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Exercise 1. Show that the event that there exists an infinite component is trans-

lation invariant.

Solution to Exercise 1. If ϕ ∈ Aut(G) then ϕ maps infinite connected subsets to

infinite connected subsets. So if ω is a subgraph containing an infinite compo-

nent, then ϕω also contains an infinite component. Also, if ω contains only finite

components, then ϕω contains only finite components.

Let A be the event that there exists an infinite component. Then the above is

just ω ∈ A ⇐⇒ ϕω ∈ A, which implies A = ϕA.

This holds for all ϕ ∈ Aut(G) so A is translation invariant. ut

Exercise 2. Let G be an infinite transitive graph, and let E ⊂ E(G), |E| <∞ be

some finite subset. Then, there exists ϕ ∈ Aut(G) such that ϕE ∩ E = ∅.

Solution to Exercise 2. Fix some vertex x ∈ G. Let r = max {dist(e, x) : e ∈ E}.

Let R > 3r and choose a vertex y ∈ G such that dist(x, y) > R. Let ϕ ∈ Aut(G)

be such that ϕ(x) = y.

Then, since ϕ is a graph automorphism, it preserves distances. So for any edge

e such that dist(e, x) ≤ r, we have that dist(ϕ(e), y) ≤ r and so dist(ϕ(e), x) >

R− r > r. Thus, for any e ∈ E we have that ϕ(e) 6∈ E. That is, ϕE ∩E = ∅. ut

Exercise 3. Show that {x↔∞} is an increasing event.

Show that {x↔ y} is an increasing event.

Show that A is increasing if and only if Ac is decreasing.

Show that the union of increasing events is increasing.

Show that the intersection of increasing events is increasing.
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Show that {x is an isolated vertex } is a decreasing event.

Give an example of an event that is not increasing or decreasing.

Solution to Exercise 3. If ω ≤ η and ω is such that ω ∈ {x↔∞}, then the infinite

component of x in ω is open in η, so η also contains an infinite component for x.

In general, if ω ≤ η, then for every z, the component of z in ω is contained in

the component of z in η. So if x↔ y in ω then x↔ y in η.

Let A be an increasing event, and let B be a decreasing event. Let ω ≤ η. If

η ∈ Ac, then η 6∈ A, so it cannot be that ω ∈ A, which implies that ω ∈ Ac. If

ω ∈ Bc then ω 6∈ B so η 6∈ B (because B is decreasing) and so η ∈ Bc. Since this

is true for all ω ≤ η, we get that Ac is decreasing and Bc is increasing.

Suppose that (An)n are increasing events. Let A =
⋃

nAn. Suppose that ω ∈ A,

and that η ≥ ω. Then, there exists n such that ω ∈ An, and since An is increasing,

also η ∈ An. So η ∈ A. Thus, A is increasing.

Let B =
⋂

nAn. If η ≥ ω and ω ∈ B then ω ∈ An for all n. Since An are all

increasing, η ∈ An for all n. So η ∈ B.

The event that x is an isolated vertex is the event that x 6↔ y for all y ∼ x.

So the intersection of decreasing events. That is, the event that x is an isolated

vertex is the complement of the union of increasing events, and so a decreasing

event.

Consider the event A = {x↔∞, deg(x) = 1}. Then opening edges adjacent to

x ruins the event, however, closing edges may disconnect x from infinity, so A is

neither increasing nor decreasing. ut

Exercise 4. Let G be a graph. A function f : {0, 1}E(G) → R is increasing if

ω ≤ η implies f(ω) ≤ f(η).

Show that for an event A, 1A is increasing if and only if A is an increasing

event.

Solution to Exercise 4. Let f = 1A.
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Assume that A is increasing. For any ω ≤ η, if ω 6∈ A then f(ω) = 0 ≤ f(η). If

ω ∈ A then since A is increasing η ∈ A and so f(ω) = 1 = f(η). Since this holds

for all ω ≤ η, we get that f is increasing.

Now assume that f is increasing. Let ω ≤ η, and assume that ω ∈ A. So

1 = f(ω) ≤ f(η) which implies that f(η) = 1 and so η ∈ A. Since this holds for

all ω ≤ η, we get that A is increasing. ut

Exercise 5. Show that pc(Z) = 1.

Solution to Exercise 5. Let p < 1. It suffices to show that ΘZ(p) = 0.

First we investigate the event {0↔∞}. Let An be the event that both edges

{n, n+ 1} and {−n,−(n+ 1)} are closed. So Pp[An] = (1−p)2. Since for different

n these edges are different, we have that (An)n are independent, and also (Ac
n)n

are independent. Thus,

Pp[
⋂
n

Ac
n] = lim

N→∞
P[

N⋂
n=1

Ac
n] = lim

N→∞

N∏
n=1

[1− (1− p)2] = 0

because for p < 1 we have 1− (1− p)2 < 1. Thus,

Pp[∃n : An] = 1.

That is, Pp-a.s. there exists n such that both {n, n+ 1} and {−n,−(n+ 1)} are

closed. This implies that Pp-a.s. C(0) ⊂ [−n, n] and so finite. Thus, Pp[0↔∞] =

0.

Now, there was nothing special about the vertex 0 in this argument. One

could replace 0 with any other vertex. So, we conclude that for any x ∈ Z,

Pp[x↔∞] = 0. Summing over all x we have,

ΘZ(p) = Pp[∃ x : x↔∞] ≤
∑
x

Pp[x↔∞] = 0.

ut


