Percolation

Ariel Yadin

Exercise Sheet \# 2
Exercise 1. Show that the event that there exists an infinite component is translation invariant.

Solution to Exercise 1. If $\varphi \in \operatorname{Aut}(G)$ then φ maps infinite connected subsets to infinite connected subsets. So if ω is a subgraph containing an infinite component, then $\varphi \omega$ also contains an infinite component. Also, if ω contains only finite components, then $\varphi \omega$ contains only finite components.

Let A be the event that there exists an infinite component. Then the above is just $\omega \in A \Longleftrightarrow \varphi \omega \in A$, which implies $A=\varphi A$.

This holds for all $\varphi \in \operatorname{Aut}(G)$ so A is translation invariant.
Exercise 2. Let G be an infinite transitive graph, and let $E \subset E(G),|E|<\infty$ be some finite subset. Then, there exists $\varphi \in \operatorname{Aut}(G)$ such that $\varphi E \cap E=\emptyset$.

Solution to Exercise 2. Fix some vertex $x \in G$. Let $r=\max \{\operatorname{dist}(e, x): e \in E\}$. Let $R>3 r$ and choose a vertex $y \in G$ such that $\operatorname{dist}(x, y)>R$. Let $\varphi \in \operatorname{Aut}(G)$ be such that $\varphi(x)=y$.

Then, since φ is a graph automorphism, it preserves distances. So for any edge e such that $\operatorname{dist}(e, x) \leq r$, we have that $\operatorname{dist}(\varphi(e), y) \leq r$ and so $\operatorname{dist}(\varphi(e), x)>$ $R-r>r$. Thus, for any $e \in E$ we have that $\varphi(e) \notin E$. That is, $\varphi E \cap E=\emptyset$.

Exercise 3. Show that $\{x \leftrightarrow \infty\}$ is an increasing event.
Show that $\{x \leftrightarrow y\}$ is an increasing event.
Show that A is increasing if and only if A^{c} is decreasing.
Show that the union of increasing events is increasing.
Show that the intersection of increasing events is increasing.

Show that $\{x$ is an isolated vertex $\}$ is a decreasing event.
Give an example of an event that is not increasing or decreasing.

Solution to Exercise 3. If $\omega \leq \eta$ and ω is such that $\omega \in\{x \leftrightarrow \infty\}$, then the infinite component of x in ω is open in η, so η also contains an infinite component for x.

In general, if $\omega \leq \eta$, then for every z, the component of z in ω is contained in the component of z in η. So if $x \leftrightarrow y$ in ω then $x \leftrightarrow y$ in η.

Let A be an increasing event, and let B be a decreasing event. Let $\omega \leq \eta$. If $\eta \in A^{c}$, then $\eta \notin A$, so it cannot be that $\omega \in A$, which implies that $\omega \in A^{c}$. If $\omega \in B^{c}$ then $\omega \notin B$ so $\eta \notin B$ (because B is decreasing) and so $\eta \in B^{c}$. Since this is true for all $\omega \leq \eta$, we get that A^{c} is decreasing and B^{c} is increasing.

Suppose that $\left(A_{n}\right)_{n}$ are increasing events. Let $A=\bigcup_{n} A_{n}$. Suppose that $\omega \in A$, and that $\eta \geq \omega$. Then, there exists n such that $\omega \in A_{n}$, and since A_{n} is increasing, also $\eta \in A_{n}$. So $\eta \in A$. Thus, A is increasing.

Let $B=\bigcap_{n} A_{n}$. If $\eta \geq \omega$ and $\omega \in B$ then $\omega \in A_{n}$ for all n. Since A_{n} are all increasing, $\eta \in A_{n}$ for all n. So $\eta \in B$.

The event that x is an isolated vertex is the event that $x \nless y$ for all $y \sim x$. So the intersection of decreasing events. That is, the event that x is an isolated vertex is the complement of the union of increasing events, and so a decreasing event.

Consider the event $A=\{x \leftrightarrow \infty, \operatorname{deg}(x)=1\}$. Then opening edges adjacent to x ruins the event, however, closing edges may disconnect x from infinity, so A is neither increasing nor decreasing.

Exercise 4. Let G be a graph. A function $f:\{0,1\}^{E(G)} \rightarrow \mathbb{R}$ is increasing if $\omega \leq \eta$ implies $f(\omega) \leq f(\eta)$.

Show that for an event $A, \mathbf{1}_{A}$ is increasing if and only if A is an increasing event.

Solution to Exercise 4. Let $f=\mathbf{1}_{A}$.

Assume that A is increasing. For any $\omega \leq \eta$, if $\omega \notin A$ then $f(\omega)=0 \leq f(\eta)$. If $\omega \in A$ then since A is increasing $\eta \in A$ and so $f(\omega)=1=f(\eta)$. Since this holds for all $\omega \leq \eta$, we get that f is increasing.

Now assume that f is increasing. Let $\omega \leq \eta$, and assume that $\omega \in A$. So $1=f(\omega) \leq f(\eta)$ which implies that $f(\eta)=1$ and so $\eta \in A$. Since this holds for all $\omega \leq \eta$, we get that A is increasing.

Exercise 5. Show that $p_{c}(\mathbb{Z})=1$.
Solution to Exercise 5. Let $p<1$. It suffices to show that $\Theta_{\mathbb{Z}}(p)=0$.
First we investigate the event $\{0 \leftrightarrow \infty\}$. Let A_{n} be the event that both edges $\{n, n+1\}$ and $\{-n,-(n+1)\}$ are closed. So $\mathbb{P}_{p}\left[A_{n}\right]=(1-p)^{2}$. Since for different n these edges are different, we have that $\left(A_{n}\right)_{n}$ are independent, and also $\left(A_{n}^{c}\right)_{n}$ are independent. Thus,

$$
\mathbb{P}_{p}\left[\bigcap_{n} A_{n}^{c}\right]=\lim _{N \rightarrow \infty} \mathbb{P}\left[\bigcap_{n=1}^{N} A_{n}^{c}\right]=\lim _{N \rightarrow \infty} \prod_{n=1}^{N}\left[1-(1-p)^{2}\right]=0
$$

because for $p<1$ we have $1-(1-p)^{2}<1$. Thus,

$$
\mathbb{P}_{p}\left[\exists n: A_{n}\right]=1
$$

That is, \mathbb{P}_{p}-a.s. there exists n such that both $\{n, n+1\}$ and $\{-n,-(n+1)\}$ are closed. This implies that \mathbb{P}_{p}-a.s. $\mathcal{C}(0) \subset[-n, n]$ and so finite. Thus, $\mathbb{P}_{p}[0 \leftrightarrow \infty]=$ 0.

Now, there was nothing special about the vertex 0 in this argument. One could replace 0 with any other vertex. So, we conclude that for any $x \in \mathbb{Z}$, $\mathbb{P}_{p}[x \leftrightarrow \infty]=0$. Summing over all x we have,

$$
\Theta_{\mathbb{Z}}(p)=\mathbb{P}_{p}[\exists x: x \leftrightarrow \infty] \leq \sum_{x} \mathbb{P}_{p}[x \leftrightarrow \infty]=0
$$

