
Percolation - 201.2.0101

Ariel Yadin

Home Exam Spring 2013

Due date: August 5, 2013
By this date it should be in my box at BGU.

It is a good idea to send me an email when you have submitted your work.

Instructions

• You may use any resources you find such as lecture notes, books, the internet.

If you use solutions of exercises found in such, you should reference them in

your solution. (For example, “in my solution I use a technique from: G. Orwell.

Animal Farm. Chapter 5.”.) If you use such resources, you should not copy a

solution, but rather understand it and write it up in your own words.

• Work in pairs is permitted, but only in pairs, not more. Do not write up the

solutions together, but rather after understanding the solution, each of you

should write them up on your own.

• You may use any theorems proved in class, but any other propositions you wish

to use - you should prove.

• Please write clearly. State your claims and proofs in a mathematical format,

with precise notation and correct formalism.

• Make sure your ID no. appears on your solutions.

• Each exercise is worth 20 points, although the different parts of a specific exercise

are not all equal. Extra points will be awarded for original ideas and proofs.

• By taking this exam, you agree to these terms, and declare that you will conform

to them.
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Exercise 1. Regarding the number of infinite components in percolation:

(A) Let G be an infinite connected graph (not necessarily transitive). Let

p ∈ [0, 1]. Show that for p-percolation on G × Z the number of infinite

components is constant a.s. and is either 0, 1 or ∞.

(Recall that the graph G×Z has vertex set V (G)×Z and edges given by

(x, k) ∼ (y, k) if and only if x ∼ y and (x, k) ∼ (x, k + 1).)

(B) Give an example of a connected bounded degree graph G such that the

number of infinite components in p-percolation on G is not a constant

(that is, show that for some k, 0 < Pp[N = k] < 1, where N is the random

variable that is the number of infinite components).

Solution to Exercise 1.

(A) For z ∈ Z consider the automorphism ϕz(g, k) = (g, k + z).

Let N be the number of infinite components and A = {N = k}. First

we show that Pp[A] ∈ {0, 1}.

Indeed, note that Pp[ϕzB] = Pp[B] for any event B, because ϕzΩ has

the same distribution as percolation on G × (Z + z), an isomorphic copy

of G× Z.

Also, since the number of infinite components does not change under ϕz,

we have that ϕzA = A.

Finally, for any finite set E ⊂ G × Z we have that there exists z ∈ Z

such that ϕzE ∩ E = ∅.

Now, let (An)n be a sequence of events such that P[A4An]→ 0 and An ∈

FEn for some finite set En. Let ϕn = ϕzn for zn such that ϕznEn ∩En = ∅.

For any z ∈ Z, since A = ϕzA, we have that

P[A]− P[An ∩ ϕzAn] ≤ P[A \ (An ∩ ϕzAn)] ≤ P[A \ An] + P[A \ ϕzAn]

= P[A \ An] + P[ϕz(A \ An)] = 2P[A \ An].
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So, because An is independent of ϕnAn,

P[A] ≤ P[An]P[ϕnAn] + 2P[A \ An] = P[An]2 + 2P[A \ An]→ P[A]2 ≤ P[A].

So P[A] = P[A]2 and P[A] ∈ {0, 1}.

This process that for all p ∈ [0, 1] there exists kp such that P[N = kp] = 1.

Let B be a ball in G × Z. N0,B be the number of infinite components

when the sites in B are forced to be closed, and let N1,B be the number

of infinite components when the sites in B are forced to be open. If OB is

the event that B is open and CB is the event that B is closed then because

N1,B, N0,B are independent of FB and OB, CB ∈ FB,

P[N1,B = kp] = P[N1,B = kp | OB] = P[N1,B = N = kp] = 1,

P[N0,B = kp] = P[N0,B = kp | CB] = P[N0,B = N = kp] = 1.

LetNB be the number of infinite components intersectingB. N0,B ≥ NB,

because closing the site in B can only disconnect components. Opening

the site in B connects all components intersecting B, so if NB ≥ 2 and

N <∞ then N1,B ≤ NB − 1. So, if kp <∞ then

P[NB ≥ 2] = P[NB ≥ 2, N <∞] ≤ P[N0,B ≥ NB, N1,B ≤ NB − 1] ≤ P[N0,B 6= N1,B] = 0.

Now, letting Nr := NB(o,r) for some o, we have that Nr ↗ N . So if

kp <∞,

P[N ≥ 2] = lim
r→∞

P[Nr ≥ 2] = 0.

(B) Fix p and let G,G′ be two copies of a transitive graph with p > pu(G). Let

o ∈ G and let o′ ∈ G′ be the copy of o in G′. Define the graph Γ be taking

G ∪G′ and adding an edge between o and o′.

If we are in bond percolation, then if the edge o ∼ o′ is closed and both o

and o′ are in an infinite component of G and G′ respectively, then we have

at least two infinite components. This has probability (1− p)θ(p)2 > 0.



4

If o ∼ o′ is open and o and o′ are both in an infinite component in G

and G′ respectively, then because we are in the uniqueness phase in each

of G,G′, we have that there is exactly one infinite component in Γ. This

happens with probability pθ(p)2 > 0.

So if N is the number of infinite components,

0 < pθ(p)2 ≤ P[N = 1] ≤ 1− P[N = 2] ≤ 1− (1− p)θ(p)2 < 1.

ut

Exercise 2. Let G be a transitive infinite connected graph. Consider bond perco-

lation on G. Let p < pc.

(A) An auxiliary claim: Show that if Γ is a finite connected graph, and x, y, z ∈

Γ three distinct vertices, then there exists a vertex v ∈ Γ such that there

exist three edge disjoint paths in Γ, α : x→ v, β : y → v and γ : z → v (it

may be that v ∈ {x, y, z} in which case one may choose an empty path).

[Hint: A spanning tree of Γ is a connected subgraph T of Γ such that T

is a tree and V (T ) = V (Γ). Every finite connected graph has at least one

spanning tree.]

(B) Consider p-bond percolation on G, with p < pc, if x, y, z are three vertices

(not necessarily distinct) such that x, y, z are all in the same component

of p-bond percolation on G, then there exists a vertex v ∈ G such that

{v ↔ x} ◦ {v ↔ y} ◦ {v ↔ z}.

(C) Use the above to prove that

Ep[|C|2] ≤ (Ep[|C|])3 .

Solution to Exercise 2.

(A) Let T be a spanning tree of Γ. Let δ : x → y be the unique simple path

in T connecting x to y in T . Suppose that δ = (δ0, . . . , δn). (T is a tree).

There is a unique simple path η : z → x in T connecting z to x. Suppose
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that η = (η0, . . . , ηk). Set J = min {j : ηj ∈ δ}; that is ηJ is the first

vertex in η that is also in δ. This must exist since ηk = x = δ0. Since δ, η

are simple paths, we can choose I such that δI = ηJ is the first intersection

point, and set v := δI = ηJ .

We have that α := (δ0, . . . , δI), β := (δn, δn−1, . . . , δI) and γ := (η0, . . . , ηJ)

are all edge disjoint, and α : x→ v, β : y → v and γ : z → v, as required.

(B) First consider the case where x, y, z are all distinct. Since p < pc, the graph

Γ = C(x) is a finite connected graph. Thus, by (A), since x, y, z ∈ C(x)

we can find v ∈ C(x) and edge disjoint paths α, β, γ in C(x) such that

α : x → v, β : y → v, γ : z → v. These paths are in C(x), so specifically

are open paths. That is we have the event, {v ↔ x} ◦ {v ↔ y} ◦ {v ↔ z}.

Now, if x, y, z are not all distinct, then there are two cases: Either

x = y = z in which case taking the empty path from x to itself and v = x =

y = z gives {x↔ x} ◦ {y ↔ y} ◦ {z ↔ z} = {v ↔ x} ◦ {v ↔ y} ◦ {v ↔ z}.

In the other case, without loss of generality, x = y 6= z. Then we choose

v = x = y and any open path γ : z → v (since z ↔ x), and take α, β

to be the empty path. This again gives {x↔ x} ◦ {y ↔ y} ◦ {z ↔ x} =

{v ↔ x} ◦ {v ↔ y} ◦ {v ↔ z}.

(C) G is transitive, so we may take C = C(x). Fix some large r > 0. Let

Cr = C ∩B(x, r). We start with

Ep[|Cr|2] =
∑

y,z∈B(x,r)

Ep[1{y∈Cr,z∈Cr}] =
∑

y,z∈B(x,r)

Pp[x, y, z ∈ Cr].

By (B) the event {x, y, z ∈ Cr} implies that there exists v ∈ B(x, r) such

that {v ↔ x} ◦ {v ↔ y} ◦ {v ↔ z}. That is, by the BK-inequality

Pp[x, y, z ∈ Cr] ≤
∑

v∈B(x,r)

P[{v ↔ x}◦{v ↔ y}◦{v ↔ z}] ≤
∑

v∈B(x,r)

Pp[v ↔ x]Pp[v ↔ y]Pp[v ↔ z].
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So

Ep[|Cr|2] ≤
∑

y,z∈B(x,r)

∑
v∈B(x,r)

Pp[v ↔ x]Pp[v ↔ y]Pp[v ↔ z]

=
∑

v∈B(x,r)

Pp[x↔ v]
∑

y∈B(x,r)

Pp[v ↔ y]
∑

z∈B(x,r)

Pp[v ↔ z]

≤
∑
v∈G

Pp[x↔ v]
∑
y∈G

Pp[v ↔ y]
∑
z∈G

Pp[v ↔ z].

Since G is transitive, we know that for any u,∑
w∈G

Pp[u↔ w] = Ep[|C|].

So for any r,

Ep[|Cr|2] ≤ (Ep[|C|])3 .

Since |Cr|2 ↗ |C|2 as r →∞, we have by monotone convergence that

Ep[|C|2] = lim
r→∞

Ep[|Cr|2] ≤ (Ep[|C|])3 .

ut

Exercise 3. Give an example of an infinite connected graph G with bounded de-

grees and a vertex o ∈ G such that pc(G) = 1 and such that G has exponential

volume growth; i.e. there exists constant c > 1 and o ∈ G such that for all r > 0,

|B(o, r)| ≥ cr.

Show this for both site and bond percolation.

Solution to Exercise 3. Consider the following tree.

For every k ∈ N let Tk be a finite binary tree of depth k, rooted at a root vertex

ok. So |Tk| = 20 + 21 + · · ·+ 2k = 2k+1 − 1, and the maximal distance in Tk is k.

Consider the graph N (a subgraph of Z). For every k ∈ N connect the root ok

of Tk to the vertex k ∈ N by an edge.

This constructs a graph, call it G.
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It is simple to show (you should do this) that the leaves of Tk are at distance

k + 1 from k ∈ N and so at distance 2k + 1 from 0 ∈ N.

Thus, if r ≥ 2k + 1, all the trees Tm,m ≤ k and the vertices {0, 1, . . . , k} are

in B(0, r) (there are even more vertices in this ball, but we only require a lower

bound). So for r ≥ 2k + 1,

|B(0, r)| ≥ |T0|+ |T1|+ · · · |Tk|+ k + 1 =
k∑

m=0

(2m+1 − 1) + k + 1

= 2 ·
k∑

m=0

2m = 2 · (2k+1 − 1).

This is greater than
√

2
r

for all k ≥ 2.

So we are left with showing that pc(G) = 1.

This is true for both site and bond percolation. Since pbondc ≤ psitec it suffices to

prove it for bond. (However, in this case both are easy.)

If p < 1 and C is the component of 0 in p-bond percolation on G,

Note that since G is a tree, if x ∈ Tk, y ∈ Tm for some m 6= k, then in bond

percolation on G x↔ y if and only if k ↔ m. This is because any path from x to

y must pass through both k and m.

For every x ∈ G let ρ(x) denote the unique k ∈ N such that either x = k or

x ∈ Tk. We have 0↔ x if and only if 0↔ ρ(x).

Since all Tk are finite, we have that C(0) is infinite if and only if there are

infinitely many k ∈ N such that 0 ↔ x for some x ∈ Tk ∪ {k}. But this is if and

only if there are infinitely many k ∈ N such that 0↔ k.

That is, we have show that if C(0) is infinite in p-bond percolation on G, then

there is an infinite component in p-bond percolation on N as a subgraph of G.

That is, pc(N) ≤ pc(G). Since pc(N) = 1 we are done. ut

Exercise 4. Let G be an infinite connected simple graph (no self loops or multiple

edges) and o ∈ G some vertex. Suppose that G is d-regular, d ≥ 2.
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In this exercise, it will be useful to consider the following set: Let Cn,b be the

set of all connected subsets of G that contain o and have exactly n vertices and

boundary size b; that is all connected subsets S such that o ∈ S, |S| = n and for

∂S = {y 6∈ S : y ∼ S}

|∂S| = b.

(A) Show that if Cn,b 6= ∅ then b ≤ dn. Show that if n = 1 then b = d and if

n ≥ 2 then b ≤ (d− 1)n.

(B) Show that for any p ∈ (0, 1),∑
n,b

|Cn,b|pn(1− p)b ≤ 1.

(C) Let An be the set of connected subsets of G that contain o and have exactly

n vertices. Show that

|An| ≤
(

dd

(d−1)d−1

)n
.

Solution to Exercise 4.

(A) Let S ∈ Cn,e then

dn =
∑
x∈S

∑
y∼x

1 =
∑
x∈S

∑
y∼x

1{y∈S} + 1{y 6∈S} = | {x ∼ y : x, y ∈ S} |+ b.

Any connected graph on n vertices has at least n−1 edges. | {x ∼ y : x, y ∈ S} |

is exactly twice the number of edges in S as a subgraph. So dn ≥ 2(n−1)+b

and b ≤ (d− 2)n+ 2.

When n = 1 the set is just S = {o} and b = d. When n > 1 then

b ≤ (d− 2)n+ 2 ≤ (d− 1)n.

(B) Consider p-site percolation on G. Then,

1 ≥ Pp[|C(o)| <∞] =
∑
n

Pp[|C(o)| = n] =
∑
n

∑
b

∑
S∈Cn,b

pn(1− p)b
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(C) If n = 1 then |A1| = 1.

If n > 1: for any p ∈ (0, 1) we have that

|An| =
∑
b

|Cn,b| ≤
∑
n

|Cn,b|pn(1− p)b · p−n(1− p)−(d−1)n ≤
(
p(1− p)(d−1)

)−n
.

Maximizing p(1− p)(d−1) gives p = 1
d
, so

|An| ≤
(
d
(

d
d−1

)d−1
)n
.

ut

Exercise 5. Let d > 1. In this exercise we will show in steps that in site percola-

tion on Zd, for pc = pc(Zd), there exist a constant c = c(d) > 0 such that

Ppc [0↔ ∂r(0)] ≥ cr(1−d)/2.

That is, the probability to be connected to distance r does not decay exponentially

(as in the sub-critical case).

(1) We say that a collection (Ω(x))x∈Zd is a (p,∆)-almost independent per-

colation if:

• For every x, Ω(x) is a Bernoulli random variable, with E[Ω(x)] =

P[Ω(x) = 1] ≤ p (that is, the probability that x is open is at most p).

• For every two subsets A,B ⊂ Zd such that dist(A,B) > ∆ we have

that (Ω(x))x∈A is independent of (Ω(x))x∈B. (Here the distance is the

graph distance in Zd.)

Note that in a (p,∆)-almost independent percolation, it is not necessarily

true that vertices close to one another are independent.

Show that if S is a finite connected subset of Zd containing 0, then in a

(p,∆)-almost independent percolation Ω,

P[S is open in Ω] ≤ p|S|/V ,

where C(z, r) := {z : ||z||∞ ≤ r} and V = |C(0,∆)| is the size of a L∞-

ball of radius ∆ in Zd.
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(2) Show that for any d,∆ there exist p, c1, c2 > 0 such that if Ω is a (p,∆)-

almost independent percolation on Zd, then in Ω:

P[0↔ ∂r(0) in Ω] ≤ P[|CΩ(0)| ≥ r] ≤ c1e
−c2r.

(It may be useful to use part (C) of Exercise 4.)

(3) Consider p-site percolation on Zd (totally independent case). Use the pre-

vious items to show that there exist q, c1, c2 > 0 such that the following

holds. If there exists r > 0 such that

Pp[C(0, r)↔ Zd \ C(0, 3r)] ≤ q

then for all R > 0,

Pp[C(0, R)↔ Zd \ C(0, 3R)] ≤ c1e
−c2R/r.

(Hint: Define an appropriate almost independent percolation. Note that a

tessellation of Zd by L∞-balls of radius r has an isomorphic graph structure

to that of Zd.)

(4) Consider p-site percolation on Zd. Use the BK inequality to show that there

exist q, c1, c2 > 0 such that if there exists r > 0 such that

Pp[0↔ ∂r(0)] ≤ qr(1−d)/2

then for all R > 0

Pp[0↔ ∂R(0)] ≤ c1e
−c2R/r.

(5) Conclude that for p = pc there exists q > 0 such that for all r > 0,

Ppc [0↔ ∂r(0)] ≥ qr(1−d)/2.

Solution to Exercise 5.
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(1) Let V := |C(0,∆)| be the size of a L∞-ball of radius ∆ in Zd. So |V | ≤

(2∆ + 1)d.

Suppose that S ⊂ Zd is a finite connected subset of Zd. By repeatedly

removing balls of radius ∆ from S, one may find a subset A ⊂ S such

that |A| ≥ V −1 · |S| and for any two vertices a 6= b ∈ A we have that

dist(a, b) > ∆.

If Ω is (p,∆)-almost independent percolation, we have that (Ω(a))a∈A

are all independent Bernoulli random variables, with mean at most p. So

P[S is open in Ω] ≤ P[A is open in Ω] ≤ p|A| ≤ p|S|/V .

(2) Let Σn be the set of all S such that S is a finite connected subset of Zd

with |S| = n. By part (C) of Exercise 4, |Σn| ≤ Cn for some C > 0.

Choose p small enough so that Cp1/V < 1.

Now, for any S ∈ Σ, if Ω is (p,∆)-almost independent percolation, then

P[S is open in Ω] ≤ pn/V . So

P[|CΩ(0)| ≥ r] ≤ P[∃ n ≥ r, S ∈ Σn : C(0) = S] ≤
∑
n≥r

∑
S∈Σn

P[S is open in Ω]

≤
∑
n≥r

Cnpn/V ≤ (Cp1/V )r · 1

1− Cp1/V
.

Taking c1 = 1
1−Cp1/V

and c2 = − log(Cp1/V ) completes this item.

(3) LetB = C(0, r). Recall that this is the L∞-cube, B =
{
x ∈ Zd : ||x||∞ ≤ r

}
.

For every z ∈ Zd let Bz := B + 2rz. Write Bz ∼ Bw if z ∼ w in Zd. Note

that because dist(2rz, 2rw) = 2rdist(z, w) we have that Bz ∩ Bw 6= ∅ if

and only if Bz ∼ Bw and the intersection is exactly at this points which

are at distance exactly r from both z and w.

The balls (Bz)z∈Zd cover Zd and form a graph isomorphic to Zd.

Consider p-site percolation on Zd. Define a configuration Ω on Zd by

setting Ω(z) = 1 if and only if Bz = C(2rz, r) ↔ Zd \ C(2rz, 3r) in the
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original site percolation. So P[Ω(z) = 1] ≤ P[C(0, r) ↔ Zd \ C(0, 3r)].

Also, Ω(z) only depends on the state of the vertices in B(2rz, 3r + 1). So

if dist(z, w) > 4 then dist(2rz, 2rw) > 8r > 2(3r + 1) which implies that

C(2rz, 3r + 1) ∩ C(2rw, 3r + 1) = ∅, and so Ω(z),Ω(w) are independent.

Moreover, if dist(A,A′) > 4 then taking M =
⋃

a∈AC(2ra, 3r + 1) and

M ′ =
⋃

a′∈A′ C(2ra′, 3r+1) we have that (Ω(a))a∈A ∈ FM and (Ω(a′))a′∈A′ ∈

FM ′ . Since M ∩ M ′ = ∅, we have that (Ω(a))a∈A is independent of

(Ω(a))a∈A.

So we have that Ω is a (q,∆)-almost independent percolation on Zd with

q = P[C(0, r)↔ Zd \ C(0, 3r)] and ∆ = 4.

Thus, if there exists r such that q is small enough, we have that for all

R > 0,

P[0↔ ∂R in Ω] ≤ c1e
−c2R.

Now back in the original independent p-site percolation, suppose that

C(0, R)↔ Zd\C(0, 3R). This path must pass through order R/r annuli of

the form C(2rz, 3r+1), connecting in each one C(2rz, r) to Zd\C(2rz, 3r).

Indeed, let γ be an open path in Zd connecting B(0, R) to Zd \ C(0, 3R)

in the original independent p-site percolation. Then, suppose that z is

such that dist(2rz, γ) ≤ r and dist(2rz, C(0, R)) > 3r. Then C(2rz, r) ↔

Zd \C(2rz, 3r) so Ω(z) = 1. Similarly, if dist(2rz, γ) ≤ r and dist(2rz,Zd \

C(0, 3R)) > 3r then Ω(z) = 1. Thus, by following γ and noting each time

it reaches a new ball C(2rz, r) we have in Ω an open path of length at least

3R
r
− 1.

Thus,

Pp[C(0, R)↔ Zd \ C(0, 3R)] ≤ c1e
−c2R/r,

perhaps by modifying appropriately c1, c2.
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(4) Let c > 0 be such that |∂C(0, r)| ≤ crd−1 for all r. Suppose that for some

r,

(Pp[0↔ ∂r(0)])2 ≤ qc−1r1−d.

If C(0, r) ↔ Zd \ C(0, 3r) then there is an open simple path going from

C(0, r) to outside C(0, 3r). Letting y be the first point on this path that

is in ∂C(0, 2r) we have that y is connected to C(0, r) and to Zd \ C(0, 3r)

by two open disjoint paths. With the BK inequality we have that

Pp[C(0, r)↔ Zd \ C(0, 3r)] ≤ Pp[∃ y ∈ ∂C(0, 2r) : {y ↔ ∂r(y)} ◦ {y ↔ ∂r(y)}]

≤ |∂C(0, r)| · (Pp[0↔ ∂r(0)])2 ≤ q.

If q was small enough, this would imply that for all R > 0,

Pp[C(0, R)↔ Zd \ C(0, 3R)] ≤ c1e
−c2R/r.

But

Pp[0↔ ∂R(0)] ≤ Pp[C(0, R/3)↔ Zd \ C(0, R)].

(5) The previous item tells us that if for some small enough q and some r > 0,

Pp[0↔ ∂r(0)] ≤ qr(1−d)/2

then Pp[0 ↔ ∂R(0)] decays exponentially in R. Since balls in Zd grow

polynomially in the radius, this would imply that Ep[|C(0)|] < ∞. Since

this cannot happen at p = pc we get that for some small enough q it must

be that for any r > 0

Pp[0↔ ∂r(0)] ≥ qr(1−d)/2.

ut
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Bonus Exercise

• This exercise is with 100 points solved. That means if you solve it, you get

100 and do not need to solve the other exercises.

• Better to show me a solution first, just in case...

• At the moment I do not know how to solve it, so it may (or may not, who

knows?) be difficult.

• You are not allowed to solve it for high dimensions using the method known

as “lace expansion”.

Bonus Exercise. A random walk on Zd is a sequence of vertices in Zd, say

(Zn)n such that for all n,

P[Zn+1 = y | Zn = x, Zn−1, . . . , Z0] = P[Zn+1 = y | Zn = x] = 1
2d
1{y∼x}.

For a set S ⊂ Zd we define

TS = inf {n ≥ 1 : Zn ∈ S} .

(Note that we don’t count time n = 0.)

Given a subset S ⊂ Zd we define the index of S to be the number

I(S) := E[TS | Z0 = 0],

where E is expectation with respect to the random walk measure. (I(S) may be

infinite.)

Consider Ωp, p-percolation on Zd. For every p ∈ (0, 1) define a random subset:

If θ(p) > 0 then let Sp be the (unique) infinite component in Ωp. If θ(p) = 0 let

Sp = ∅.

Prove the following for some d ≥ 3.

• Show that if p > pc(Zd) then Pp-a.s. I(Sp) is finite.

• Prove or provide a counter-example: If θ(p) > 0 then Pp-a.s. I(Sp) is finite.

• Prove that Epc [I(Spc)] =∞.


