98], and independently by McMullen [McM98], who showed that the

answer is negative. In their proof they relate the above question of Gromov to

another question with a more analytic nature: Is every positive, L∞ function f :

Rd → R can be realized as a Jacobian of a biLipschitz homeomorphism of Rd a.e.?
They show that those two questions are equivalent, and then explicitly construct

a function which is not the Jacobian of any biLipschitz homeomorphism of Rd.
This already implies the existence of a separated net that is not biLipschitz to

Zd. Nevertheless, in [BK98] there is an additional part showing how to explicitly

construct such nets, given a function which cannot be realize as such a Jacobian.

We return to deal with the Jacobian question with more details in Chapter 2,

focusing on a more specific type of functions.

Given the fact that not every separated net is biLipschitz equivalent to Zd,
people begin to consider certain constructions of separated nets, and ask whether

their special nets always biLipschitz to Zd. Alternatively, is there a separated net

which is not biLipschitz to Zd that comes from some nice general construction?
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1.3 Tilings and Separated Nets

Lattices in Rd, namely discrete co-compact subgroups, and their translations, are

the most basic example of separated nets. It is easy to see that if Γ ⊆ Rd is a

lattice, then Γ = A ·Zd for some invertible matrix A. Since invertible linear maps

are biLipschitz homeomorphisms, every lattice is biLipschitz equivalent to Zd.
To talk about other examples of separated nets, we present now the connection

between these objects and tilings of Euclidean spaces.

A tile T ⊆ Rd is just a subset of Rd, that usually carry a few other regularity

properties, that depend on the context. A tiling, or a tessellation, τ of a subset

S ⊆ Rd is a collection of tiles that covers S, where different tiles intersect only at

their boundaries. A tiling P of a bounded set S ⊂ Rd is called a patch. We call

the set S the support of P and we denote it by supp(P ). Given a collection of

tiles F , we denote by F∗ the set of all patches by the elements of F . People often

consider tiles which are homeomorphic to closed balls, or even polytopes, but

tilings by less regular shapes, like disconnected sets, non-simply connected sets,

and fractals also appears in many different areas of mathematics. For further

reading on tiling see for instance [GS87] and [Ra99].

Given a separated net Y ⊆ Rd, one gets a tiling νY of Rd by convex polytopes

by taking the Voronoi cells

∀y ∈ Y : Cy = {x ∈ Rd : ∀y′ ∈ Y r {y}, d(x, y) ≤ d(x, y′)}.

Since Hy,y′ = {x ∈ Rd : d(x, y) ≤ d(x, y′)} is a half-space, each Cy is an inter-

section of half-spaces and therefore convex. It follows from the discreteness of Y

that each Cy is defined by finitely many Hy,y′ , and hence a convex polytope.

On the other hand, if τ is a tiling of Rd, picking one point in each tile may

produce a separated net Yτ . Assuming only that the tiles of τ has bounded

diameters, and that the inradii are bounded from below, implies that Yτ is indeed

a separated net, as long as we do not pick the points too close to the boundaries.

This last condition can be ensured if we allow moving the points inside the tiles.

So up to this bounded displacement of the points we obtain a separated net Yτ .

This brings us to the following definitions:

Definition 1.3.1. Let Y1, Y2 ⊆ Rd be two separated nets. We say that Y1 is a

bounded displacement (BD) of Y2 if there exists a bijection φ : Y1 → Y2 with

sup
y∈ Y1

{d(y, φ(y))} <∞.

Y1 is a bounded displacement after dilation (BDD) of Y2 if there is an α > 0 such

that Y1 is BD to α · Y2.

Observe that definition 1.3.1 gives rise to two more equivalence relations on

the set of separated nets in Rd, and that

BD equivalence =⇒ BDD equivalence =⇒ biLipschitz equivalence.
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In view of the above, Y is BD to YνY for any separated net Y , and thus we have

a correspondence between tilings and separated nets, up to BD of the nets. Notice

that for an arbitrary separated net Y , the tiling νY consists of infinitely many

non-isometric tiles. This point can be easily fixed, as the following Proposition

shows.

Claim 1.3.2. For every separated net Y ⊆ Rd there exists a tiling τY of Rd

by finitely many translation equivalent tiles such that every tile intersect Y in a

single point, and YτY is BD to Y .

Proof. Let r > 0 be such that d(y1, y2) > r for every y1, y2 ∈ Y . Divide Rd to

dyadic cube Q with edge length less than r/
√
d. Then each cube contains at most

one point of Y . For every y ∈ Y define

Ty =
∪{

Q : ∀y′ ∈ Y r {y}, d(Q, y) < d(Q, y′)
}
.

Cubes with equal minimal distance to several points y can be added arbitrarily

to one of the corresponding Ty, or alternatively, we may assume that it never

happen by replacing Y with a small translation of it. Call the resulting tiling τY .

Then clearly Y ∩ Ty = {y}, for all y ∈ Y . Since Y is relative dense, there is an

R > 0 such that for every y we have Ty ⊆ B(y,R). Each Ty is a union of cubes

Q, and there are only finitely many such configuration in a ball of radius R.

We deduce that when studying either of the BD, BDD, or biLipschitz equiv-

alence classes of separated nets it suffices to look at nets that correspond to tilings

with finitely many tiles, up to translations. In particular, the results in [BK98]

and [McM98] imply that there are tilings of Rd, with finitely many tiles, that give

rise to separated nets which are not even biLipschitz to Zd. So from now on, un-

less indicated otherwise, a tiling would mean a tiling by finitely many translation

equivalent tiles, which will be denoted by T1, . . . , Tn. These T1, . . . , Tn are called

prototiles, and these are representatives of the equivalence classes on the tiles of

τ , where two tiles are equivalent if they differ by a translation.

The following claims give a better intuition, and explain some basic facts,

regarding the BD equivalence relation and tilings. One of the main tools that

are used to prove BD equivalence is the following well known theorem, see [H48],

[Ra49].

Theorem 1.3.3 (Hall’s Marriage Theorem). Let G = (A ∪ B,E) be a locally

finite, bipartite graph, and assume that for every finite set X ⊆ A we have

N(X) := #{b ∈ B : ∃x ∈ X, {x, b} ∈ E} ≥ #X. (1.1)

Then there is an injection f : A→ B such that {a, f(a)} ∈ E for every a ∈ A.
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Remark 1.3.4. • The condition N(X) ≥ #X for every X ⊆ A is called the

Hall’s condition. This is in fact an ’if and only if ’ condition for such an

injection f : A→ B, but the ’only if ’ part is trivial.

• If the Hall’s condition holds for every X ⊆ A and every X ⊆ B then there

is a bijection f : A → B with {a, f(a)} ∈ E for every a ∈ A. This can be

obtained simply by applying the theorem twice, and repeating the proof of

the Cantor-Bernstein Theorem.

• The infinite version follows from the finite one. One way to prove it is by

using the compactness theorem in first order logic.

Claim 1.3.5. Let τ be a tiling of Rd with either finite or infinite non-equivalent

tiles, of bounded diameter. Assume that V ol(T ) = α for every tile T , then every

Yτ is BD to α1/dZd.

Proof. We may assume that α = 1. Given Yτ , every point y ∈ Yτ corresponds to

a unique tile Ty ∈ τ . For points n ∈ Zd, denote by Qn the unit cube centered at n.

Consider the bipartite graph G = (Yτ ∪Zd, E), where (y, n) ∈ E
iff⇐⇒ Ty ∩Qn ̸=

∅. We claim that the Hall’s condition is satisfied. Take X = {y1, . . . , yk} ∈ Yτ ,

and assume that N(X) < k. Then
∪
i Tyi is covered by less than k cubes Qn,

contradicting the fact that V ol(Ty) = V ol(Qn) = 1 for every y and n. Similarly

we get it for every X ⊆ Zd, and hence by the Hall’s Marriage Theorem we get a

bijection f : Yτ → Zd with (y, f(y)) ∈ E for every y ∈ Yτ . By the definition of

E, for every y ∈ Yτ we have d(y, f(y)) ≤ supy∈Yτ {diam(Ty)}+
√
d <∞.

Corollary 1.3.6. Every two lattices Γ1,Γ2 ⊆ Rd of the same co-volume are BD

equivalent. In particular, any two lattices are BDD equivalent.

Definition 1.3.7. A tiling τ of Rd is called periodic if it has d linearly indepen-

dent translation symmetries v1, . . . , vd ∈ Rd.

Claim 1.3.8. Let τ be a periodic tiling of Rd, then every Yτ is BDD to Zd.

Proof. Denote by T1, . . . , Tn the prototiles of τ . Let Γ1 = spanZ{v1, . . . , vd} be

the lattice of periods of τ , and let K be the parallelepiped fundamental domain of

Γ1 spanned by v1, . . . , vd. Denote by T the torus that is obtained by identifying

parallel faces of K, then we have a tiling of T by T1, . . . , Tn. So by cutting along

the tiles, one gets another fundamental domain K1 of Γ1 which is a union of tiles

from T1, . . . , Tn.

Letm be the number of tiles inK1, and set α = 1
m

∑
T∈K1

V ol(T ), the average

volume of a tile in K1. We show that every Yτ is BD to βZd, where β = α1/d. De-

note by e1, . . . , ed the standard basis of Rd and let Γ2 = spanZ{m(βe1), βe2 . . . , βed},
and K2 = [0,mβ)×[0, β)×. . .×[0, β) its standard fundamental domain. Both K1

and K2 tiles Rd by translations, and V ol(K1) = V ol(K2) = mα, so we may use
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the Hall’s Marriage Theorem like in the proof of Claim 1.3.6 and get a bijection

g : Γ1 → Γ2 such that (γ +K1) ∩ (g(γ) +K2) ̸= ∅ for every γ ∈ Γ1. Note that

for every γ ∈ Γ1 there are m elements of Yτ in γ + K1, and for every δ ∈ Γ2

there are m elements of βZd in δ +K2. So for every γ ∈ Γ1 pick some bijection

hγ : Yτ ∩ (γ +K1) → βZd ∩ (g(γ) +K2), and define f : Yτ → βZd by

f(y) =
{
hγ(y), y ∈ γ +K1 .

It is easy to verify that f is as required.

1.4 Substitution Tilings

Let ξ > 1 and let F = {T1, . . . , Tk} be a set of d-dimensional tiles.

Definition 1.4.1. A substitution is a mapping H : F → ξ−1F∗ such that

supp(Ti) = supp(H(Ti)) for every i. Namely, it is a set of dissection rules that

shows us how to divide the tiles to other tiles from F with a smaller scale. We

also allow to apply H to finite or infinite collections of tiles. The constant ξ is

called the inflation constant of H.

Definition 1.4.2. Let H be a substitution defined on F . Consider the following

set of patches:

P = {(ξH)m(T ) : m ∈ N , T ∈ F} .

The substitution tiling space XH is the set of all tilings of Rd that for every patch

P in them there is a patch P ′ ∈ P such that P is a sub-patch of P ′. Every tiling

τ ∈ XH is called a substitution tiling of H.

There is a simple way to explicitly construct substitution tilings from a sub-

stitution rule H. Take one of the tiles Ti and apply ξH on it again and again,

producing tilings of larger and larger regions. Let Pn be the tiling that is obtained

after n iterations. So in all of these patches Pn there are only finitely many ways

in which two tiles are glued together. Then if we fix some tile to be at the origin

in all of these patches, for every m ∈ N the set {B(0,m) ∩ Pn : n ∈ N} is finite.

We have tilings of larger and larger regions, and there are only finitely many ways

to tile each ball B(0,m), so a standard compactness argument, like the König

Lemma for example (see [K36]), gives the desired tiling.

One good reason to consider substitution tilings is that this is a way to con-

struct non-periodic tilings, with finitely many tiles. This fact makes the study

of the BD, BDD, and biLipschitz equivalence classes interesting in this context.

A well known example for such a tiling is the Penrose Tiling of the plane. We

present the substitution rule for one of its representations in the picture below.

This tiling is by itself a reason to study substitution tilings, and indeed Burago
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and Kleiner asked in [BK02]: Is the set of vertices of a Penrose Tiling biLipschitz

to Z2?

This question was answered positively in [S08], and a sketch of the same result

also appears in [DSS95]. In [S11a], this result was extended, where it was proven

that Yτ is biLipschitz to Z2, for any primitive substitution tiling τ in R2. The

proof in [S11a] relies on the following theorem of Burago and Kleiner, that gave

a sufficient condition for a separated net to be biLipschitz to Z2.

Theorem 1.4.3 ([BK02], Theorem 1.3). Let Y be a separated net in R2. For a

real number α > 0 and a square Q with integer coordinates define:

eα(Q) =max

{
α · V ol(Q)

#(Q ∩ Y )
,
#(Q ∩ Y )

α · V ol(Q)

}
Eα(2

i) = sup
{
eα(Q) : Q as above with an edge of length 2i

}
.

If there exists an α > 0 such that the product
∏∞
j=1Eα(2

j) converges, then Y is

biLipschitz to Z2.

In [ACG11], Aliste-Prieto, Coronel, and Gambaudo proved the d dimensional

analog of this theorem, for any d > 1. As a corollary, they deduce that separated

nets that correspond to primitive substitution tilings are biLipschitz equivalent

to Zd in any dimension d. So we move to discuss the BD and BDD equivalence

relations, in the context of substitution tilings, and for that we need some more

definitions.

Consider the following equivalence relation on tiles: Ti ∼ Tj if there exists

an isometry O such that Ti = O(Tj) and H(Ti) = O(H(Tj)). We call the repre-

sentatives of the equivalence classes basic tiles, and denote them by {T1, . . . , Tn}.
By this definition, we can also think of H as a dissection rule on the basic tiles

and extend it to collections of tiles as before. For a tile T in the tiling we say

that T is of type i if it is isometric to Ti.

Definition 1.4.4. Let F = {T1, . . . , Tn} be the set of basic tiles. Define the

substitution matrix of H to be an n × n matrix, AH = (aij), where aij is the

number of basic tiles in ξH(Tj) which are of type i. We say that H is primitive

if the matrix AH is a primitive matrix. That is, if there exists an m ∈ N such

that AmH > 0.

For example, if H is the substitution rule of the Penrose Tiling, as in the
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picture below, then AH =

(
2 1

1 1

)
.
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The substitution matrix is a fundamental tool in the study of substitution

tilings, and in all of the results that follow we always assume that it is primitive.

Notice that the primitivity assumption is natural, since we expect to see all the

tiles T1, . . . , Tn from some point onwards, when applying H again and again on

some basic tile Ti. If it does not happen, we will have tilings consist of only part

of the tiles {T1, . . . , Tn} in XH .

1.5 Notations and Previous Results

A substitution tiling has many parameters that we need throughout the proofs in

all three chapters. For the convenience of the reader we assemble all the notations

regarding the parameters of the tiling here.

Our given tiling is usually denoted by τ or τ0, and we fix a separated net

Y = Yτ that correspond to τ . The basic tiles are F = {T1, . . . , Tn}, and s1, . . . , sn
denotes their d-dimensional volume. H is the substitution, which is always as-

sumed to be primitive, and ξ > 1 is the inflation constant. We denote by AH
the substitution matrix, and by η1, . . . , ηn the eigenvalues of AH in a descending

order in absolute value, that is η1 > |η2| ≥ . . . ≥ |ηn|. It is easy to check that

η1 = ξd > 1, and it follows from the Perron Frobenius Theorem that η1 is of

multiplicity one, and it has positive eigenvector v1. We refer to either [BP79],

[Gan59] or [H07] for further reading on the Perron Frobenius Theorem, and to §3
in [S11a] for more details on this theorem in the context of substitution tilings.

We fix a Jordan basis of AH and denote by vi the i’th vector in it, where vi corre-

sponds to ηi, and we denote by v(j) the j’th coordinate of the vector v. Without

loss of generality, we normalize v1 so that v1(1) = 1. Denote by u1 =

s1...
sn

,

then it is easy to see that u1 is the left eigenvector of AH that corresponds to η1.

The following proposition plays an important role in all of the three following

chapters (it also appears in [Ro04]).

Proposition 1.5.1. If H is a primitive substitution then
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(i) XH ̸= ∅.

(ii) For every τ ∈ XH and for every m ∈ N there exists a tiling τm ∈ XH that

satisfies Hm(τm) = τ .

Proof. (i) We already saw it, right after Definition 1.4.2.

(ii) It suffices to prove the claim for m = 1. We are looking for a tiling η ∈ XH

such that Hη = τ . We build η as a limit of tilings ηk ∈ ξXH , where the

standard topology on the tiling space is given by the metric d(η1, η2) ≤ 1/k

if η1, η2 agree on the ball of radius k around 0. Since τ ∈ XH , every patch

in τ is a sub-patch of (ξH)m(Ti) for some m and i. Denote by Bk the

patch that is obtained when intersecting τ with B(0, k), the ball of radius

k around 0. Let ik,mk be such that Bk is a sub-patch of (ξH)mk(Tik). By

primitivity, Tik appears in ξH(Tjk), for some tile Tjk . So (ξH)mk(Tik) is a

sub-patch of (ξH)mk+1(Tjk), and therefore also Bk.

From the proof of (i) we may also deduce that for every patch of the form

P = (ξH)mTi there is a tiling ζ ∈ XH so that P is a sub-patch of ζ. Hence

Pk = ξ(ξH)mk(Tjk) is a patch in some tiling η′k ∈ ξXH , and moreover,

H(Pk) contains Bk as a sub-patch of it. So there are also tilings ηk ∈ ξXH

having Pk as a sub-patch of them, in way that H(ηk) ∩ B(0, k) = Bk. So

by the definition of the topology on XH we have ηk → η.

Given a tiling τ = τ0 ∈ XH , for every m we fix a tiling τm as in Proposition

1.5.1.

1.6 The Main Results of this Thesis

In this final section of the introduction we give a short promo for each one of

the three following chapters. We present the questions we will be dealing with,

and survey the related works on each of these questions. Some of the results of

this thesis are contained in several papers. They are based on [S11a], published

in the Israel Journal of Mathematics, which is the outcome of the author’s MSC

thesis. They contain the results of [S11b], that was published in the Proceedings

of the American Mathematical Society, and of [S12], that was submitted to the

Journal of Mathematical Analysis and Applications. Additionally, they contain

results which will be submitted for publication in the near future.

In Chapter 2 we discuss the results from [S11b]. We deal with a property of

tilings, with an analytic nature, that in particular implies that the corresponding

separated net is biLipschitz to a lattice.
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Definition 1.6.1. Let τ be a tiling of Rd. Define a function fτ : Rd → R by

fτ (x) =

{
1

V ol(T ) , there exists a tile T in τ such that x ∈ int(T )

0 , otherwise
,

where int(T ) is the interior of T .

Given a tiling τ of Rd, we are interested in the question whether there is

a biLipschitz homeomorphism φ : Rd → R with Jac(φ)(x) = fτ (x), for almost

every x ∈ Rd, where Jac(φ)(x) = Dφ(x). As shown in both [BK02] and [McM98],

the existence of such a φ implies that Yτ is biLipschitz to Zd. The proof goes

simply by observing that {φ(T ) : T ∈ τ} is a tiling of Rd by tiles of the same

volume, and then applying Claim 1.3.5. This property stands in the heart of

the study of the biLipschitz classes of separated nets. Theorem 1.4.3 is actually

a corollary of another theorem regarding this property, and it was also used in

[BK98] and [McM98]. In addition to what have been said, the question whether

some target function can be realized as a Jacobian of another function with a

given regularity has its own interest, and several variants of it were studied, see

for instance [DM90] and [RY96]. Answering a question we were asked privately

by McMullen, in Chapter 2 we focus on the question whether fτ can be realized

as a Jacobian, for a substitution tiling τ .

The question whether separated nets that comes from substitution tilings

are BDD to a lattice or not was studied in [S12]. We devote Chapter 3 to

discuss this question. It turns out that not all such separated nets are BDD

to a lattice, and that the answer depends on the eigenvalues of the substitution

matrix AH . This question was studied earlier in [S11a] and [ACG11]. To describe

the results, let η1 > |η2| ≥ . . . ,≥ |ηn| be the eigenvalues of AH in a descending

order. It was shown in [S11a] that the resulting separated net is BDD to a lattice

wherever η1 is a Pisot number. Equivalentely, if |η2| < 1. Motivated by this

initial result on that question, Aliste-Prieto, Coronel, and Gambaudo proved an

improvement of that result in [ACG11], showing that the same hold if |η2| < η
1/d
1

(η
1/d
1 = ξ > 1). Our current result generalizes both of the previous ones, and

answers the question whether the corresponding net is BDD to a lattice or not

for almost all cases. Additionally, this work have promoted the interest in the

BDD equivalence relation on separated nets, and indeed results of similar nature

appear in [HKW12], where Haynes, Kelly, and Weiss study the biLipschitz and

BDD equivalence classes of ”cut-and-project nets”.

In Chapter 4 we discuss the Danzer problem. This problem appears in the

literature in several places, but even though it is open from the sixties, and can

be asked without any prior knowledge, there is only one partial result that we

could find on this problem. A set D ⊆ Rd is called a Danzer set if it intersect

every convex set of volume 1. The original question of Danzer can be phrased as

follows:
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Question 1.6.2. Is there a Danzer set D ⊆ Rd, (d > 1) with growth rate O(T d)?

The only partial result on this question that we know of belongs to Bam-

bah and Wood, in [BW71], where they prove one positive and one negative re-

sult. On one hand, they show that there exists a Danzer set of growth rate

O(T d(log T )d−1), and on the other hand they show that a finite union of grids,

i.e. translated lattices, is not a Danzer set. Our results here are of similar nature.

We show that the Danzer problem is equivalent to a well studied question in com-

binatorics, and deduce the existence of a Danzer set of growth rate O(T d log T ),

and then we show that nets that comes from substitution tilings are not Danzer

sets.





Chapter 2

Functions of Substitution as a

Jacobian

2.1 Introduction

This chapter has appeared as [S12], that was published in the Proceedings of the

American Mathematical Society.

We recall the following definition from §1:

Definition 2.1.1. Let τ be a tiling of Rd. Define a function fτ : Rd → R by

fτ (x) =

{
1

V ol(T ) , there exists a tile T in τ such that x ∈ int(T )

0, otherwise
,

where int(T ) is the interior of T .

This chapter deals with the question whether the function fτ , of a given tiling

of Rd, can be realized as the Jacobian of a biLipschitz homeomorphism of Rd. As

written in §1, a positive answer to this question implies that any separated net

Yτ is biLipschitz equivalent to Zd.
In this work we will not consider general functions f but rather only functions

which, via Definition 2.1.1, come from substitution tilings of Rd. To motivate

this, recall that every tiling τ of Rd gives rise to separated nets Yτ , simply by

placing a point in each tile. These nets are in the same BD equivalence class,

and in particular biLipschitz equivalent. We saw in §1.3 that it is enough to

consider tilings with finitely many prototiles for the study of these equivalence

relations. The results in [BK98] and [McM98] shows that not all fτ can be

realized as a Jacobian, and then deduce the existence of a separated net which is

not biLipschitz to Zd. Combining the two last statements together implies that

19
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even for tilings τ with finitely many prototiles, fτ might not be the Jacobian of

any biLipschitz homeomorphism.

In [BK02] Burago and Kleiner gave a sufficient condition for a separated net

to be biLipschitz equivalent to Z2, see Theorem 1.4.3. In fact, this theorem is a

corollary of another theorem saying when a function f : R2 → (0,∞), which is

constant on unit lattice squares and with inf f > 0, can be realized as a Jacobian

of a biLipschitz homeomorphism of the plane. Their proof uses a sequence of

partitions of the plane to larger and larger dyadic squares. The main idea of

our proof is to look at this partition to dyadic squares as a special case of a

substitution tiling of the space. That allows us to extend the theorem of Burago

and Kleiner to the settings of substitution tilings, in any dimension, instead of

dyadic squares decomposition in R2. Similarly to the result in [BK02], in our

main theorem, Theorem 2.1.3, we show that fτ of a primitive substitution tiling

τ can be realized as a Jacobian if a local condition on the basic tiles is satisfied.

The second ingredient of our proof is a property of primitive substitution

tilings that was obtained in [S11a], see Proposition 2.2.1. Using this proposition

we can skip one of the main steps of the proof of Burago and Kleiner. For our

more general settings the assumption in Theorem 2.1.3 is parallel to what Burago

and Kleiner prove in their Proposition 3.2 for the case of dyadic squares in the

plane.

In the main results that are stated below we use basic terminology from the

theory of substitution tiling. We refer the reader to §1.4 and §1.5 for the relevant

definitions and notations. In the context of substitution tiling, every tile T has

a natural partition to smaller tiles, induced by the partitions of the substitution

rule on the finite collection of basic tiles. For the statement of our main theorem,

we add the following definition.

Definition 2.1.2. We say that a function f : T → R is a weight function if it is

constant and positive on the interiors of the tiles in the partition of T .

Theorem 2.1.3. Let τ be a primitive substitution tiling of Rd. Suppose that

there is a constant C with the following property: for every basic tile T , and

for every weight function f : T → (0,∞), there is a biLipschitz homeomorphism

φ : T → T with

φ|∂T = id, Jac(φ) =
λ(T )∫
T f

· f a.e. and biLip(φ) ≤
(
max f

min f

)C
. (2.1)

Then there exists a biLipschitz homeomorphism Φ : Rd → Rd with Jac(Φ) =

fτ a.e.

Remark 2.1.4. The assumption in the theorem is stronger than what actually

needed. In the proof we only use the assumption for weight functions with values
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which are averages of fτ on tiles of the τm’s. In particular, we only use it for

bounded functions, f(x) ∈ [1/L,L], where L > 0 depends on τ .

As an application of the main result we give the following theorem on substi-

tution tilings with star-shaped tiles. We elaborate on these objects in 2.4.1.

Theorem 2.1.5. For any primitive star-shaped substitution tiling τ of R2, there

is a biLipschitz homeomorphism Φ : R2 → R2 such that Jac(Φ) = fτ a.e.

Corollary 2.1.6. For any Penrose tiling τ there is a biLipschitz homeomorphism

Φ : R2 → R2 such that Jac(ϕ) = fτ a.e.

Notice that in the private case where we tile Rd by lattice cubes (each cube

is divided to 2d cubes), fτ is a constant function. However, one may ask when a

weight function which is constant on lattice cubes is a Jacobian? This question

was answered in [ACG11], where they extend the main result of [BK02] to higher

dimensions.

2.2 Preliminaries

We use the same definitions and notations for substitution tilings as in 1.5. We

denote by λ(T ) the Lebesgue measure of a set T ⊆ Rd, and #F for the number

of elements in a finite set F . We use the separated net Y = Yτ , that corresponds

to a tiling τ , to count the number of tiles in a patch P , since #(supp(P )∩ Yτ ) =
#{T ∈ τ : T ∈ P}. Abusing notations, we denote this quantity by #(P ∩ Yτ ).

The next lemma is taken from [S11a] and give an estimate for the discrepancy

of a tile T ∈ τm, with respect to Yτ .

Lemma 2.2.1. Let τ be a primitive substitution tiling of Rd, then there are

positive constants κ < ξd, c, α, that depends only on τ , such that for every m and

T ∈ τm, we have

|#(T ∩ Y )− α · λ(T )| ≤ c · κm

Proof. See [S11a], Lemma 4.3.

Note that if T ∈ τm is of type i then λ(T ) = (ξd)msi, where si = λ(Ti). Then
we have the following immediate corollary.

Corollary 2.2.2. Let τ be a primitive substitution tiling of Rd, then there are

positive constants ζ < 1, c, α, that depends only on τ , such that for every m and

T ∈ τm, we have

max

{
|#(T ∩ Y )− α · λ(T )|

α · λ(T )
,
|#(T ∩ Y )− α · λ(T )|

#(T ∩ Y )

}
≤ c · ζm. (2.2)



22 CHAPTER 2. FUNCTIONS OF SUBSTITUTION AS A JACOBIAN

The number α is the asymptotic density of Y , and we present and use it more

explicitly in §3.
Throughout the whole chapter, we denote by Dϕ(x) the derivative of ϕ : Rd →

Rd at the point x, and we use Jac(ϕ) to denote the Jacobian of ϕ, Jac(ϕ)(x) =

det(Dϕ(x)).

2.3 Proof of the Main Theorem

In this section we prove Theorem 2.1.3. We follow the proof of Burago and

Kleiner, modifying it to the context of substitution tilings in Rd.

Proof of Theorem 2.1.3. First note that it is enough to find a biLipschitz home-

omorphism Φ′ with Jac(Φ′) = β · fτ for some positive constant β. Then Φ =

β−1/d · Φ′ is as required.

For every m ≥ 1 every tile T ∈ τm is tiled with tiles of τm−1. Define fTm :

T → R to be the average of fτ on T ′, on every T ′ ∈ τm−1 ∩ T :

fTm(x) =


∫
T ′ fτ
λ(T ′) , x ∈ int(T ′), T ′ ⊆ T, T ′ ∈ τm−1

0, otherwise

Obviously fTm is a weight function (see Definition 2.1.2), then by the as-

sumption, for every m and T ∈ τm there exists a biLipschitz homeomorphism

φTm : T → T that satisfies (2.1). Gluing these homeomorphisms along the bound-

aries of the tiles of τm gives a biLipschitz homeomorphism φm : Rd → Rd that

satisfies

Jac(φm)(x)
a.e.
=
{
λ(T )∫
T fm

· fm(x), x ∈ int(T ), T ∈ τm

biLip(φm) ≤
(
max fm
min fm

)C
,

(2.3)

where fm : Rd → R is defined by

fm(x) =


∫
T ′ fτ
λ(T ′) , x ∈ int(T ′), T ′ ∈ τm−1

0, otherwise
.

Define ϕn : Rd → Rd by ϕn = φn ◦ φn−1 ◦ . . . ◦ φ1. We claim that (ϕn) has a

subsequence that converges uniformly to the desired Φ.

First note that for any patch P we have∫
P
fτ = #{S ∈ τ0 : S ⊆ P} = #(P ∩ Y ).



2.4. THE STAR-SHAPED LEMMA 23

Combining this with (2.2) we obtain
α−1max fm ≤ max

T∈τm−1

{
#(T∩Y )
αλ(T )

}
≤ 1 + cζm

α
min fm

≤ max
T∈τm−1

{
αλ(T )

#(T∩Y )

}
≤ 1 + cζm

=⇒ max fm
min fm

≤ (1 + cζm)2.

Then for every n we have

biLip(ϕn) ≤
n∏

m=1

(
max fm
min fm

)C
≤

( ∞∏
m=1

1 + c · ζm
)2C

.

Since

log

( ∞∏
m=1

1 + c · ζm
)

≤
∞∑
m=1

log (1 + c · ζm) ≤
∞∑
m=1

(c · ζm) = cζ

1− ζ
,

we have a uniform bound for biLip(ϕn). Then by the Arzela Ascoli Theorem we

get a biLipschitz homeomorphism Φ : Rd → Rd, with biLip(Φ) ≤ e2C·c·ζ/(1−ζ).

Regarding Jac(Φ), for any T ∈ τm∫
T
fm =

∑
T ′⊆T

T ′∈τm−1

1

λ(T ′)

∫
T ′

#(T ′ ∩ Y ) = #(T ∩ Y ). (2.4)

By (2.3), for every T ∈ τm, T
′ ∈ τm−1 and for a.e. x ∈ T ′ ⊆ T we have

Jac(φm)(x) =
λ(T )∫
T fm

· fm(x) =
λ(T )

#(T ∩ Y )
· #(T ′ ∩ Y )

λ(T )
. (2.5)

Take x ∈ Rd, denote by Tm the tile of τm that contains x, and suppose that

x ∈ int(T0). Since for every m the map φm maps every tile of τm to itself, and

by (2.2), we have

Jac(ϕn)(x) = Jac(φn)(φn−1◦. . .◦φ1(x))·Jac(φn−1)(φn−2◦. . .◦φ1(x))·. . .·Jac(φ1)(x)
(2.5)
=

λ(Tn) ·#(Tn−1 ∩ Y )

#(Tn ∩ Y ) · λ(Tn−1)
·· · ··λ(T1) ·#(T0 ∩ Y )

#(T1 ∩ Y ) · λ(T0)
=

λ(Tn)

#(Tn ∩ Y )
· 1

λ(T0)

n→∞−−−→ α−1

λ(T0)
= α−1fτ (x).

2.4 The Star-Shaped Lemma

The purpose of this section is to obtain a homeomorphism between star-shaped

domains in the plane, with Jacobian 1 a.e. This result will be used in the next

section. We also develop the terminology that we need for dealing with star-

shaped domains here.
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Definition 2.4.1. T ⊆ Rd is a star-shaped domain if there exists a point p ∈
int(T ) such that for every point x ∈ T the interval between p and x is contained

in T , that is {tp + (1 − t)x : t ∈ [0, 1]} ⊆ T . We denote ⟨T, p⟩ a star-shaped

domain T with a point p as above. For short, we say that p sees all of T for this

property. Given a star-shaped domain ⟨T, p⟩ in R2, and assume that p = 0, every

θ ∈ [0, 2π] defines a θ-sector of T in polar coordinates by:

T (θ) = {(r, α) ∈ T : α ∈ [0, θ]} .

Lemma 2.4.2. Suppose ⟨T1, p1⟩, ⟨T2, p2⟩ are two star-shaped domains in the

plane, with piecewise differentiable boundary and with the same area, then there

is a unique homeomorphism ψ : T1 → T2, such that:

• ψ(p1) = p2.

• ψ maps ∂T1 injectively onto ∂T2.

• ψ maps every sector of T1 to a sector of T2 with the same area.

• Jac(ψ) = 1 a.e.

Proof. It suffices to show that there is such a homeomorphism between the unit

ball B = B(0, 1) and another star-shaped domain ⟨T, 0⟩ with the same area.

Define a mapping ψ : B → T by

ψ(r cos(θ), r sin(θ)) = r ·R(β) · (cos(β), sin(β)),

where R(κ) is the distance between 0 and ∂T in direction κ ∈ [0, 2π], and β is an

angle that is defined by the following equation:

1

2

∫ β

0
R2(t)dt =

θ

2
.

Namely, for every θ we choose β = β(θ) such that the sector of angle β in T has

the same area as the sector of angle θ in B.
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It is now left to the reader to check that ψ satisfies the requirements.
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2.5 Application for Star-Shaped Substitution Tilings

Definition 2.5.1. Let τ be a primitive substitution tiling Rd. We say that τ is

a star-shaped substitution tiling if every tile of τ is star-shaped with a piecewise

differentiable boundary.

In this section we prove Proposition 2.5.2, that shows that the hypothesis

of Theorem 2.1.3 is satisfied for star-shaped substitution tilings of the plane.

Proposition 2.5.2 generalized Proposition 3.2 of [BK02] from dyadic lattice square

tiling to any star-shaped substitution tiling. The proof is obtained by repeating

the steps of their proof, with the proper modifications.

Proposition 2.5.2. Let ⟨T, p⟩ be a star-shaped domain, with a partition to

smaller star-shaped domains ⟨T1, p1⟩ , . . . , ⟨Tn, pn⟩. Then there is a constant C1

such that for every weight function f : T → (0,∞) there is a biLipschitz homeo-

morphism φ : T → T that satisfies (2.1), with C1 instead of C.

For the proof of Proposition 2.5.2 we need the following definitions:

Definition 2.5.3. Let ⟨T, p⟩ be a star-shaped domain and assume that λ(T ) =

λ(B), where B = B(0, 1). Let ψ : B → T be the homeomorphism from Lemma

2.4.2. For a given function f : T → R, we say that f is constant on the elevation

lines of T if f is constant on (one dimensional) sets of the form ψ(∂B(0, r)). In

a similar manner we can define objects like contraction around p, star-shaped an-

nulus, neighborhood of the boundary, etc. We will also use the same terminology

for ψ : S → T , where S is a square instead of a ball.
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With this terminology we can now state the two lemmas which play the role

of Lemma 3.3 and Lemma 3.6 from [BK02].

Lemma 2.5.4. Let ⟨T, p⟩ be a star-shaped domain. There is a constant C2 with

the following property: Suppose h1, h2 : T → R are continuous positive functions,

which are constant on the elevation lines of T , and
∫
T h1 =

∫
T h2. Then there

exists a biLipschitz homeomorphism ϕ : T → T , which fixes ∂T pointwise, so that

Jac(ϕ) = h1
h2◦ϕ a.e. and

biLip(ϕ) ≤
(
maxh1
minh1

)C2
(
maxh2
minh2

)C2

. (2.6)
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Lemma 2.5.5. Let ⟨T, p⟩ be a star-shaped domain and let A be a star-shaped

annulus that is obtained by removing a contracted copy of T around p. Then

there is a constant C3 such that for every g1, g2 : A → R, positive Lipschitz

functions with ∫
A
g1 =

∫
A
g2 = λ(A),

there is a biLipschitz homeomorphism ϕ : A→ A with Jac(ϕ) = g1
g2◦ϕ a.e., and

biLip(ϕ) ≤
[
max g1
min g1

(1 + Lip(g1))

]C3

·
[
max g2
min g2

(1 + Lip(g2))

]C3

.

Moreover, when g1|∂A = g2|∂A, then ϕ can be chosen to fix ∂A pointwise.

Proof of Lemma 2.5.4. As in [BK02], the general case follows from the special

case h2 ≡ 1,
∫
T h1 = λ(T ). Indeed, setting hi = (λ(T )/

∫
T hi)hi we have

∫
T hi =

λ(T ) for i ∈ {1, 2}. Applying the result of the special case we get biLipschitz

homeomorphisms ϕ1, ϕ2 : T → T with Jac(ϕi) = hi, and

biLip(ϕi) ≤
(
maxhi

minhi

)C2

=

(
maxhi
minhi

)C2

.

Then ϕ = ϕ−1
2 ◦ϕ1 satisfies Jac(ϕ)(x) = Jac(ϕ−1

2 )(ϕ1(x))·Jac(ϕ1)(x) = h1(x)

h2(ϕ
−1
2 ◦ϕ1(x))

=

h1
h2◦ϕ(x) a.e., and biLip(ϕ) satisfies (2.6).

For that special case, we denote h := h1, and assume without loss of generality

that λ(T ) = λ(S1), where Sr = B∞(0, r) =

{(
x

y

)
∈ R2 :

∥∥∥∥∥
(
x

y

)∥∥∥∥∥
∞

≤ r

}
, and∥∥∥∥∥

(
x

y

)∥∥∥∥∥
∞

= max{|x| , |y|}. Let ψ : S1 → T be as in Lemma 2.4.2. Denote by

f = h ◦ ψ, then f : S1 → R satisfies the conditions of Lemma 3.3 from [BK02].

Define g : [0, 1] → [0, 1], and a biLipschitz homeomorphism ϕ̃ : S1 → S1, by

g(r) =
1

2

√∫
Sr

f, and ϕ̃(x) = g(∥x∥∞) · x

∥x∥∞
.

It was proved in [BK02, proof of Lemma 3.3] that

Jac(ϕ̃) = f a.e. , biLip(ϕ̃) ≤ k1
max f

min f
= k1

maxh

minh
, (2.7)

and, when maxh
minh is close to 1∥∥∥Dϕ̃

− I
∥∥∥ ≤ k2

(
max f

min f
− 1

)
= k2

(
maxh

minh
− 1

)
, (2.8)

where k1 and k2 are independent of h.
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Define ϕ = ψ ◦ ϕ̃ ◦ ψ−1 : T → T . Then, by the chain rule, ϕ is a biLipschitz

homeomorphism that satisfies:

Jac(ϕ)(x) = Jac(ψ)(ϕ̃ ◦ ψ−1(x))︸ ︷︷ ︸
=1

· Jac(ϕ̃)(ψ−1(x))︸ ︷︷ ︸
=f(ψ−1(x))

· Jac(ψ−1)(x)︸ ︷︷ ︸
=1

= h(x) a.e.

By (2.7) and (2.8), there are C,C ′, that depend on ψ, such that

biLip(ϕ) ≤ biLip(ψ) · biLip(ϕ̃) · biLip(ψ−1) ≤ k1 ·C · max f

min f
= k′1 ·

maxh

minh
, (2.9)

and when maxh
minh is close to 1,

∥(Dϕ − I)(x)∥ =
∥∥∥Dψ◦(ϕ̃−I)◦ψ−1(x)

∥∥∥ ≤ C ′·
∥∥∥(Dϕ̃

− I)(ψ−1(x))
∥∥∥ = k′2

(
maxh

minh
− 1

)
,

where k′1 and k′2 do not depend on h. This implies that

∥∥∥D±1
ϕ

∥∥∥ ≤
(
maxh

minh

)k′′2
, (2.10)

where k′′2 does not depend on h. Combining (2.9) and (2.10) we get

biLip(ϕ) ≤
(
maxh

minh

)C2

,

as required.

The proof of Lemma 2.5.5 is obtained in a similar way by following the proof

of Lemma 3.6 of [BK02], and using ψ from Lemma 2.4.2 as we did in the proof

of Lemma 2.5.4.

Finally, before we approach the proof of Proposition 2.5.2 we need the follow-

ing claim:

Claim 2.5.6. Let ⟨T, p⟩ be a star-shaped domain, with a partition to smaller

star-shaped domains ⟨T1, p1⟩ , . . . , ⟨Tn, pn⟩. For an r ∈ (0, 1) we denote by T ri
the contraction of Ti by r around pi. Then there exists an r > 0 and a point

q ∈ int(T ) r
∪
T ri such that for every i ∈ {1, . . . , n} and x ∈ T ri , the interval

between q and x is contained in T .

Proof. We say that ”q sees y” if {tq + (1− t)y : t ∈ [0, 1]} ⊆ T , and denote

T1−ε = {x ∈ T : d(x, ∂T ) ≥ ε}.

We first show that for every ε > 0 there exists a δ > 0 such that for every

q ∈ B(p, δ) and y ∈ T1−ε, q sees y. Assume otherwise, given an ε > 0, for every

n ∈ N there is a qn ∈ B(p, 1n) and a point yn ∈ T1−ε such that qn does not see yn.

That is, for every n there is a tn ∈ [0, 1] such that zn = tnqn + (1 − tn)yn /∈ T .
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We know that qn
n→∞−−−→ p, and by passing to subsequences we may assume that

tn
n→∞−−−→ t ∈ [0, 1] and yn

n→∞−−−→ y ∈ T1−ε. Then zn
n→∞−−−→ z = tp + (1 − t)y /∈

int(T ). We have obtained a point y ∈ T1−ε, in particular y ∈ int(T ), such that

the interval between p and y travels out of int(T ), a contradiction.

Since p1, . . . , pn ∈ int(T ), we may fix r1, ε > 0 such that for all 0 < r < r1
we have

∪
T ri ⊆ T1−ε. Let δ > 0 be as above, so there is an r2 > 0 such that

the union
∪
T r2i does not cover all of B(p, δ). So for r = min{r1, r2}, any point

q ∈ B(p, δ)r
∪
T ri is as required.

We are ready to prove Proposition 2.5.2. The proof follows the steps of

the proof of Proposition 3.2 in [BK02], replacing Lemmas 3.3 and 3.6 there by

Lemmas 2.5.4 and 2.5.5 from above. For the convenience of the reader we repeat

their proof, for the more general context of substitution tilings.

Proof of proposition 2.5.2. Let r > 0 and let q ∈ int(T ) r
∪
T ri be as in Claim

2.5.6. Define

S = {y ∈ T : q sees y} ,

and let A be the star-shaped annulus that is obtained by removing from S a

contracted copy of S around q, S′, such that S r S′ still contains
∪
T ri .

We may assume that
∫
T f = λ(T ). Define the following functions:

Let f2 : T → (0,∞) be a Lipschitz function such that f2 = min f on the com-

plement of
∪
T ri , and is constant on the elevation lines of each of the Ti’s. In

addition∫
Ti

f2 =

∫
Ti

f,
max f2
min f2

≤
(
max f

min f

)k1
, and 1 + Lip(f2) ≤

(
max f

min f

)k1
,

where k1 is independent of f .

Let f3 : T → (0,∞) be a Lipschitz function such that f3 = min f on the comple-

ment of A, f3 is constant on the elevation lines of S, and∫
T
f3 =

∫
T
f,

max f3
min f3

≤
(
max f

min f

)k2
, and 1 + Lip(f3) ≤

(
max f

min f

)k2
,

where k2 is independent of f .

Finally, set f4 = 1.

Since for every i ∈ {1, . . . , n} we have
∫
Ti
f2 =

∫
Ti
f , we can apply Lemma

2.5.4 on f |Ti and f2|Ti , separately for every i, and get a biLipschitz homeo-

morphism ψi1 : Ti → Ti with Jac(ψi1) = f
f2◦ψi

1
a.e. Gluing these homeomor-

phisms along the boundaries of the Ti’s we obtain a biLipschitz homeomorphism

ψ1 : T → T with

Jac(ψ1) =
f

f2 ◦ ψ1
a.e. and biLip(ψ1) ≤

(
max f

min f

)C2k1

.
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Since for every x ∈ T rA we have f2(x) = f3(x) = min f ,
∫
A f2 =

∫
A f3 ≥ λ(A).

Define f̄j =
(
λ(A)/

∫
A fj

)
· fj , for j ∈ {2, 3}, so Lip(f̄j) ≤ Lip(fj). Applying

Lemma 2.5.5 to the star-shaped annulus A, with f̄2 and f̄3, we get a biLipschitz

homeomorphism ψ̄2 : A→ A, that fixes ∂A pointwise, with

Jac(ψ̄2) =
f̄2

f̄3 ◦ ψ̄2
=

f2
f3 ◦ ψ̄2

a.e. and biLip(ψ̄2) ≤
(
max f

min f

)C3k2

. (2.11)

We can extend ψ̄2 to ψ2 : T → T by defining it to be the identity outside of A,

and we get a biLipschitz homeomorphism of T , satisfying (2.11) (since outside of

A we get f2
f3◦ψ2

(x) = 1).

Finally, we apply Lemma 2.5.4 again on f3 and f4, to get a biLipschitz home-

omorphism ψ3 : T → T with

Jac(ψ3) =
f3

f4 ◦ ψ3
a.e. and biLip(ψ3) ≤

(
max f

min f

)C2k2

.

Now define ϕ = ψ3 ◦ ψ2 ◦ ψ1. So C1 = C2k1 + C3k2 + C2k2 satisfies the

statement of the proposition, and we have

Jac(ϕ)(x) = Jac(ψ3)(ψ2 ◦ ψ1(x)) · Jac(ψ2)(ψ1(x)) · Jac(ψ1)(x) =

f3
f4 ◦ ψ3

(ψ2 ◦ ψ1(x)) ·
f2

f3 ◦ ψ2
(ψ1(x)) ·

f

f2 ◦ ψ1
(x) =

f

f4 ◦ ϕ
(x) = f(x)

as required.

Theorem 2.1.5 is a direct consequence of Theorem 2.1.3 and Proposition 2.5.2.

Corollary 2.1.6 follows directly from Theorem 2.1.5





Chapter 3

Bounded Displacement

Equivalence on Separated Nets

3.1 Introduction

This chapter appears in [S11b], that was submitted to the Journal of Mathemat-

ical Analysis and Applications.

We recall the following definition from §1. Given two separated nets Y1, Y2 ⊆
Rd, we say that Y1 is a bounded displacement (BD) of Y2 if there exists a bijection

φ : Y1 → Y2 with

sup
y∈ Y1

{d(y, φ(y))} <∞.

Y1 is a bounded displacement after dilation (BDD) of Y2 if there is a constant

α > 0 such that Y1 is BD to α · Y2.
This chapter deals with the following question:

Question 3.1.1. Given a separated net Y ⊆ Rd, is Y BDD to a lattice?

As mentioned in §1, there exists separated nets in Rd which are not biLipschitz

equivalent to a lattice (for d > 1), and this in particular implies that there are

separated nets which are not BDD to a lattice. But finding an example for a

separated net which is not BDD to a lattice is a much simpler question, and one

simple example for such a net is obtained by simply combining two lattices with

different covolumes:

Y =


a1...
ad

 ∈ Zd : a1 ≥ 0

 ∪


a1...
ad

 ∈ (2Z)d : a1 < 0

 .

31
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To show explicitly that Y is not BD to any lattice, one shall use the Hall’s

Marriage Theorem, see Theorem 1.3.3. It is not difficult to show that for any

M,α > 0, when considering the bipartite graph G = (αZd∩Y,E), where {z, y} ∈
E

iff⇐⇒ d(z, y) ≤M , the Hall’s condition is violated.

As we explained in §1.3, in the context of Question 3.1.1 it is equivalent to

consider separated nets in Rd that corresponds to tilings with finitely many tiles,

up to isometry. We restrict ourselves to substitution tilings, see §1.4, and focus

on the following question:

Question 3.1.2. Given a substitution tiling τ of Rd, is Yτ BDD to a lattice?

These tilings are interesting because, on one hand, they tile by only finitely

many tiles, and on the other hand, they are usually non periodic. The main the-

orem of this chapter, Theorem 3.1.3, answers Question 3.1.2 almost completely.

Substitution tilings has a corresponding matrix, the substitution matrix,

which we denote by AH , see Definition 1.4.4. We denote by η1, . . . , ηn the eigen-

values of AH , with a descending order in absolute value. These parameters play

an important role in our main results, and in the previous related results.

Question 3.1.2 was previously studied in [S11a] and [ACG11]. It was shown

in [S11a] that any primitive substitution tiling with a matrix AH of Pisot type,

namely |η2| < 1, gives rise to a separated net which is a BDD to a lattice.

Recently Aliste-Prieto, Coronel and Gambaudo have improved this result. They

showed that the same holds if |η2| < η
1/d
1 , see [ACG11]. We recall from §1.5 that

η1 > 1, so this is indeed an improvement. Our Theorem 3.1.3, extends the results

of [S11a] and [ACG11] to a wider class of tilings, and gives the tight inequality

on the eigenvalues of AH , saying when a BDD to Zd exists, and when it does not.

These results were written in [S12].

Shortly after the results in [S12] came out, similar results were proved for

another family of separated nets, which sometimes called cut and project nets or

quasicrystals. The resulting net Y ⊂ Rd depends on the following parameters:

two integers 2 ≤ d ≤ k, a linear subspace V ∼= Rd, a point x ∈ Tk, and a Poincar’e

section S ⊆ Tk. We rather not to elaborate on these constructions here, and refer

to [BM00], [HKW12], [M94], and [Se95]. In [HKW12], Haynes, Kelly and Weiss

prove two main results. In their first result they show that almost every cut and

project net is biLipschitz equivalent to a lattice. The second result deals with

the BDD equivalence relation on separated nets. They find two mild conditions

on the parameters for which the resulting net is BDD to a lattice. Then they

present a diphantine condition on V , that gives a residual set of subspaces, for

which the resulting net is not BDD to a lattice.

To state the main result, we denote by Wη the eigenspace that corresponds

to η, by W⊥ the subspace which is orthogonal to W with respect to the standard
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inner product ⟨·, ·⟩, and set 1 =

1
...

1

 ∈ Rd.

Theorem 3.1.3. For a primitive substitution tiling of Rd, fix t ≥ 2 to be the

minimal index that satisfies Wηt * 1⊥. Then the corresponding separated net Y

satisfies the following:

(I) If |ηt| > η
d−1
d

1 then Y is not a BDD of Zd.

(II) If |ηt| < η
d−1
d

1 then Y is a BDD of Zd.

(III) If |ηt| = η
d−1
d

1 and ηt has a non-trivial Jordan block, then Y is not a BDD

of Zd. Moreover, there are cases where the same consequence holds, and ηt
has a trivial Jordan block.

Remark 3.1.4. • Note that t = 2 for almost every matrix AH .

• It is follows from the proof Lemma 3.2.1 that if there is no t as above,

namely Wηt ⊆ 1⊥ for every t ̸= 1, then Y is a BDD to Zd.

• In the case of equality |ηt| = η
d−1
d

1 , we do not know if there is an example

in which Y is a BDD to Zd.

The proof of the theorem relies on the following result of Laczkovich, that

gives equivalent conditions for a discrete set in Rd to be a BDD to Zd.

Theorem 3.1.5 ([L92]). For a discrete set Y ⊆ Rd and β > 0 the following

statements are equivalent:

(i) There is a constant C such that for any measurable set A ⊆ Rd we have

|#(Y ∩A)− β · λ(A)| ≤ C · λ
(
{x ∈ Rd : d(x, ∂A) ≤ 1}

)
.

(ii) There is a constant C such that for every finite union of unit lattice cubes

U we have

|#(Y ∩ U)− β · λ(U)| ≤ C · λd−1(∂U).

(iii) There is a BD ϕ : Y → β−1/dZd.

Where λd−1(A) is the d− 1-dimensional Lebesgue measure of A.

To prove Theorem 3.1.3 we show for each case that condition (i), or (ii),

holds, or does not hold, and that way deduce whether (iii) holds or not. To get

the estimates for the discrepancy in either (i) or (ii) we use an improved version

of Lemma 4.3 from [S11a].
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The organization of this chapter is as follows: In §3.2 we recall some defini-

tions, gather all the relevant notations, and mention a few results on substitution

tilings that will be used in the following sections. In §3.3 we get a series of esti-

mates that are needed for the proof of Theorem 3.1.3. Among them, we prove an

isoperimetric lemma, and then use it to generalize a result of Laczkovich to the

context of substitution tilings. This result explain how to get any patch using

unions and differences on tiles from different generations τm, and it might be of

interest on its own. In §3.4 we prove Theorem 3.1.3, and finally we give examples

for the different cases of this Theorem in §4.2.7.

3.2 Background

Throughout this chapter, a tile T ⊆ Rd is a set which is biLipschitz homeomorphic

to a closed d-dimensional ball. Note that this requirement already implies that

the tile’s boundary has a well defined d− 1-dimensional volume. We use all the

definition and notations of substitution tilings from §1.4 and §1.5. In addition,

we denote by ei the i’th element of the standard basis of Rn.
We use vectors to represent the number of basic tiles from each type in a

given patch, e.g. ei represents one tile of type i. Taking the substitution matrix

AH we get that AH · ei is the i’th column of AH . Thus, by definition 1.4.4, it

gives a vector that represents the number of basic tiles of each type obtained after

applying H on Ti. By linearity of AH , this idea extends to any vector in Rn.
Recall that our given tiling is denoted by τ or τ0, and we fix some separated

net Y = Yτ that correspond to τ . The basic tiles are F = {T1, . . . , Tn}, and
s1, . . . , sn denotes their d-dimensional volume. H is the substitution rule, and

ξ > 1 is the inflation constant. We denote by η1, . . . , ηn the eigenvalues of AH
in a descending order in absolute value. η1 is of multiplicity one, it satisfies

η1 = ξd > 1 and η1 > |ηi| for every i, and his eigenvector v1 is positive (see

§1.5). We fix a Jordan basis of AH and denote by vi the i’th vector in it, where

vi corresponds to ηi, and by v(j) the j’th coordinate of the vector v. Without

loss of generality, we normalize v1 so that v1(1) = 1. Denote by u1 =

s1...
sn

,

then it is easy to see that u1 is the left eigenvector of AH that corresponds to η1.

Finally, we fix

α =

∑n
i=1 v1(i)∑n

i=1 v1(i) · si
=

⟨1, v1⟩
⟨u1, v1⟩

. (3.1)

This α is the asymptotic density of Y .

Like in the previous two chapters, given a tiling τ = τ0 ∈ XH , for everym ∈ N
we fix a tiling τm as in Proposition 1.5.1. For the proofs of this chapter, T (m)
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denotes the set of all tiles of τm, and T =
∪
m T (m). The set of all finite unions

of tiles of τ0 is denoted by V .

We prove Theorem 3.1.3 using Theorem 3.1.5. To use it we need to estimate

the discrepancy |#(Y ∩ U)− α · λ(U)| for different sets U . Notice that for every

patch V ∈ V we have

#(Y ∩ V ) =
n∑
i=1

ai = ⟨1, aV ⟩, and λ(V ) =
n∑
i=1

ai · si = ⟨u1, aV ⟩, (3.2)

where aV =

a1...
an

, and aj is the number of tiles of τ0 from type j in V . Then

the discrepancy of V depend only on aV , and is given by the absolute value of

the following linear functional:

disc(aV ) = ⟨1, aV ⟩ −
⟨1, v1⟩
⟨u1, v1⟩

⟨u1, aV ⟩. (3.3)

Lemma 3.2.1. Let t ≥ 2 be the minimal index such that Wηt * 1⊥. Then there

are constants A1, A2 > 0, depending only on the parameters of the tiling, with the

following properties:

(i) There exists a j ∈ {1, . . . , n} such that for every m and T ∈ T (m) of type j

A1 ·mkt−1 |ηt|m ≤ |#(Y ∩ T )− α · λ(T )| , (3.4)

(ii) For every T ∈ T (m)

|#(Y ∩ T )− α · λ(T )| ≤ A2 ·mkt−1 |ηt|m , (3.5)

where kt is the size of the maximal Jordan block of ηt in AH .

Proof. Let T ∈ T (m) and write aT =
∑n

i=1 civi. Note that disc(v1) = 0, and also

⟨u1, vi⟩ = 0 for every i ̸= 1. So we have

disc(aT ) = ⟨1,
n∑
i=2

civi⟩ = ⟨1,
n∑
i=t

civi⟩. (3.6)

But, if T in τm is of type j then aT = AmHej . Write ej =
∑n

i=1 bivi, then

aT = AmH

(
n∑
i=1

bivi

)
=

n∑
i=1

biA
m
H(vi).

So for every i, ci = bi ·Const ·mki−1 · ηmi . Considering (3.6), this proves (ii). For

(i), if vt has a Jordan block of size kt, let vℓ the last vector in the corresponding

Jordan chain. Note that there exists a j with b
(j)
ℓ ̸= 0 in the presentations

ej =
∑n

i=1 b
(j)
i vi. Using (3.6) in the same way again, we showed (i).

Remark 3.2.2. By (3.6), if t as above does not exist, then the lemma holds with

ηt = 0.
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3.3 Economic Packing for Patches

We denote by ∂A and int(A) the boundary and interior of a set A ⊆ Rd with

respect to the standard topology of Rd, and by ∥·∥1 the standard ℓ1 norm on Rd.
In this section we prove a series of lemmas that help us estimate the terms

that appears in Theorem 3.1.5. Our main objective of this section is to prove

Proposition 3.3.5 below. This Proposition gives a very good bound for the number

of tiles from each generation τm that one needs in order to obtain a given patch

in a substitution tiling, using unions and proper differences. Laczkovich proved

this proposition for the lattice unit cube tiling in [L92], and here we give a proof

for the more general case by generalizing his arguments. Proposition 3.3.5 is the

key point for the proof of Theorem 3.1.3 in §3.4. To prove this proposition we

had to first prove an isoperimetric lemma, Lemma 3.3.3, to replace the lemma

that Laczkovich is using, which is simply false in our more general context.

Lemma 3.3.1. For every d there is a constant C1 such that for every U ⊆ Rd,
a finite union of unit lattice cubes, and every R > 0, we have

λ ({x ∈ U : d(x, ∂U) ≤ R}) ≤ C1 ·Rd · λd−1(∂U).

Proof. This is a direct consequence of Lemmas 2.1 and 2.2 of [L92].

Lemma 3.3.2. There is a constant C2, that depends on the parameters of the

tiling, such that for any T ∈ T

λ
(
{x ∈ Rd : d(x, ∂T ) ≤ 1}

)
≤ C2 · λd−1(∂T ).

Proof. Denote by Qr the d-dimensional cube with edge of length r. Fix a biLip-

schitz homeomorphism ψi : Ti → Q1, denote its biLipschitz constant by Ki, and

let K = maxi{Ki}. Let T ∈ T and suppose that T ∈ T (m), a tile of type i. Then

by rescaling the picture by ξm we get a biLipschitz homeomorphism ϕ : T → Qξm ,

with the same biLipschitz constant. Since ϕ is biLipschitz, it follows that

ϕ ({x ∈ T : d(x, ∂T ) ≤ 1}) ⊆ {x ∈ Qξm : d(x, ∂Qξm) ≤ K}.

Then

λ ({x ∈ T : d(x, ∂T ) ≤ 1}) ≤ Kd · λ ({x ∈ Qξm : d(x, ∂Qξm) ≤ K})

Applying the same argument to the tiles which are adjacent to T we obtain

λ
(
{x ∈ Rd : d(x, ∂T ) ≤ 1}

)
≤ Kd · λ

(
{x ∈ Rd : d(x, ∂Qξm) ≤ K}

)
. (3.7)

It also follows that

λd−1(∂Qξm) ≤ Kd−1 · λd−1(∂T ) (3.8)
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(see Theorem 1 in [EG92] p. 75). Then by (3.7), (3.8), and Lemma 3.3.1 we have

λ
(
{x ∈ Rd : d(x, ∂T ) ≤ 1}

) (3.7)
≤ Kd · λ

(
{x ∈ Rd : d(x, ∂Qξm) ≤ K}

)
≤

C1 ·K2d · λd−1(∂Qξm)
(3.8)
≤ C1 ·K3d−1 · λd−1(∂T ).

For the next lemma, we use the same notations T (m),T , and V as defined

at the end of §3.2.

Lemma 3.3.3. Let T ∈ T , and c ∈ (0, 12). Then there is an ε > 0 such that for

any V ∈ V , V ⊆ T , with c · λ(T ) ≤ λ(V ) ≤ 1
2λ(T ), we have

λd−1(∂V ∩ int(T )) ≥ ε · λd−1(∂T ). (3.9)

Proof. This Lemma follows from the relative isoperimetric inequality, see [EG92]

p. 190. By this inequality, if B is a closed ball, and E ⊆ B is a closed set of finite

perimeter (i.e. χE has a bounded variation) then we have

min {λ(E), λ(B rE)}
d−1
d ≤ C · λd−1(∂E ∩ int(B)), (3.10)

where C depends only on d. Fix a biLipschitz homeomorphism ψi : Ti → B(0, 1),

denote its biLipschitz constant by Ki, and let K = maxi{Ki}. Suppose that

T is a tile of type i, then by rescaling the picture by ξm we get a biLipschitz

homeomorphism ϕ : T → B = B(0, ξm), with the same biLipschitz constant.

Since ϕ is biLipschitz, it follows that

1

Kd
λ(V ) ≤ λ(ϕ(V )) ≤ Kdλ(V ) and

1

Kd−1
λd−1(ϕ(∂V ∩int(T ))) ≤ λd−1(∂V ∩int(T ))

(see [EG92] p.75). Considering (3.10) with E = ϕ(V ) we obtain

λd−1(∂V ∩int(T )) ≥ min {λ(ϕ(V )), λ(ϕ(T r V ))}
d−1
d

C ·Kd−1
≥ min {λ(V ), λ(T r V )}

d−1
d

C · (Kd−1)2

≥ c
d−1
d · λ(T )

d−1
d

C · (Kd−1)2
=
c
d−1
d · s

d−1
d

i · ξm(d−1)

C · (Kd−1)2
=

c
d−1
d · s

d−1
d

i

C · (Kd−1)2 · λd−1(∂Ti)
· λd−1(∂T ).

Setting s = mini{si} and Dmax = maxi{λd−1(∂Ti)} we get

ε =
c
d−1
d · s

d−1
d

C · (Kd−1)2 ·Dmax
, (3.11)

that satisfies the assertion, and does not depend on the type of the tile T .
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Corollary 3.3.4. Let T ∈ T , c ∈ (0, 12), and ε as in (3.11). Suppose that

V ∈ V , V ⊆ T with λ(V ) ≤ (1− c) · λ(T ) and λd−1(∂V ∩ int(T )) < ε · λd−1(∂T ),

then λ(V ) < 1
2λ(T ).

Proof. Assume otherwise, then we have λd−1(∂(T r V ) ∩ int(T )) < ε · λd−1(∂T )

and c · λ(T ) ≤ λ(T r V ) ≤ 1
2λ(T ), contradicting Lemma 3.3.3.

For a T in τm we denote by T ∗ the unique tile of τm+1 that contains T . We

denote ρ = maxi{si}
mini{si} ≥ 1, then for any tile T ∈ T we have

ρ−1 · ξ−d ≤ λ(T )

λ(T ∗)
≤ ρ · ξ−d (3.12)

For a set X ⊆ T we denote by S(X) the closure of X under the operations

of disjoint union and proper difference, where every element of X can be used

only once. For the following lemma we set ε as in Lemma 3.3.3 and define the

following constants:

Dmin = min
i

{λd−1(∂Ti)} , C =
ρ · ξ(ρ · ξd + 1)

ε ·Dmin
and c = (2ρ)−1·ξ−d ∈

(
0,

1

2

)
.

(3.13)

Proposition 3.3.5. Let

V ∈ V , T ∈ T , V ⊆ T, and λ(V ) ≤ 1

2
λ(T ). (3.14)

Then there exists T1, . . . , Tn ∈ T , Ti ⊆ T for all i, such that V ∈ S({T1, . . . , Tn}),
and for every m we have:

#{i : Ti ∈ T (m)} ≤ C · λd−1(∂V ∩ int(T ))
ξm(d−1)

.

Proof. The proof is by induction on m, where T ∈ T (m). If m = 0 then λ(V ) ≤
1
2λ(T ) implies that V = ∅, so the assertion is obvious. Assume the assertion for

any T ∈ T (m) with m < m0, and let V and T be as in (3.14) with T ∈ T (m0).

Consider the following collection of tiles:

A =

P ∈ T :

P ⊆ T,

λ(P ∩ V ) ≥ c · λ(P ),
λd−1(∂V ∩ int(P )) < ε · λd−1(∂P )

 ,

where ε is as in Lemma 3.3.3 and c is as in (3.13) (it might be that A = ∅).

Note that every P ∈ A satisfies:

λ(P r V ) ≤ (1− c)λ(P ), and λd−1(∂(P r V ) ∩ int(P )) < ε · λd−1(∂P ).
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Then by Corollary 3.3.4 we have

λ(P r V ) <
1

2
λ(P ). (3.15)

Let P1, . . . , Pℓ be the maximal elements of A (w.r.t. inclusion). Then
∪

A =∪ℓ
j=1 Pj ⊆ T , and P1, . . . , Pℓ has pairwise disjoint interiors. Denote V1 = V ∪∪ℓ
j=1 Pj . Then

λ(V1) ≤ λ(V ) +

ℓ∑
j=1

λ(Pj r V )
(3.15)
<

1

2
λ(T ) +

ℓ∑
j=1

1

2
λ(Pj) ≤ λ(T ). (3.16)

Note that if A = ∅ we only get ≤ in the middle inequality, but then the last

inequality is strict. Thus V1 $ T , and in particular Pj $ T for every j. By (3.15),

we may apply the induction hypothesis for Pj rV ∈ V and the tile Pj , to obtain

tiles Tj1, . . . , Tjnj such that Tjr ⊆ Pj , Pj r V ∈ S({Tj1, . . . , Tjnj}), and for every

m we have:

#
{
r : Tjr ∈ T (m)

}
≤ C · λd−1(∂V ∩ int(Pj))

ξm(d−1)
. (3.17)

Now let T1, . . . , Tn be the maximal tiles that are contained in V1. Then

T1, . . . , Tn has pairwise disjoint interiors and their union is equal to V1. So we

can write

V = V1 r
ℓ∪

j=1

(Pj r V ) =

(
n∪
i=1

Ti

)
r

ℓ∪
j=1

(Pj r V ),

where the sets Pj r V are pairwise disjoint. This implies that

V ∈ S({T1, . . . , Tn, T11, . . . , T1n1 , . . . , Tℓ1, . . . , Tℓnℓ
}).

Fix m ∈ N and denote E = {i : Ti ∈ T (m)}, and Ej = {r : Tjr ∈ T (m)}. It

remains to show that

|E|+
ℓ∑

j=1

|Ej | ≤ C · λd−1(∂V ∩ int(T ))
ξm(d−1)

. (3.18)

We first estimate |E|. Fix an i ∈ E. Since Ti is maximal in V1, if follows that

T ∗
i * V1. In particular, by the definition of V1, since the Pj ’s are maximal in A ,

we have T ∗
i /∈ A . by (3.16), V1 $ T , then Ti $ T , and therefore T ∗

i ⊆ T . Our

next goal is to show that

λ(T ∗
i ∩ V ) ≥ c · λ(T ∗

i ). (3.19)

If int(Ti) ∩
(∪ℓ

j=1 int(Pj)
)
= ∅ then Ti ⊆ V , and therefore

λ(T ∗
i ∩ V ) ≥ λ(Ti)

(3.12)
≥ ρ−1 · ξ−d · λ(T ∗

i )
(3.13)
> c · λ(T ∗

i ).
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Otherwise, int(Ti) intersect int(Pj) for some j. Then either Ti $ Pj or Pj ⊆
Ti. If Ti $ Pj then T ∗

i ⊆ Pj ⊆ V1, a contradiction. Then Pj ⊆ Ti whenever

int(Ti) ∩ int(Pj) ̸= ∅. Denote by J the set of indices j such that Pj ⊆ Ti, then

we have

λ(Ti r V ) ≤ λ

∪
j∈J

(Pj r V )

 ≤
∑
j∈J

λ(Pj r V )

(3.15)
<

∑
j∈J

1

2
λ(Pj) ≤

1

2
λ(Ti).

Hence

λ(T ∗
i ∩ V ) ≥ λ(Ti ∩ V ) >

1

2
λ(Ti)

(3.12)
≥ (2ρ)−1 · ξ−d · λ(T ∗

i )
(3.13)
= c · λ(T ∗

i ).

Thus (3.19) holds. Since T ∗
i ⊆ T and T ∗

i /∈ A , it follows form (3.19) and from

the definition of A that T ∗
i /∈ A because it satisfies

λd−1(∂V ∩ int(T ∗
i )) ≥ ε · λd−1(∂T

∗
i ). (3.20)

Let K = ∂V ∩
∪
i∈E int(T

∗
i ). Since the Ti’s are distinct elements of T (m),

and by (3.12), each point of K is covered by at most ρ · ξd T ∗
i ’s. Therefore, by

(3.20), we have

ρ·ξdλd−1(K) ≥
∑
i∈E

λd−1(K∩T ∗
i ) =

∑
i∈E

λd−1(∂V ∩intT ∗
i )

(3.20)
≥ ε·λd−1(∂T

∗
i )·|E| ,

and hence

|E| ≤ ρ · ξd

ε · λd−1(∂T
∗
i )
λd−1(K). (3.21)

Now define

J1 = {j : Pj ⊆ T ∗
i for some i ∈ E}, and J2 = {1, . . . , ℓ}r J1.

If j ∈ J1 and r ∈ Ej then Tjr ⊆ T ∗
i for some i. Since T ∗

i contains at most ρ · ξd

tiles of T (m) we have ∑
j∈J1

|Ej | ≤ ρ · ξd |E| .

If j ∈ J2 and i ∈ E then int(Pj) ∩ int(T ∗
i ) = ∅ (since T ∗

i * Pj). Then the set

Kj = ∂V ∩ int(Pj) is disjoint from K. By (3.17) we have |Ej | ≤ C · λd−1(Kj)

ξm(d−1) , and

hence

ℓ∑
j=1

|Ej | =
∑
j∈J1

|Ej |+
∑
j∈J2

|Ej | ≤ ρ · ξd |E|+ C ·
λd−1

(∪
j∈J2 Kj

)
ξm(d−1)

. (3.22)
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The sets K and
∪
j∈J2 Kj are disjoint, and their union is a subset of ∂V ∩ int(T ),

hence

|E|+
ℓ∑

j=1

|Ej |
(3.22)
≤ (ρ·ξd+1) |E|+

∑
j∈J2

|Ej |
(3.21),(3.22)

≤ ρ · ξd(ρ · ξd + 1)

ε · λd−1(∂T
∗
i )

λd−1(K)+C·
λd−1

(∪
j∈J2 Kj

)
ξm(d−1)

(3.13)
≤ ρ · ξd(ρ · ξd + 1)

ε ·Dmin · ξ(m+1)(d−1)
λd−1(K) + C ·

λd−1

(∪
j∈J2 Kj

)
ξm(d−1)

(3.13)
≤ C

ξm(d−1)

λd−1(K) + λd−1

∪
j∈J2

Kj

 ≤ C · λd−1(∂V ∩ int(T ))
ξm(d−1)

.

Thus (3.18) holds and the proof is complete.

3.4 Proof of the Main Theorems

Proof of Theorem 3.1.3. Proof of (I): We show that if |ηt| > η
d−1
d

1 then (i) of

Theorem 3.1.5 does not hold for any α. Fix a j ∈ {1, . . . , n} such that (3.4) holds

for any tile of type j, and consider the sequence of measurable sets T (m), the

m’th inflation of Tj . Then by Lemma 3.3.2 we have

λ
(
{x ∈ Rd : d(x, ∂T ) ≤ 1}

)
≤ C2 · λd−1(∂T ) = C2 · λd−1(∂Tj) · ξm(d−1).

Recall that ξd = η1, then we have

λ
(
{x ∈ Rd : d(x, ∂T ) ≤ 1}

)
≤ C2

(
η

d−1
d

1

)m
λd−1(∂Ti). (3.23)

As we did in the proof of Lemma 3.2.1, for any α different than the one defined in

(3.1) disc(v1) ̸= 0, and so disc(aT ) = Const · ηm1 . For large m’s, this is obviously

greater than any constant times λ
(
{x ∈ Rd : d(x, ∂T ) ≤ 1}

)
. For α as in (3.1),

by Lemma 2.2.1 we have∣∣∣#(Y ∩ T (m))− α · λ(T (m))
∣∣∣ ≥ A1 · |ηt|m ,

which by assumption is greater than Const

(
η

(d−1)
d

1

)m
, for any constant and for

a large enough m’s. Considering (3.23), we proved that (i) of Theorem 3.1.5 does

not hold.

Proof of (II): We show that (ii) of Theorem 3.1.5 holds, where α is as in

(3.1). Let R =

⌈
max
i

{diam(Ti)}
⌉
, where diam(A) denote the diameter of a set

A. It is sufficient to show that (ii) holds for any U , a finite union of R-cubes

(cubes with edge length R and corners at R · Zd). Let U be a finite union of
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R-cubes. For every y ∈ Y we denote by Ty the tile of τ0 that corresponds to y,

and define an V ∈ V by V =
∪

{Ty : y ∈ U}. Then U ⊆ V ∪ (U r V ). Note that

U r V ⊆ {x ∈ U : d(x, ∂U) ≤ R}, so it follows from Lemma 3.3.1 that

λ(U r V ) ≤ C1 ·Rd · λd−1(∂U).

Since #(U ∩ Y ) = #(V ∩ Y ) we have

|#(U ∩ Y )− α · λ(U)| ≤ |#(V ∩ Y )− α · λ(V )|+ α ·C1 ·Rd · λd−1(∂U). (3.24)

So it is enough to estimate |#(V ∩ Y )− α · λ(V )|.
Next we claim that ∂V ⊆ {x ∈ Rd : d(x, ∂U) ≤ R}. Indeed, if x ∈ ∂V then

either x ∈ U or x /∈ U . If x ∈ U , since x ∈ ∂V , x ∈ ∂Ty for some y /∈ U ,

and therefore d(x, ∂U) ≤ d(x, y) ≤ diam(Ty) ≤ R. A similar argument holds

if x /∈ U since x also belong to ∂Ty for some y ∈ U . Therefore, every tile T

of τ0 with T ∩ ∂V ̸= ∅ is contained in {x ∈ Rd : d(x, ∂U) ≤ 2R}. Denote by

C3 = maxi
λd−1(∂Ti)
λ(Ti) . Then by Lemma 3.3.1 we have

λd−1(∂V ) ≤
∑

T∈T (0)

T∩∂V ̸=∅

λd−1(∂T ) ≤
∑

T∈T (0)

T∩∂V ̸=∅

C3 · λ(T ) ≤

C3 · λ
(
{x ∈ Rd : d(x, ∂U) ≤ 2R}

)
≤ C3 · C1 · (2R)d · λd−1(∂U).

(3.25)

To finish the proof, we apply Proposition 3.3.5 to V . We pick a large enough

T ∈ T such that (3.14) holds. By Proposition 3.3.5 we obtain T1, . . . , Tn ∈ T

such that V ∈ S({T1, . . . , Tn}), and for every m we have:

#{i : Ti ∈ T (m)} ≤ C · λd−1(∂V ∩ int(T ))
ξm(d−1)

. (3.26)

Note that if A,B ∈ V and int(A) ∩ int(B) = ∅ then

#(Y ∩ (A ∪B))− α · λ(A ∪B) = #(Y ∩A)− α · λ(A) + #(Y ∩B)− α · λ(B),

and similarly if B ⊆ A then

#(Y ∩ (ArB))− α · λ(ArB) = #(Y ∩A)− α · λ(A)− (#(Y ∩B)− α · λ(B)).

Therefore, since V ∈ S({T1, . . . , Tn}), we have

|#(Y ∩ V )− α · λ(V )| ≤
n∑
i=1

|#(Y ∩ Ti)− α · λ(Ti)| ≤
∞∑
m=0

∑
Ti∈T (m)

|#(Y ∩ Ti)− α · λ(Ti)|

(3.5),(3.26)
≤

∞∑
m=0

[
C · λd−1(∂V ∩ int(T ))

ξm(d−1)
·A2 ·mkt−1 |ηt|m

]
≤

[ ∞∑
m=0

mkt−1 |ηt|m

(ξd−1)
m

]
·C·A2·λd−1(∂V ).
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By the assumption, |η2| < η
d−1
d

1 = ξd−1, and therefore the series converges and

we have

|#(Y ∩ V )− α · λ(V )| ≤ Const · λd−1(∂V ).

Considering (3.24) and (3.25), we have shown (ii) of Theorem 3.1.5, which implies

the assertion.

Proof of (III): Under the assumption of kt > 1, using (3.4) in the same way

as in the proof of (I), yields the assertion.

For the case where the Jordan block of ηt is trivial, we give an example in R3,

where the corresponding separated net is not a BDD of Z3.

Example : Consider the substitution rule H that is defined by this picture:

T1 T2
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��������
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��������

��������

�
�
�
� H //

So we have AH =

(
6 1

4 6

)
, d = 3, η1 = 8, and η2 = 4 = η

(d−1)/d
1 . Denote by

T
(m)
i , i = 1, 2 a tile of type i in T (m). For every m ∈ N we define a patch Vm ∈ V

in the following process:

• Take a tile Tm+1
2 and remove from it the (unique) T

(m)
1 that it contains.

• From what is left U
(1)
1 , remove all the T

(m−1)
1 with at least two faces common

with ∂U
(1)
1 .

...

• Eventually, from U
(m−1)
1 remove all the T

(1)
1 with at least two faces common

with ∂U
(m−1)
1 , to get U

(m)
1 . Define Vm = U

(m)
1 .

V1 V2 V3

. . . . .__
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So obviously

λ2(∂Vm) ≤ λ2(∂T
(m+1)
2 ) = 6 · 4m. (3.27)
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We fix an m and estimate |#(Y ∩ Vm)− α · λ(Vm)|. For that we consider the

following partition of Vm to tiles from different levels T (k)’s:

Um = {T ∈ T (m) : int(T ) ⊆ Vm}

Um−1 = {T ∈ T (m−1) : int(T ) ⊆ Vm r
∪

Um}
...

0 ≤ k < m : Uk = {T ∈ T (k) : int(T ) ⊆ Vm r
∪

(Uk+1 ∪ . . . ∪ Um)}

For i = 1, 2 and k ∈ {0, 1, . . . ,m} let ti,k = #{T (k)
i ∈ Uk}. By the construction,

t1,k = 0 for all k, and t2,k =

{
2 · 4m−k−1, k ̸= 0

6 · 4m−1 k = 0
. (3.28)

Recall that the discrepancy of Vm depends only on the vector aVm =

(
a1
a2

)
(see

(3.2)). We can write it now in terms of the t2,k’s. Calculations of AkHe2 shows

that:

a1 =

m∑
k=0

t2,k ·AkHe2(1) =
m∑
k=0

1

4
· t2,k(8k − 4k),

a2 =
m∑
k=0

t2,k ·AkHe2(2) =
m∑
k=0

1

2
· t2,k(8k + 4k)

(3.29)

Note that α = 3/4 (see (3.1)), then

|#(Y ∩ Vm)− α · λ(Vm)| =
∣∣∣∣a1 + a2 −

3

4
(2a1 + a2)

∣∣∣∣ = ∣∣∣∣14a2 − 1

2
a1

∣∣∣∣
(3.29)
=

1

4

∣∣∣∣∣
m∑
k=0

t2,k · 4k
∣∣∣∣∣ (3.28)=

1

4

∣∣∣∣∣6 · 4m−1 +
m∑
k=1

2 · 4m−k−1 · 4k
∣∣∣∣∣ =

(
m+ 3

8

)
4m.

(3.30)

Observe that (3.27) and (3.30) together shows that (ii) of Theorem 3.1.5 does not

hold, which implies that any tiling in XH correspond to a separated net which is

not a BDD of Z3.

3.5 Examples

In this last section we give some examples for primitive substitution tilings to

show that the different cases that appears in Theorem 3.1.3 exists. In all of the

examples below we give the substitution H and refer the result to any separated

net that corresponds to any substitution tiling in XH . Note that in all the
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examples below the order of the tiles does not matter, but only how many we

have of each type. We add the drawings of the substitution rule in order to show

that there are substitutions that correspond to the matrices.

Example 3.5.1.

AH =


1 1 1 5

1 2 5 2

2 3 4 1

0 1 1 6

. The eigenvalues are: 9, 4, 1,−1, and we have 4 > 91/2.

But the eigenvector that corresponds to 4 is in 1⊥, then ηt = 1 < 91/2, and

therefore any tiling in XH give rise to a separated net which is BDD to Z2.

Example 3.5.2.

AH =


4 3 1 3

1 4 5 5

1 1 4 1

0 1 1 5

. The eigenvalues are: 9, 3, 3, 2, where 3 has a non-trivial

Jordan block, and the generalized eigenvector is not in 1⊥. Here, by Remark

3.1.4, any separated net that correspond to a tiling in XH is not BDD to Z2.

Example 3.5.3.

AH =


4 5 1 7

1 3 4 1

1 1 6 1

0 1 0 6

. The eigenvalues are: 9, 5, 3, 2, and we have 5 > 91/2. But

the eigenvector that corresponds to 5 is in 1⊥, then ηt = 3 = 91/2. Then we

have here an example for a substitution that we don’t know to say whether the

corresponding separated nets are BDD to Z2 or not.





Chapter 4

The Danzer Problem

4.1 Introduction

We use the following standard notations for lower and upper bounds of functions:

f(x) = O(g(x)) means that ∃K1, x0 ∀x ≥ x0 : f(x) ≤ K1g(x)

f(x) = Ω(g(x)) means that ∃K2, x0 ∀x ≥ x0 : f(x) ≥ K2g(x)

This chapter deals with the following question that was originally asked by

L. Danzer in the sixties, see [D65].

Question 4.1.1. Is there a set D ⊆ Rd, (d > 1) with growth rate O(T d), that

intersect every convex set of volume 1?

We say that a discrete set S ⊆ Rd is of growth rate O(g(T )) if #(S ∩ BT ) =
O(g(T )), where BT is the ball of radius T around the origin. We may also replace

balls of radius T by squares of edge length T .

For d = 1 Question 4.1.1 is trivial, since a convex set of volume 1 is simply

an interval of length 1. For any d ≥ 2 the question is open, and as we show in

§4.2 it is equivalent to a difficult combinatorial question.

A set D ⊆ Rd that intersect every convex set of volume 1 is called a Danzer

set. The constant 1 is just a convenient normalization. One could also define a

C-Danzer set, as a set that intersect every convex set of volume C, and asking

whether a C-Danzer set of growth rate O(T d) exists. But these two questions

are obviously equivalent.

Note that the growth rate of a discrete Danzer set is at least Ω(T d), since

the cube of edge length T contains T d disjoint unit cubes. Also, as was pointed

out by Gowers in [Go00], and as follows from Claim 4.2.4, in Question 4.1.1 it

is enough to consider boxes instead of convex sets. By a box in Rd we simply

47
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mean the image of a set of the form [a1, b1] × . . . × [ad, bd] under an isometry

g ∈ O(d) n Rd. In view of the above, we say that D ⊆ Rd is a Danzer set if it

intersect every box of volume 1.

The Danzer problem appears in the literature in several places, and slightly

different versions of it were asked by several people. Boshernitzan posed the

question whether there is a Danzer set which is also a separated net. In [Go00],

Gowers asked if there is a set D ⊆ Rd, with a constant C, such that for every

box R of volume 1 we have 1 ≤ #(D ∩R) ≤ C.

Although the Danzer question can be phrased in just one line, and no prior

knowledge is required to understand it, there are very few previous results and

references regarding it. There are two short discussions on it in [GL87] and

[Go00], and the two main previous results appear in [BW71]. We describe these

results in the next two theorems.

Theorem 4.1.2 ([BW71], Theorem 1). A union of grids in Rd (i.e. translated

lattices) is not a Danzer set.

Theorem 4.1.3 ([BW71], Theorem 2). There exists a Danzer set D ⊆ Rd of

growth rate O(T d(log T )d−1).

Our main results of this chapter are Theorems 4.1.4 and 4.1.5 below, and

they are of similar flavor like the results in [BW71]. In Theorem 4.1.4 we have

negative results, parallel to Theorem 4.1.2, and Theorem 4.1.5 gives a positive

result that improves Theorem 4.1.3.

Theorem 4.1.4 is about certain separated nets arises from substitution tilings

(see §1.4 to recall the definitions). Note that if τ is a substitution tiling with

prototiles F = {T1, . . . , Tn}, a function h that picks a point in each prototile

defines a separated net that has one point in every tile of τ . Denote this separated

net by Zτ,h.

Theorem 4.1.4. Let τ be a primitive substitution tiling of Rd with finitely many

polygonal prototiles F = {T1, . . . , Tn}.

(i) For any function h : F →
∪

F , with h(Ti) ∈ Ti for every i, Zτ,h is not a

Danzer set.

(ii) Let Y ⊆ Rd be a random set that is obtained by choosing one point in each

tile of τ randomly and independently, with respect to some distribution on

each prototile. Then almost surely Y is not a Danzer set.

Theorem 4.1.5. There exists a Danzer set D ⊆ Rd of growth rate O(T d log T ).

Theorem 4.1.5 is in fact a straight forward corollary of Proposition 4.3.1,

together with previous results from combinatorics. This proposition has its own

interest since it shows that Question 4.1.1 is equivalent to another question that
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was well studied in combinatorics and computational geometry. We give the

relevant background and state the equivalent question in §4.2, and then prove

Proposition 4.3.1, that shows the equivalence, in §4.3. In §4.4 we present the

previous combinatorial results and deduce Theorem 4.1.5. After that we prove

Theorem 4.1.4 in §4.5.

4.2 An Equivalent Combinatorial Question

In order to describe the combinatorial question that we claim to be equivalent

to Question 4.1.1, we first present a couple of notions, taken from computational

geometry.

Definition 4.2.1. A range space is a pair (X,S) whereX is a set, and S ⊆ P(X),

a set of subsets of X. The elements of X are called points, and the elements of

S are called ranges.

We remark that this notion is also called a set system, or a hypergraph, where

X is the set of vertices, and S is the set of hyperedges.

Many of the examples that people study are geometric. For example, X is

Rd or [0, 1]d, and S is the set of geometric figures, like half spaces, triangles,

align boxes, convex sets, etc. The same ranges are often considered for finite sets

X ⊆ Rd, and then saying that S is the set of half spaces, for example, means

that S = {H ∩X : H ⊆ Rd is a half space}.

Definition 4.2.2. Let (X,S) be a range space with #X = n. For a given ε > 0,

a set Nε ⊆ X is called an ε-net if for every S ∈ S with #(S ∩X) ≥ εn we have

S ∩N ̸= ∅. The same definition can be made for an infinite set X, replacing n

by µ(X), where µ is a given probability measure on X.

Notice that the notion of an ε-net resemble the notion of a Danzer set, when

we take X = [0, 1]d with the standard Lebesgue measure, and S to set of convex

subsets of X with volume ε. So a parallel question to Question 4.1.1 in this

context is the following:

Question 4.2.3. For ε > 0 let X = [0, 1]d, Sε = {convex sets of volume ε}. Is

there an ε-net of size O(1/ε) for the pair (X,Sε), for every ε > 0?

As pointed out by Gowers in [Go00], and as the following claim shows, it

would be equivalent to ask this question with Sε = {boxes of volume ε} (not

align boxes).

Claim 4.2.4. There is a constant αd, that depend only on d, such that for any

convex set K ⊆ Rd there are boxes R1 ⊆ K ⊆ R2 with V ol(R2)/V ol(R1) ≤ αd.
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Proof. The assertion follows from John’s Theorem, see [B97] Lecture 3, saying

that any convex set K ⊆ Rd contains a maximal ellipsoid B, and that B ⊆ K ⊆
dB. Taking R1 to be the box that is inscribed in B, R2 the box that circumscribe

dB, and αd = d3d, finishes the proof.

As we show in Claim 4.3.2, a simple rescaling argument shows that the es-

timate in Question 4.2.3 on the size of an ε-net is indeed the parallel question

to ask. Our main result in §4.3 shows that Question 4.1.1 and Question 4.2.3

are actually equivalent. The reason why such a result is interesting is because

finding upper and lower bounds for the sizes of ε-nets in various range spaces is a

topic that was extensively studied in combinatorics and computational geometry.

So we can immediately apply it, and using these combinatorial constructions, to

deduce a construction of a Danzer set with a growth rate that beats the one in

Theorem 4.1.3.

In the combinatorial result that is related to the Danzer problem the range

space is ([0, 1]d, {boxes of volume ε}). This result is a special case of a more

general result by Vapnik and Chervonenkis, see [VC71], that gives a construction

of a relatively small ε-net wherever the complexity of the ranges in S is not too

high. To make this notion precise, we present the following terminology.

Definition 4.2.5. Let (X,S) be a range space. A set A ⊆ X is called shattered

if

|{A ∩ S : S ∈ S}| = 2|A|,

where |A| is the cardinality of the set A.

Definition 4.2.6. The Vapnic Chervonenkis dimension, or shortly the VC-

dimension, of a range space (X,S) is

V Cdim(X,S) = sup{|A| : A ⊆ X is shattered}.

For a range space (X,S) and a subset B ⊆ X we denote by S|B = {s∩B : s ∈ S}.

Observe that V Cdim(B,S|B) ≤ V Cdim(X,S) for any B ⊆ X. More gener-

ally, if S ′ ⊆ S then V Cdim(X,S ′) ≤ V Cdim(X,S).

Example 4.2.7. We compute the VC-dimension for several examples, where

X = [0, 1]d:

• S is the set of closed half-spaces. By half-spaces we mean the set of points in

one side of a hyperplane. We show that V Cdim(X,S) = d+ 1. First note

that if Λ ⊆ X, #Λ = d+1, and Λ is in general position, then Λ is shattered.

On the other hand, by Radon’s Theorem (see [Radon21]), every Λ ⊆ X of

size d + 2 can be divided into two sets A,B such that their convex halls

intersect. In particular, A cannot be obtained as Λ ∩H for any half-space

H ∈ S.
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• S is the set of convex sets. Here V Cdim(X,S) = ∞. Let C be a circle, or

a d+1 dimensional sphere in C. So C is an infinite set (even uncountable).

C is shattered, since for any subset A of C the convex hall of A, conv(A),

is in S, and C ∩ conv(A) = A.

• d = 2, and S is the set of rectangles (not only align rectangles). We show

that V Cdim(X,S) < 10. Let Λ ⊆ X, #Λ = 10 and consider the two

following cases:

(i) If there is some subset Λ′ $ Λ with conv(Λ′) = conv(Λ), then clearly

Λ′ ̸= Λ ∩ S for any S ∈ S.

(ii) Otherwise, T = conv(Λ) is a convex decagon. Let {x0, x1, . . . , x9} be a

cyclic order of the vertices of T , we claim that Λ′ = {x0, x2, x4, x6, x8}
cannot be obtained as Λ ∩ S, for any S ∈ S. To see this, assume that

Λ′ = Λ ∩ S for some rectangle S ∈ S. Then for every i ∈ {0, . . . , 9}
there is an edge of S separating xi and xi+1 (the + is taken (mod10)).

So the edges of S intersect all the ten edges of the decagon T . But

since T is convex, every edge of S can intersect at most two edges of

T . A contradiction.

As we mentioned above, the VC-dimension of a range space is a way to mea-

sure the complexity of the ranges. The following combinatorial lemma gives one

precise meaning to this general idea, and shows that if X is finite, and the VC-

dimension is finite, then the number of ranges is polynomial in #X. It was proven

originally by Sauer, see [Sa72], and independently by Perles and Shelah. We also

refer to [AS08], Lemma 14.4.1, for a short proof.

Lemma 4.2.8. If (X,S) is a range space with VC-dimension d, and #X = n,

then #S ≤
∑d

i=0

(
n
i

)
.

This Lemma also give rise to the following corollary, see [AS08] Corollary

14.4.3.

Corollary 4.2.9. Let (X,S) be a range space of VC-dimension d, and let Sk =

{s1 ∩ . . . ∩ sk : si ∈ S}. Then V Cdim(X,Sk) ≤ 2dk log(dk).

Another result that is relevant to us is the following theorem of Haussler and

Welzl.

Theorem 4.2.10 (see [HW87]). Let (X,S) be a range space, where X is finite

and V Cdim(X,S) = d, then for any ε > 0 there is an ε-net N with #N ≤
O(dε log(1/ε)).

For completeness, in §4.4 we give a proof of a special case of this theorem,

that we learned from Saurabh Ray.
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4.3 The Two Questions are Equivalent

The goal of this section is to prove Proposition 4.3.1. This result in particu-

lar implies that Question 4.1.1 and Question 4.2.3 are equivalent (namely, an

affirmative answer to one implies an affirmative answer to the other).

Proposition 4.3.1. For fixed d ≥ 2, and a function g(x) of polynomial growth,

the following are equivalent:

(i) There exists a Danzer set D ⊆ Rd with growth rate O(g(T )).

(ii) For every ε > 0 there exists an ε-net for (X,Sε) of size O(g(ε−1/d)), where

X = [0, 1]d and Sε = {boxes of volume ε}.

We divide the proof into several parts. The easy implication is (i) implies

(ii), as the following simple argument shows.

Claim 4.3.2. (i) implies (ii).

Proof. Suppose that D ⊆ Rd intersect every box of volume 1. For a given ε > 0

consider the square Q of edge length ε−1/d, centered at the origin. Then N =

D ∩ Q intersect any box of volume 1 contained in Q. Now contract Q (and the

whole picture) by a factor of ε1/d in every axes. Then Q becomes a square of

volume 1, and N intersects every box of volume ε in it. So if D = O(g(T )), then

#N = O(g(ε−1/d)).

Corollary 4.3.3. Fix C > 0. If for some ε > 0 a set of C/ε points cannot

intersect all boxes of volume ε in [0, 1]d, then there is no Danzer set of growth

rate O(T d).

As mentioned in 4.1, the growth rate of a Danzer set is at least T d since the

cube of edge length T contains T d disjoint unit cubes. Moreover, we claim that

the multiplicative constant C must depend on the dimension d. To be precise, we

give the following claim for epsilon nets in [0, 1]d, which by Claim 4.3.2 implies

the above statement.

Claim 4.3.4. For any constant C > 0, and any function g(x), there is a large

enough d such that any set of size Cg(1/ε) does not intersect all convex sets of

volume ε in [0, 1]d.

The proof given below is due to Shakhar Smorodinsky.

Proof. For a given ε < 1
2 , take d = ⌈Cg(1/ε)⌉. So any ⌈Cg(1/ε)⌉ points in [0, 1]d

are contained in a hyper-plane H. H misses at least half of the cube [0, 1]d, so

these points clearly miss a convex set of volume at least 1
2 .
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Our next objective is to show that (ii) implies (i). Define the following

partition of Rd into layers:

L1 = [−2, 2]d, Li =
{
x ∈ Rd : 2i−1 < ∥x∥∞ ≤ 2i

}
, (4.1)

where ∥·∥∞ is the ℓ∞ norm.

· · ·

· · ·

...

...

L1

L2

L3

L4

L5

(2,2)
(4,4)

(8,8)

(16,16)

(32,32)

OO

//

Set

Cd =
1

4d log2(20d)
, (4.2)

and denote by

Qt = {x ∈ Rd : ∥x∥∞ ≤ t},

Bt = {x ∈ Rd : ∥x∥2 ≤ t}.

Proposition 4.3.5. Suppose that for every i we have a set Ni ⊆ Li, that inter-

sects any convex set of volume Cd that is contained in Li, then

(i) D =
∪∞
i=0Ni is a Danzer set in Rd.

(ii) If for every i we have #Ni = O(g(2i)), then D has growth rate O(g(T )).

The proof relies on the following two lemmas.

Lemma 4.3.6. Let R ⊆ Rd be a box. Suppose that V ol(Qt∩R) ≥ 1
2V ol(R), then

R ⊆ Q5td.
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Proof. Let x0 be a vertex of R, and let r1, . . . , rd be the d edges of R with

one end-point at x0. Denote by |r| the length of a segment r, then we have

V ol(R) =
∏d
i=1 |ri|.

Denote K = Qt ∩R and define

ki = a segment of maximal length in K, in direction ri.

So clearly V ol(K) ≤
∏d
i=1 |ki|, and |ki| ≤ |ri| for all i. Hence by the assumption

1
2V ol(R) ≤ V ol(K) we have

1

2
|ri| ≤ |ki| (4.3)

for all i.

Let ℓ = diam(R), and let k ∈ K. Since d(0, k) ≤ t
√
d, we have

R ⊆ B(k, ℓ) ⊆ Bt
√
d+ℓ ⊆ Qt

√
d+ℓ.

On the other hand

ℓ = diam(R) =

√
|r1|2 + . . .+ |rd|2 ≤

√
dmax

i
{|ri|}

(4.3)
≤ 2

√
dmax

i
{|ki|} ≤ 4td.

So R ⊆ Q5td.

Lemma 4.3.7. For any box R of volume 1 in Rd there is a layer Li such that

Li ∩R contains a convex set K with V ol(K) ≥ Cd, where Cd is as in (4.2).

Proof. Let m ∈ N be the minimal integer such that R ⊆
∪m
i=0 Li = Q2m . Let

j ∈ N be the minimal integer satisfying 5d ≤ 2j . So we may also write

Q2m = Q2m−j−1 ∪ (Lm−j ∪ Lm−j+1 ∪ . . . ∪ Lm).

Since V ol(R) = 1 we either have V ol(Q2m−j−1 ∩ R) ≥ 1
2 or V ol((Lm−j ∪ . . . ∪

Lm) ∩R) ≥ 1
2 . If V ol(Q2m−j−1 ∩R) ≥ 1

2 , then by Lemma 4.3.6 we have

R ⊆ Q2m−j−1·5d ⊆ Q2m−1 =
m−1∪
i=0

Li,

contradicting the minimality of m. So V ol((Lm−j ∪ . . . ∪ Lm) ∩ R) ≥ 1
2 , and

therefore V ol(Li∩R) ≥ 1
2(j+1) ≥

1
2 log2(20d)

for some i ∈ {m−j,m−j+1, . . . ,m}.
Fix i as above, so it is left to find a convex set K ⊆ Li ∩ R with V ol(K) ≥

Cd = 1/4d log2(20d). Denote by F1, . . . , F2d the external d− 1-dimensional faces

of Li (namely, the faces of the cube Q2i). There are 2d faces, and each of them

defines a convex set

Ki = {x ∈ Li : ∀j ̸= i, d(x, Fi) ≤ d(x, Fj)}.

The sets Ki∩R are convex and one of them contain at least (2d)−1 of the volume

of Li ∩R, which gives the desired K.
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proof of Proposition 4.3.5. (i) Follows from Lemma 4.3.7.

(ii) #Ni = O(g(2i)), so there is a constant C1 such that #Ni ≤ C1g(2
i). By

adding points to some of the Ni’s we may assume that g gets integer values,

and that #Ni = C1g(2
i) for every i. By adding more points, if needed, we

may also assume that the function g(x)
xd

is non-decreasing (observe that

g(x) = Ω(xd)).

For a measurable set A we denote by D(A) = |D∩A|
V ol(A) , the density of the

set D in A, where D =
∪
iNi. Note that for every i > 0 the layer Li is

the union of 4d − 2d cubes of edge length 2i−1, that intersect only at their

boundaries. So for every i > 0 we have

D(Li) =
C1g(2

i)

(4d − 2d)(2i−1)d
=

C1

2d − 1
· g(2

i)

2i
.

Since g(x)
xd

is non-decreasing, D(Li) ≥ D(Li−1), and therefore D(Li) ≥
D(Q2i−1). Also note that for every i > 0 we have V ol(Li) = (2d − 1) ·
V ol(Qi−1), then

#Ni = D(Li)·V ol(Li) ≥ D(Q2i−1)·(2d−1)V ol(Q2i−1) = (2d−1)#(D∩Q2i−1).

In particular, for every i we have #(D ∩ Q2i) ≤ 2 |Ni| = 2C1g(2
i). Then

for a given n, let i ∈ N be such that n ≤ 2i < 2n. Then

#(D ∩Qn) ≤ #(D ∩Q2i) ≤ 2C1g(2
i) ≤ 2C1g(2n).

Proof of Proposition 4.3.1. We saw that (i) implies (ii) in Claim 4.3.2. For (ii)

implies (i), let εi = α−1
d Cd · 2−di, where Cd is as in (4.2), and αd is from Claim

4.2.4. Let N ′′
i be and ε-net for (X,Sεi) of size O(g(ε

−1/d
i )), and we may assume

that X = [−1, 1]d. Rescale the whole picture by a factor of 2i in each axis. So

X becomes Q2i , and N
′′
i becomes N ′

i ⊆ Q2i , a set of points of size O(g(ε
−1/d
i )) =

O(g((α−1
d Cd)

−1/d ·2i)) that intersect every box of volume εi ·2di = α−1
d Cd in Q2i .

Note that since g(x) has polynomial growth we have #N ′
i = O(g(2i)), and it

follow from Claim 4.2.4 that N ′
i intersects any convex set of volume Cd in Q2i .

Let Ni = N ′
i ∩ Li, where Li is as in (4.1). So #Ni = O(g(2i)) and Ni intersects

any convex set of volume Cd that is contained in Li. Then by Proposition 4.3.5

we obtain a Danzer set D =
∪
iNi in Rd with growth rate O(g(T )).

4.4 Proof of Theorem 4.1.5

To simplify the notation, we denote by Qn ⊆ Rd the cube of edge length n

centered at the origin in this section. We begin with the following proposition,

which can be viewed as a special case of Theorem 4.2.10. For completeness, we

add the proof of this proposition, that we learned from Saurabh Ray.
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Proposition 4.4.1. For any n > 0 there exists a N ⊆ Qn with #N = O(nd log n),

where C depends only on d, such that for any box R ⊆ Qn of volume 1 we have

R ∩N ̸= ∅.

Proof. Let Γn be a finite grid in Qn that divides Qn to cubes with side length 1/n.

Then each side of Qn is divided into n2 points, and therefore #Γn = n2d. Note

that any box R ⊆ Qn of volume 1 that is contained in Qn contains Ω(n2d/nd) =

Ω(nd) points of Γn (up to an error of nd−1), and at least nd/2 points.

Let

p =
c log(n)

nd
∈ (0, 1),

where c depend only on d, and will be chosen later. Let N be a random subset

of Γn that is obtained by choosing points from Γn randomly and independently

with probability p. Then the #N is a binomial random variable B(m = n2d, p),

where m = n2d, with expectation

E(#N) = n2d · p = c · nd log(n).

Since #N = B(m, p) the values of #N concentrate near E(#N). To be precise,

using Chernoff bound for example (see [C52]) one obtains

Prob[|#N −E(#N)| ≥ E(#N)/2] ≤ e−
E(#N)

16 .

So in particular with probability greater than (n− 1)/n we have

1

2
cnd log(n) ≤ #N ≤ 3

2
cnd log(n). (4.4)

Such a set N misses a given box R if all the points in R were not taken to N .

The probability for that event is at most

(1− p)n
d/2 =

(
1− c log(n)

nd

)nd/2

≥ e−c log(n)/2 =
1

nc/2
.

Recall that we saw in the first example in 4.2.7 that V Cdim([0, 1]d, {closed half-spaces}) =
d + 1. Since every box in [0, 1]d is the intersection of 2d closed half-spaces, by

Corollary 4.2.9 we have V Cdim([0, 1]d, {boxes}) ≤ 4d(d + 1) log(2d(d + 1)) ≤
8(d+ 1)3 := q (we are even taking a subset of S2d, for S = {closed half-spaces}).
In particular, we also have

V Cdim(Qn,S := {R ∩ Γn : R ⊆ Qn is a box of volume 1}) ≤ q.

By Lemma 4.2.8 we have

#S ≤
q∑
i=0

(
#Γn
i

)
≤ (q + 1)n2dq.
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Pick c/2 = 2dq+1 = O(d4). So a standard union bound gives that the probability

to miss some box R is at most:

(q + 1)n2dq · 1

nc/2
= O

(
1

n

)
. (4.5)

In particular, there is a set N ⊆ Γn satisfying (4.4) and (4.5). That is a set N of

size O(nd log(n)) that intersect every box of volume 1 in Qn.

Proof of Theorem 4.1.5. Let ε > 0. Let n ∈ N be the minimal positive integer

that satisfies 1/nd ≤ ε. By Proposition 4.4.1 for every n ∈ N we have a set

Nn ⊆ Qn of size O(nd log(n)) that intersect every box of volume 1 in Qn. Rescale

the whole picture by a factor of 1/n in each axis, we obtain a set Yn ⊆ [−1/2, 1/2]d

of size O(nd log(n)) that intersect every box of volume 1/nd in [−1/2, 1/2]d. In

particular, we have an ε-net of size O(nd log(n)) for the range space (X,Sε),
where X = [0, 1]d and Sε = boxes of volume ε. Note that n− 1 < ε−1/d ≤ n, so

we have showed (ii) of Proposition 4.3.1, with g(x) = xd log(x), and therefore we

have a Danzer set of growth rate O(T d log(T )).

4.5 Proof of Theorem 4.1.4

We now move to a discussion on non-examples for a Danzer set. Clearly, a

lattice in Rd cannot be a Danzer set. In [BW71] Bambah and Woods use a nice

dynamical argument to show that any finite union of grids (translated lattices)

will also fail to be a Danzer set. We now show that other natural candidates also

fail to be Danzer sets.

Our goal is to prove Theorem 4.1.4. Let H be a primitive substitution rule,

with finitely many polygonal prototiles F = {T1, . . . , Tn} in Rd, and inflation

constant ξ > 1. Fix a tiling τ0 ∈ XH . Recall that for a function h : F →
∪

F ,

with h(Ti) ∈ Ti for every i, Zτ0,h denotes the separated net that is obtained

by placing one point in each tile of τ0, with respect to the choices of h. More

precisely, each tile of τ0 is equal to Ti + v, for some i, and some v ∈ Rd. So the

function h can be naturally extended to the collection of all tiles in τ0. Then

Zτ0,h = h(τ0). We shall keep using this notation later.

By a polygonal tiling we simply mean that the prototiles are d-dimensional

polytopes, namely convex bounded sets that can be obtained as an intersection

of finitely many half-spaces. Also recall Proposition 1.5.1, that tells us that for

every m ∈ N there exists a tiling τm ∈ XH with (ξH)m(τm) = τ0. Denote by ∂τ

the union of all the boundaries of tiles of a tiling τ , so we have ∂τj ⊆ ∂τi for any

i ≤ j.

Remark 4.5.1. The proof does not using the convexity of the tiles, but only the

fact that one of the tiles contains a straight segment in its boundary. Therefore
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it can be extended to other cases where this property holds, for instance, if the

prototiles are finite unions of cubes.

Proof of Theorem 4.1.4. (i) Let h : F →
∪

F , with h(Ti) ∈ Ti for every i. For

a set A and δ > 0 we denote by Uδ(A) = {x ∈ Rd : d(x,A) < δ}.

We first consider the case where h(Ti) ∈ int(Ti) for every i, where the main

idea of the proof is presented. Denote by

δ = min
i
{d(h(Ti), ∂Ti)}. (4.6)

Notice that if a d − 1-dimensional face of a tile in τ0 contains a segment

of length t, then the same type of tile in τm contains a segment of length

t · ξm in one of its faces. The tiles are polygonal, so let m be large enough

such that some face F of some tile in τm contains a segment L of length

ℓ > δ1−d. Since ∂τm ⊆ ∂τ0, L is also contained in ∂τ0. By (4.6), Uδ(L)

misses Zτ0,h.

Let v ∈ Rd be a vector of length δ/2 which is perpendicular to F , and let

L′ = L+ v. So Uδ/2(L
′) ⊆ Uδ(L), and Uδ/2(L

′) contains an open box R of

volume ℓ · δd−1 > 1. So R contains a closed box R′ of volume 1 that misses

Zτ0,h (and also misses F ).

Since R′ also misses F , the proof of the general case is obtained by defining

delta a bit differently. We leave it as an exercise to the reader to fill up the

technical details here.

(ii) For every i ∈ {1, . . . , n} let µi be a given probability measure on Ti. For

a set A and δ > 0 denote by V δ(A) = {x ∈ A : 0 < d(x, ∂A) < δ}, so for

every i there is some δi with supp(µi) * Vδi(Ti). Then we may fix some

δ > 0 that satisfies supp(µi) * Vδ(Ti) for every i.

Let Y ⊆ Rd be a random set that is obtained by choosing one point yT in

each tile T of τ0 randomly and independently, with respect to the distribu-

tions µi on each prototile. So for every tile T of type i there is a positive

probability pi > 0 for the event yT /∈ Vδ(T ). Denote by p = mini pi > 0.

Fix ℓ > δ1−d. It follows from the structure of substitution tiling that there

are infinitely many segments L of length ℓ in ∂τ0, like we found in the proof

of (i). It also follows from the structure of substitution tilings that there is

a uniform bound M ∈ N to the number of tiles of τ0 that such a segment

L intersects. So given such a segment L, with probability at least pM > 0

we have yT /∈ Vδ(T ), for every tile T ∈ τ0 with T ∩ L ̸= ∅. Since there are

infinitely many segments L ⊆ ∂τ0 of length ℓ, with probability 1 there is

such a segment L with the above property. Like in the proof of (i), such a

segment L gives rise to a box of volume 1 that misses Y .
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