Percolation

Ariel Yadin

Exercise Sheet # 2

Exercise 1. Show that the event that there exists an infinite component is translation invariant.

Solution to Exercise 1. If $\varphi \in \operatorname{Aut}(G)$ then φ maps infinite connected subsets to infinite connected subsets. So if ω is a subgraph containing an infinite component, then $\varphi \omega$ also contains an infinite component. Also, if ω contains only finite components, then $\varphi \omega$ contains only finite components.

Let A be the event that there exists an infinite component. Then the above is just $\omega \in A \iff \varphi \omega \in A$, which implies $A = \varphi A$.

This holds for all $\varphi \in \operatorname{Aut}(G)$ so A is translation invariant. \square

Exercise 2. Let G be an infinite transitive graph, and let $E \subset E(G), |E| < \infty$ be some finite subset. Then, there exists $\varphi \in \operatorname{Aut}(G)$ such that $\varphi E \cap E = \emptyset$.

Solution to Exercise 2. Fix some vertex $x \in G$. Let $r = \max \{ \operatorname{dist}(e, x) : e \in E \}$. Let R > 3r and choose a vertex $y \in G$ such that $\operatorname{dist}(x, y) > R$. Let $\varphi \in \operatorname{Aut}(G)$ be such that $\varphi(x) = y$.

Then, since φ is a graph automorphism, it preserves distances. So for any edge e such that $\operatorname{dist}(e,x) \leq r$, we have that $\operatorname{dist}(\varphi(e),y) \leq r$ and so $\operatorname{dist}(\varphi(e),x) > R-r > r$. Thus, for any $e \in E$ we have that $\varphi(e) \notin E$. That is, $\varphi E \cap E = \emptyset$. \square

Exercise 3. Show that $\{x \leftrightarrow \infty\}$ is an increasing event.

Show that $\{x \leftrightarrow y\}$ is an increasing event.

Show that A is increasing if and only if A^c is decreasing.

Show that the union of increasing events is increasing.

Show that the intersection of increasing events is increasing.

Show that $\{x \text{ is an isolated vertex}\}\$ is a decreasing event.

Give an example of an event that is not increasing or decreasing.

Solution to Exercise 3. If $\omega \leq \eta$ and ω is such that $\omega \in \{x \leftrightarrow \infty\}$, then the infinite component of x in ω is open in η , so η also contains an infinite component for x.

In general, if $\omega \leq \eta$, then for every z, the component of z in ω is contained in the component of z in η . So if $x \leftrightarrow y$ in ω then $x \leftrightarrow y$ in η .

Let A be an increasing event, and let B be a decreasing event. Let $\omega \leq \eta$. If $\eta \in A^c$, then $\eta \notin A$, so it cannot be that $\omega \in A$, which implies that $\omega \in A^c$. If $\omega \in B^c$ then $\omega \notin B$ so $\eta \notin B$ (because B is decreasing) and so $\eta \in B^c$. Since this is true for all $\omega \leq \eta$, we get that A^c is decreasing and B^c is increasing.

Suppose that $(A_n)_n$ are increasing events. Let $A = \bigcup_n A_n$. Suppose that $\omega \in A$, and that $\eta \geq \omega$. Then, there exists n such that $\omega \in A_n$, and since A_n is increasing, also $\eta \in A_n$. So $\eta \in A$. Thus, A is increasing.

Let $B = \bigcap_n A_n$. If $\eta \ge \omega$ and $\omega \in B$ then $\omega \in A_n$ for all n. Since A_n are all increasing, $\eta \in A_n$ for all n. So $\eta \in B$.

The event that x is an isolated vertex is the event that $x \nleftrightarrow y$ for all $y \sim x$. So the intersection of decreasing events. That is, the event that x is an isolated vertex is the complement of the union of increasing events, and so a decreasing event.

Consider the event $A = \{x \leftrightarrow \infty, \deg(x) = 1\}$. Then opening edges adjacent to x ruins the event, however, closing edges may disconnect x from infinity, so A is neither increasing nor decreasing.

Exercise 4. Let G be a graph. A function $f: \{0,1\}^{E(G)} \to \mathbb{R}$ is increasing if $\omega \leq \eta$ implies $f(\omega) \leq f(\eta)$.

Show that for an event A, $\mathbf{1}_A$ is increasing if and only if A is an increasing event.

Solution to Exercise 4. Let $f = \mathbf{1}_A$.

Assume that A is increasing. For any $\omega \leq \eta$, if $\omega \notin A$ then $f(\omega) = 0 \leq f(\eta)$. If $\omega \in A$ then since A is increasing $\eta \in A$ and so $f(\omega) = 1 = f(\eta)$. Since this holds for all $\omega \leq \eta$, we get that f is increasing.

Now assume that f is increasing. Let $\omega \leq \eta$, and assume that $\omega \in A$. So $1 = f(\omega) \leq f(\eta)$ which implies that $f(\eta) = 1$ and so $\eta \in A$. Since this holds for all $\omega \leq \eta$, we get that A is increasing.

Exercise 5. Show that $p_c(\mathbb{Z}) = 1$.

Solution to Exercise 5. Let p < 1. It suffices to show that $\Theta_{\mathbb{Z}}(p) = 0$.

First we investigate the event $\{0 \leftrightarrow \infty\}$. Let A_n be the event that both edges $\{n, n+1\}$ and $\{-n, -(n+1)\}$ are closed. So $\mathbb{P}_p[A_n] = (1-p)^2$. Since for different n these edges are different, we have that $(A_n)_n$ are independent, and also $(A_n^c)_n$ are independent. Thus,

$$\mathbb{P}_{p}[\bigcap_{n} A_{n}^{c}] = \lim_{N \to \infty} \mathbb{P}[\bigcap_{n=1}^{N} A_{n}^{c}] = \lim_{N \to \infty} \prod_{n=1}^{N} [1 - (1-p)^{2}] = 0$$

because for p < 1 we have $1 - (1 - p)^2 < 1$. Thus,

$$\mathbb{P}_p[\exists n : A_n] = 1.$$

That is, \mathbb{P}_p -a.s. there exists n such that both $\{n, n+1\}$ and $\{-n, -(n+1)\}$ are closed. This implies that \mathbb{P}_p -a.s. $\mathcal{C}(0) \subset [-n, n]$ and so finite. Thus, $\mathbb{P}_p[0 \leftrightarrow \infty] = 0$.

Now, there was nothing special about the vertex 0 in this argument. One could replace 0 with any other vertex. So, we conclude that for any $x \in \mathbb{Z}$, $\mathbb{P}_p[x \leftrightarrow \infty] = 0$. Summing over all x we have,

$$\Theta_{\mathbb{Z}}(p) = \mathbb{P}_p[\exists \ x : x \leftrightarrow \infty] \le \sum_{x} \mathbb{P}_p[x \leftrightarrow \infty] = 0.$$