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AMENABLE ACTIONS, FREE PRODUCTS AND A FIXED
POINT PROPERTY

Y. GLASNER and N. MONOD

Abstract

We investigate the class of groups admitting an action on a set with an invariant mean. It turns
out that many free products admit interesting actions of that kind. A complete characterization
of such free products is given in terms of a fixed point property.

1. Introduction

1.A. In the early 20th century, the construction of Lebesgue’s measure was
followed by the discovery of the Banach-Hausdorff-Tarski paradoxes ([20], [16], [4],
[30]; see also [18]). This prompted von Neumann [32] to study the following general
question:

Given a group G acting on a set X, when is there an invariant mean on X ?

Definition 1.1. An invariant mean is a G-invariant map µ from the collection
of subsets of X to [0, 1] such that (i) µ(A ∪ B) = µ(A) + µ(B) when A ∩ B = ∅
and (ii) µ(X) = 1. If such a mean exists, the action is called amenable.

Remarks 1.2. (1) For the study of the classical paradoxes, one also considers
normalisations other than (ii). (2) The notion of amenability later introduced by
Zimmer [33] and its variants [3] are different, being in a sense dual to the above.

1.B. The thrust of von Neumann’s article was to show that the paradoxes, or
lack thereof, originate in the structure of the group rather than the set X. He
therefore proposed the study of amenable groups (then “meßbare Gruppen”), i.e.
groups whose action on themselves by multiplication is amenable. This direction
of research turned out to be most fruitful, with influences on combinatorial group
theory, ergodic theory, rigidity and semi-simple groups, harmonic analysis, operator
algebras, etc.

However, the original question remained largely unanswered (compare Green-
leaf [13], Problem p. 18 and Pier [27] p. 307). Whilst it is easy to see that any action
of an amenable group is amenable, the converse a priori holds only for free actions,
where it is essentially tautological. Besides free actions, von Neumann describes only
one other example (pp. 82–83 in [32]) which still almost contains a free action of a
free group, noting about the general case that “its somewhat complicated character
might be found discommodious”.
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When investigating the general question of the amenability of a G-action on X, a
few restrictions are in order (compare Greenleaf, loc. cit.). First, one should assume
the action faithful, since otherwise one is really investigating a quotient group of G.
Next, it is natural to consider transitive actions, since otherwise X could contain
any action (e.g. a fixed point, providing an obvious invariant mean) as long as one
adds a free orbit for the sake of faithfulness. Thus, we shall focus in this note on
the class of all countable groups that admit a faithful transitive amenable action:

A =
{

G countable : G admits a faithful transitive amenable action
}
.

(Throughout this paper, countable means infinite countable. In the finite case, all
our statements either extend trivially or fail for obvious reasons – hence our choice
of terminology.)

The only obvious examples of groups in A are amenable groups (since the action
of G on itself is free and transitive). Given that in the classical paradoxes the non-
amenability was caused by the presence of a non-Abelian free group, the following
posthumous result of E.K. van Douwen is at first sight surprising:

Theorem (van Douwen [31]). Finitely generated non-Abelian free groups are
in A.

1.C. It is easy to verify that if G has Kazhdan’s property (T), then any amenable
G-action has a finite orbit (Lemma 4.2). Thus for instance SL3(Z) is not in A. We
propose the following:

Definition 1.3. A countable group G has the fixed point property (F) if any
amenable G-action (on a countable set) has a fixed point.

Such a group is never in A; examples include infinite simple Kazhdan groups.
However, G need not be Kazhdan because property (F) is preserved under finite
free products (see Section 4 for details). Property (F) can be reformulated without
referring to means, as it amounts to the paradoxicality of any (non-trivial) G-action
(Section 4.H).

We say that G has virtually (F) if a finite index subgroup of G has property (F).

Remark 1.4. The virtual property is much stronger than requiring that G
have a finite orbit, since it implies for instance that G has a minimal finite index
subgroup. Indeed, a group with property (F) cannot have any non-trivial finite
quotient F , since F (or F ×N, to be infinite) would be an amenable G-set without
fixed point.

1.D. The main result of this note is that G∗H is always in A unless the obvious
obstruction occurs:

Theorem 1.5. Let G, H be any countable groups. Then G ∗H ∈ A unless G
has property (F) and H has virtually (F). (Upon possibly exchanging G and H.)

Moreover, this provides a necessary and sufficient characterization.
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For example, we see that for any countable G, H, the free product G ∗H is in A
as soon as one of the groups is either residually finite or non-finitely-generated
or amenable. Thus for instance G ∗ SL3(Z) is in A for any countable group G.
Furthermore, Theorem 1.5 leads to the following dichotomy:

Corollary 1.6. Let G = ∗n
i=1Gi be any free product of 2 ≤ n ≤ ∞ countable

groups. Then either G ∈ A or G has virtually (F).

Moreover, the latter occurs if and only if n 6= ∞, all Gi with i > 1 have property (F)
and G1 virtually has (F). (Upon possibly reordering the factors.)

Incidentally, this shows that a group in A can be the increasing union of groups
with property (F) (see Section 4.E).

1.E. We summarize below some structural properties of the class A. Most of
these properties are either elementary or follow easily from known results and from
Theorem 1.5. Statement (iv) provides an interesting contrast to Theorem 1.5. See
Section 4 for definitions and details.

Proposition 1.7. For any countable groups G, H, the following hold:
(i) G amenable =⇒ G ∈ A.

(ii) G, H ∈ A ⇐⇒ G×H ∈ A.

(iii) G, H ∈ A =⇒ G ∗H ∈ A.
However, G ∗H ∈ A Y=⇒ G, H ∈ A.

(iv) G, H ∈ A Y=⇒ G o H ∈ A, even if G = Z2.

(v) Any countable group embeds into a group in A.

(vi) Assume H < G is co-amenable. Then H ∈ A =⇒ G ∈ A.
However, G ∈ A Y=⇒ H ∈ A, even if G = H o Z.

(vii) G has Kazhdan’s property (T) =⇒ G /∈ A.

(viii) Let H / G be a normal subgroup that is not of finite exponent. If the pair
(H,G) has the relative property (T), then G /∈ A.

(ix) R. Thompson’s group F is in A; non-amenable Tarski monsters are not.

Remark 1.8. About (vi): A subgroup H < G is called co-amenable if the G-
action on X = G/H is amenable. Thus we could rephrase all questions about A
by studying groups G that admit some co-amenable subgroup H such that the
intersection of all conjugates of H is trivial. (See [10], [21], [26] for more on co-
amenability.)

Remark 1.9. The starting point of this note was our observation that one can
give a very short proof of van Douwen’s result that Z ∗ Z ∈ A: If σ is a transitive
permutation on some set X, then any generic choice (in Baire’s sense) of another
permutation τ defines a faithful transitive amenable action of a free group with
σ, τ as free generators. The idea that generic transformations generate a free group
has been used e.g. in [9],[8],[12],[2],[1]. Another simple proof of van Douwen’s
result was communicated to us by R.I. Grigorchuk, to appear [14]. Using generic
permutations, one can further establish that A is closed under free product.
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1.F. The organisation of this paper is as follows. Section 2 gathers basic facts
about amenable actions. Section 3 is concerned with the proof of Theorem 1.5,
which proceeds in two steps: We first establish G ∗ H ∈ A unless both G and H
have virtually (F) (Theorem 3.3). A different argument (Theorem 3.4) implies as a
corollary that the remaining case of Theorem 1.5 also holds true. Section 4 supplies
the proofs of the remaining statements and examples of this Introduction.

2. Generalities

2.A. A G-set is a countable set endowed with an action of the countable group
G; a G-map is a G-equivariant map between G-sets. Unless otherwise stated, G
itself is considered as a G-set under left multiplication. The group of bijections of
X is denoted by X!. By functoriality one has:

Lemma 2.1. Let X → Y be a G-map of G-sets. If the G-action on X is
amenable, then so is its action on Y . �

This shows notably that any action of an amenable group is amenable. In the
anti-functorial direction, one checks:

Lemma 2.2. Let X be a G-set with an invariant mean µ and let Y ⊆ X be a
G-invariant subset. If µ(Y ) 6= 0, then µ/µ(Y ) yields an invariant mean on Y . �

2.B. Recall that a subgroup H < G is co-amenable if the G-action on G/H
is amenable (e.g. if H has finite index in G). This is equivalent to the following
relative fixed point property (see [10]):

Every continuous affine G-action on a convex compact subset of a locally convex
space with an H-fixed point has a G-fixed point.

Applying this to the space of means on a G-set X, one deduces:

Lemma 2.3. Let X be a G-set and H a co-amenable subgroup. If the H-action
on X is amenable, then so is the G-action. �

2.C. Let H be a countable group, L < H a subgroup and Z an L-set. If Z were a
coset space Z = L/M for some subgroup M < L, one would obtain a related H-set
X by setting X = H/M . This construction can be generalized to the arbitrary
L-set Z as follows.

Definition 2.4. The induced H-set is the quotient X = L\(Z ×H) of Z ×H
by the diagonal L-action; the H-action on itself by right multiplication (by the
inverse elements) turns X into an H-set.

It is straightforward to verify the following.

Lemma 2.5. If the L-action on Z is faithful, transitive or free then the H-
action on X has the corresponding property. The converse holds for the latter two
properties but not for faithfulness. �
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Lemma 2.6. The H-action on X has a finite orbit if and only if L is of finite
index in H and has a finite orbit in Z.

Proof. Suppose that H has a finite orbit, that is, some finite index subgroup
H0 < H fixes a point in X. Let (z, h) be a representative in Z ×H for this point.
Thus, for every h0 ∈ H0 there is ` = `(h0) ∈ L such that (z, hh0) = (`z, `h). In
particular, `(h0) = hh0h

−1 and hence hH0h
−1 ⊆ L; moreover, hH0h

−1 fixes z.
Since hH0h

−1 has finite index in H, this shows at once that L has finite index in
H and that the L-orbit of z is finite.

The converse is straightforward and will not be used.

As for amenability, we have:

Lemma 2.7. Suppose that the L-action on Z is amenable. Then the H-action
on X is amenable if and only if L is co-amenable in H.

Remark 2.8. However, even if Z is of the form L/M for M normal in L, it can
happen that the H-action on X is amenable and L < H is a co-amenable whilst
the L-action on Z is not amenable; see [21], [26].

Remark 2.9. Combining the two last lemmata, we obtain the first claim of
Proposition 1.7(vi): A group containing a co-amenable subgroup in A is itself in A.

Proof of Lemma 2.7. The map Z → Z × {e} ⊆ Z × H descends to an L-map
Z → X. Therefore, by Lemma 2.1, the L-action on X is amenable. Thus, if L is
co-amenable in H, the H-action on X is amenable by Lemma 2.3. The converse
follows from Lemma 2.1 since there is a canonical H-map X → H/L.

Lemma 2.10. Suppose L C H is normal and co-amenable. Then L has prop-
erty (F) if and only if every amenable H-set has an L-fixed point.

Proof. Necessity is obvious. Conversely, let Z be an amenable L-set; L fixes a
point in the induced H-set X by Lemma 2.7. If this point is represented by (z, h)
in L\(Z ×H), then z is fixed by hLh−1 = L.

2.D. The following characterization originating in Følner’s work [11] is well-
known; see [28] for a proof.

Theorem 2.11. A G-action on a set X is amenable if and only if for any finite
subset S ⊆ G and any ε > 0 there exists a finite subset A ⊆ X such that

|A M sA| < ε|A| ∀s ∈ S.

We call such a set an (S, ε)-Følner set.

Remark 2.12. The above inequality is additive with respect to decomposing
A along the partition of X into G-orbits. Therefore, given S and ε, we can find an
(S, ε)-Følner set contained in a single G-orbit.
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Since we consider the case where G is countable, it follows from Theorem 2.11 that
the action is amenable if and only if there exists a sequence {An}∞n=1 of finite non-
empty sets An ⊆ X such that for every s ∈ G one has limn→∞ |An M sAn|/|An| = 0.

Definition 2.13. A sequence as above is called a Følner sequence for the G-
action on X.

Remark 2.14. It suffices to check limn→∞ |An M sAn|/|An| = 0 for all s in
some set generating G.

2.E. The next proposition provides a technical but useful characterization of the
virtual property (F).

Proposition 2.15. Let H be a countable group and assume that H does not
have virtually (F).

Then there exists an H-set Y and a Følner sequence {An}n∈N such that (i) each
An is contained in a single H-orbit Hyn ⊆ Y and (ii) the cardinality |Hyn| converges
to infinity in N ∪ {ℵ0}. Moreover we can assume that each H-orbit in Y contains
at most one set An.

Statement (ii) means that for all N ∈ N there are at most finitely many finite
orbits of size less than N amongst the Hyn.

Proof. Let H = {hn : n ∈ N} be an enumeration of H. We claim that for every
n ∈ N there is an H-set Yn and a finite subset An ⊆ Yn contained in a single
H-orbit Hyn ⊆ Yn such that

(1) ∀ i ≤ n : |An M hiAn| <
1
n
|An|, and (2) |Hyn| > n.

This implies the statement of the lemma upon considering Y =
⊔

n∈N Yn. Thus
we consider for a contradiction the smallest n ∈ N for which the claim fails. Then
every amenable G-set X has an orbit of size at most n. Indeed, by Theorem 2.11 X
contains a finite subset satisfying (1) and we can assume that it lies in a single H-
orbit by Remark 2.12; therefore (2) has to fail. Considering the special case where
X is a disjoint union of finite quotients of H, we conclude that H has a minimal
finite index subgroup L.

In order to obtain a contradiction, we shall now prove that L has property (F).
Let thus Z be any amenable L-set. Since the induced H-set X is amenable by
Lemma 2.7, it contains a finite H-orbit by the previous discussion. By Lemma 2.6,
Z has a finite L-orbit and hence a fixed point since L has no finite index proper
subgroup. This is the desired contradiction.

2.F. An idea of Kazhdan [17] yields:

Lemma 2.16. Let G be a countable group. If G is not finitely generated, then
G has an amenable action without finite orbits.

Proof. Let X be the disjoint union of all coset spaces G/H, where H ranges
over the family of finitely generated subgroups of G. Then X is a countable set with
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a natural G-action; there are no finite orbits since G is not finitely generated. For
any finite subset S ⊆ G, the trivial coset 〈S〉 in G/〈S〉 is fixed by every s ∈ S; thus,
the set A = {〈S〉} is an (S, ε)-Følner set for any ε > 0 and the action is amenable.

3. Amenable Actions of Free Products

3.A. We first explain why the restriction in Theorem 1.5 is an obvious obstruc-
tion; the rest of Section 3 will be devoted to prove that this is the only obstruction.

Lemma 3.1. Let G be a group with property (F) and H with virtually (F).
Then G ∗H has virtually (F).

In particular, such a group G ∗H cannot belong to the class A.

Proof of the lemma. Let H0 < H be a finite index subgroup with property (F);
since H0 is a minimal finite index subgroup, it is normal in H. We claim that
the kernel L of the canonical morphism G ∗ H → H/H0 has property (F). By
Lemma 2.10, it suffices to find a L-fixed point in any G∗H-set X with an invariant
mean µ. Fix coset representatives h1, . . . , hn ∈ H for H/H0. Let XG be the (non-
empty!) set of G-fixed points. By property (F), the G-action on X \ XG is not
amenable. Therefore, µ(X \XG) = 0; indeed, otherwise, Lemma 2.2 would yield a
G-invariant mean on X \XG. It follows that µ(XG) = 1 and likewise µ(XH0) = 1.
Since µ is invariant, we deduce further µ(h−1XG) = 1 for all h ∈ H. Therefore, the
set

XH0 ∩
n⋂

i=1

h−1
i XG

has mean one and hence is non-empty. For any x in this set, the H-orbit Hx =
{h1x, . . . , hnx} is G-fixed and therefore consists of L-fixed points.

The above proof also shows:

Lemma 3.2. If G and H have property (F), then so does G ∗H. �

3.B. We now establish a result slightly weaker than Theorem 1.5:

Theorem 3.3. Let G, H be any countable groups. Then G∗H ∈ A unless both
G and H have virtually (F).

Proof. We can assume that H does not have virtually (F). Let Y be an H-set
as in Proposition 2.15. Let G = D t R be a partition of G into two infinite sets.
We can index the H-orbits of Y by R and write Y =

⊔
g∈R Yg. We endow the set

X = H t Y with the natural H-action. Given any injective map β : G → X we
obtain a G-action on X as follows: We transport by β the action of G on itself to
the corresponding G-action on β(G) and G acts trivially on X \ β(G). Denote by
Gβ < X! the resulting subgroup; since H acts faithfully on X we can consider it
as a subgroup H < X! and thus by universality we have a canonical epimorphism
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G ∗ H → 〈Gβ ,H〉. We shall show that for a suitable choice of β the resulting
G ∗H-action on X is faithful, transitive and amenable.

We shall only consider maps β such that β(D) ⊆ H and β(R) ⊆ Y . We start
by determining β on R. Let {An}n∈N be a sequence of subsets of Y as in Proposi-
tion 2.15. For each g ∈ R we make any choice β(g) ∈ Yg. Since Yg meets (and then
contains) at most one An, we can require that β(g) /∈ An for any n ∈ N unless
An = Yg. This choice together with Proposition 2.15(ii) ensures

lim
n→∞

|An ∩ β(G)|
|An|

= 0.

Therefore, the sequence {An}n∈N is a Følner sequence for the G-action on X no
matter how we define β|D : D → H. It follows (Remark 2.14) that the G∗H-action
on X is amenable. On the other hand, this action is transitive regardless of the
definition of β|D since the G-orbit β(G) meets every H-orbit.

It remains to show that the action is faithful upon suitably determining β on
D. We will refer to elements of G ∗ H written in their reduced canonical form as
words. With a customary abuse of notation, a (non-trivial) word is of the form
w = hngn . . . h2g2h1g1 where only g1 and hn are allowed to be trivial. Since there
are only countably many words, it is enough to prove the following claim: For any
w and any finite set E ⊆ D on which β is already determined, we can prescribe β
on a finite set E′ ⊆ D such that (i) E ∩E′ = ∅ and β|EtE′ is injective, (ii) for any
injection β|D : D → H extending β|E′ , there is x0 ∈ β(E′) with wx0 6= x0 (hence
w is not in the kernel of G ∗H → 〈Gβ ,H〉).

In order to prove the claim, we assume for definiteness that g1, hn 6= e (the other
cases are similar). We use indices 1 ≤ i ≤ n and 0 ≤ j ≤ n. Since H is infinite, we
can pick x0, yi ∈ H such that all the 2n + 1 elements x0, yi, hiyi, are distinct and
not in β(E). Further we pick dj ∈ D such that all the 2n + 1 elements dj , gidi−1

are distinct and not in E. We set E′ = {dj , gidi−1} and define xi = hiyi. The
prescriptions β(dj) = xj , β(gidi−1) = yi extend β injectively; moreover wx0 = xn

is indeed different from x0. This proves the claim and thus concludes the proof.

3.C. Another ingredient for Theorem 1.5 is:

Theorem 3.4. Let G, H be countable groups and assume that G ∗ H has
a transitive amenable action admitting a Følner sequence {An}n∈N with |An|
unbounded. Then G ∗H ∈ A.

Corollary 3.5. Let G and H be finitely generated countable groups both
admitting a finite index proper subgroup. Then G ∗H ∈ A.

Proof of the corollary. Let G0 � G and H0 � H be finite index subgroups; we
can assume that they are normal. The free product of the quotients L = (G/G0) ∗
(H/H0) admits a (non-trivial, finitely generated) free subgroup F < L of finite
index (see e.g. [29]). If F has rank one it is amenable and hence in A. Otherwise F
is of the form Z ∗ . . . ∗Z and hence is also in A by Theorem 3.3 (or already by van
Douwen’s result). Since F is of finite index in L, it is in particular co-amenable and
therefore L is also in A by Remark 2.9. We thus have a transitive amenable action
G ∗H → L → X! and need only show it satisfies the assumption of Theorem 3.4.
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If not, there would be a Følner sequence {An}n∈N of cardinality bounded by some
N ∈ N. Let S be a finite set generating G ∗ H. In particular, since some An is a
(S, ε)-Følner set for ε < 1/N we obtain a non-empty finite G ∗H-invariant subset
An ⊆ X, which is impossible since X is countable and the action transitive.

Proof of Theorem 3.4. Let Y be a G∗H-set as in the assumption and choose any
y0 ∈ Y . Fix two non-trivial elements g0 ∈ G, h0 ∈ H and consider the transitive
G ∗H-set Z = (G ∗H)/〈g0h0〉; let z0 ∈ Z be the trivial coset 〈g0h0〉. It follows e.g.
from elementary Bass-Serre theory [29] that (i) z0 6= h0z0 = g−1

0 z0 and (ii) any
non-trivial w ∈ G ∗ H fixes at most one point in Z. The latter property can be
verified as follows. If w has fixed points, we can assume upon conjugating that one
of them is z0 and hence w = (g0h0)n for some non-zero n ∈ Z. Now any w-fixed
point u〈g0h0〉 satisfies (g0h0)nu〈g0h0〉 = u〈g0h0〉. By uniqueness of the normal form
for free products (and n 6= 0), u is in 〈g0h0〉 and hence determines the same fixed
point.

We set now X = Y tZ and endow it with the corresponding action G∗H → X!.
Consider the permutation σ ∈ X! that transposes (y0, z0) and is trivial otherwise.
We claim that the new G ∗ H-action obtained by conjugating H by σ is faithful,
transitive and amenable. To be more precise, we consider the original G-action on
X and the new H-action given by (h, x) 7→ hσx = σ−1hσx (note σ−1 = σ). This
yields a new G∗H-action by the universality of free products; by abuse of notation
we denote this action by (w, x) 7→ wσx for w ∈ G ∗H.

Amenability. Upon passing to a subsequence, we can assume |An| → ∞. But
for any s ∈ G ∗H there are only finitely many points for which the new action is
different from the original one, so that we still have limn→∞ |An M sAn|/|An| = 0.

Transitivity. We claim that every point lies in the orbit of y0 and will use (i)
above. First pick any y ∈ Y , y 6= y0. Let w ∈ G ∗ H be the shortest word such
that wy0 = y in the original action; w exists since G ∗H → Y ! is transitive. If the
rightmost letter of w is in G, then wσy0 = wy = y (because the “trail” of y0 under
all non-empty right prefixes of wσ avoids y0 by minimality of w). Otherwise, the
rightmost letter of w is some h ∈ H with hy0 6= y0. But then hy0 = hσg0h

σ
0y0 and

thus replacing h with hg0h0 yields a new word v with vσy0 = y.
Now pick any z ∈ Z. If z = z0 we attain it since z0 = g0h

σ
0y0. Otherwise, let w be

the shortest word such that wz0 = z in the original action. If the rightmost letter
of w is in G, then again wσz0 = wz0 = z and hence z = (wg0h0)σy0. Otherwise
this letter is some h ∈ H, in which case wσy0 = z since hσy0 = hz0 6= z0.

Faithfulness. Let w ∈ G ∗H be any non-trivial word. In view of (ii) above, there
is some z ∈ Z such that in the original action not only wz 6= z but also the “trail”
of z under all right prefixes of w avoids z0. Therefore wσz = wz 6= z and the action
is faithful.

3.D. We are now ready to finish the

Proof of Theorem 1.5. In view of Theorem 3.3, we can assume without loss of
generality that both G and H have finite index subgroups G0 � G and H0 � H with
the fixed point property (F). By Lemma 2.16, a non-finitely-generated countable
group cannot have virtually (F). Therefore, both G and H are finitely generated
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and we conclude from Corollary 3.5 that G ∗H ∈ A in this case too. The converse
was established as Lemma 3.1.

Proof of Corollary 1.6. Keep the notation of the corollary. If n = ∞, then
H = ∗∞i=2Gi is not finitely generated and in particular by Lemma 2.16 does not
virtually have (F). Thus we can apply Theorem 1.5 and conclude that G = G1 ∗H
is in A.

Assume now n 6= ∞. If all Gi with 1 < i ≤ n have property (F) and G1 virtually
has (F), then Lemma 3.1 and Lemma 3.2 show that G = G1 ∗ (G2 ∗ . . . ∗ Gn) has
virtually (F). If not, we can assume upon reordering that either (i) both G1 and
G2 fail to have property (F) or (ii) G1 does not virtually have (F). In case (i),
G2 ∗ . . . ∗Gn also fails to have property (F) and hence G = G1 ∗ (G2 ∗ . . . ∗Gn) is
in A by Theorem 1.5. In case (ii) Theorem 1.5 implies G ∈ A as well.

4. Remaining proofs

4.A. In this section, all Roman numerals refer to the properties listed in Proposi-
tion 1.7. Point (i) follows by definition. Point (iii) follows from Theorem 1.5. For (ii),
let G → X! and H → Y ! be faithful transitive amenable actions. Then the G×H-
action on X × Y is faithful and transitive. If An ⊆ X and Bn ⊆ Y form Følner
sequences, then An × Bn yields a Følner sequence for the product. Conversely, let
G × H → X! be amenable, transitive and faithful. Since H permutes transitively
the G-orbits, it follows that X, as a G-set, is isomorphic to X0 × X1, where X0

is any G-orbit in X and X1 = G\X with trivial G-action. The G-action on X0

is faithful, transitive and amenable by Lemma 2.1 since there is a (non-canonical)
G-map X → X0.

The first part of (vi) has already been recorded in Remark 2.9. For the second
part, let Q be any group and consider G = H n Z where H =

⊕
Z Q denotes

the direct sum (=restricted product) and Z acts on it by shift. It was observed
in [21] that the subgroup K =

⊕
N Q is co-amenable in G. On the other hand, the

G-action on X = G/K is faithful and transitive; thus G ∈ A. Since H ∼= Q ×H,
it is enough now by (ii) to chose for Q any group not in A (e.g. using Lemma 4.2
below).

4.B. For the sake of our discussion, it is convenient to introduce the following.

Definition 4.1. Let B be the class of all countable groups admitting some
amenable action on a countable set without finite orbits.

Whilst B contains A, it is much wider; notice for instance that any group with
a quotient in B is itself in B. Moreover (Lemma 2.16), Kazhdan’s observation [17]
shows that any countable group that is not finitely generated is in B. For example,
let G =

⊕∞
n=1 Gn, where Gn are any countable groups with G1 /∈ A; then G /∈ A

by (ii) but G ∈ B.
A group in B cannot have virtually (F); however, the class of groups to which The-

orem 1.5 applies is yet much wider than B, since it contains notably every countable
group without a minimal finite index subgroup (e.g. SL3(Z)). In summary:

A $ B $
{

not virtually (F)
}
.
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4.C. Another well known criterion for amenability is that the G-action on X
is amenable if and only if the associated unitary representation on `2(X) almost
has invariant vectors in the sense of Kazhdan [17]; see also [19] for this notion,
Kazhdan’s property (T) and the Kazhdan-Margulis relative property (T).

Since `2-functions have finite level-sets, it follows:

Lemma 4.2. Every amenable action of a group with Kazhdan’s property (T) has
a finite orbit. In particular, any Kazhdan group without non-trivial finite quotients
has property (F). �

Thus a Kazhdan group can never be in B and (vii) follows.
Notice that the second statement of Lemma 4.2 applies in particular to infinite

simple Kazhdan groups; we point out that such groups do indeed exist, as follows
from the work of Gromov [15] and Ol′shanskĭı [23] on quotients of hyperbolic groups
(see [24] for precise references).

There exist however groups with property (F) that are not Kazhdan groups;
indeed, property (F) is stable under free product (Lemma 3.2) whilst a (non-
trivial) free product is never a Kazhdan group [19]. Since property (F) passes to
quotients, we remark further that any group generated by finitely many subgroups
with property (F) still enjoys this property. (See also Lemma 4.5 below.)

4.D. Point (viii) follows from an argument similar to (vii):

Lemma 4.3. Let H / G be a normal subgroup of G ∈ A. If the pair (H,G) has
the relative property (T), then H has finite exponent.

Proof. Let G → X! be a faithful transitive amenable action. Since G almost
has invariant vectors in `2(X), the relative property (T) implies that H fixes a
non-zero vector in `2(X). Therefore H preserves a non-empty finite set in F ⊆ X.
Since H is normal in G and G acts transitively, it follows that X has a partition
into G-translates gF of F and that this partition is preserved by H. Therefore we
have a natural morphism H →

∏
gH∈G/H(gF )!. Since the G-action is faithful, this

morphism is injective and thus realizes H as a subgroup of a group of exponent
|F |!.

Now (iv) also follows: Since SL2(Z) is virtually free, it is in A by (vi); the group
Z2 is in A since it is amenable. On the other hand, the natural semi-direct product
Z2 o SL2(Z) is not in A since it has the relative property (T) (see [19]). This is
yet another example of a group in B \ A, since its quotient SL2(Z) is in A.

4.E. At this point we have a number of alternative proofs of (v): Any countable
group Q embeds into some G ∈ A. For instance, take G = Q ∗ Z, or G = ∗∞n=1Q
(by Corollary 1.6), or the group G = H o Z with H =

⊕
Z Q considered earlier.

(See also [14].)
We also notice that a group in A can be the increasing union of groups with

property (F): Indeed, let {Qn} be a family of groups with property (F) and G =
∗∞n=1Qn. Then G is in A by Corollary 1.6, but it is the increasing union over k of
(the canonical images of) ∗k

n=1Qn, each of which has property (F) by Lemma 3.2
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4.F. It is unknown whether R. Thompson’s group F is amenable or not. This
group is defined in detail in [7]; all we need to know here is that it satisfies the
assumptions of the following:

Lemma 4.4. Let F be a group of orientation-preserving piecewise linear home-
omorphisms of the interval (0, 1). If the derived subgroup F ′ has a dense orbit, then
F ′ and F are in A.

Proof. Let X = F ′x be such an orbit and notice that F ′ acts faithfully on X.
Choose a sequence {xn} in X converging to 0. Let µ be a limit point of the sequence
of point-measures δxn in the space of means on X. Then µ is F ′-invariant because
for every g ∈ F ′ there is ε > 0 such that g is trivial on (0, ε) (this is where we use
the assumptions on F ). Therefore F ′ ∈ A and thus F ∈ A by (vi).

4.G. A Tarski monster is a non-cyclic group such that all its proper subgroups
are cyclic. Ol′shanskĭı constructed various Tarski monsters and then proved that
his groups are non-amenable [22]. Therefore the following applies to them:

Lemma 4.5. Let G be a non-amenable group such that all its proper subgroups
are amenable. Then G has property (F).

Proof. Suppose for a contradiction that G has an amenable action on the
countable set X without fixed points. We will obtain a contradiction by constructing
an (S, ε)-Følner set in G for any finite set S ⊆ G and any ε > 0. To this end, choose
an orbit G/L ⊆ X containing an (S, ε/2)-Følner set A ⊆ G/L, as granted by
Theorem 2.11 and Remark 2.12. Fix a section σ : G/L → G of the natural map
G → G/L. By our assumptions, L is amenable. Thus there is a (T, ε/2)-Følner
set B ⊆ L for T = {σ(sgL)−1sσ(gL) : s ∈ S, gL ∈ A} ⊆ L. One verifies that
{σ(gL)` : gL ∈ A, ` ∈ B} is an (S, ε)-Følner set in G.

4.H. To appreciate the strength of property (F), it is interesting to reformulate
it without reference to invariant means:

A group G has property (F) if and only if any G-action on any set admits a
paradoxical decomposition of its non-fixed points.

More precisely, let X be any G-set. There is of course nothing to say about the
subset XG ⊆ X of fixed points, on which G acts trivially. The above condition
states that its complement admits a decomposition

X \XG = A1 t . . . tAn tB1 t . . . tBm

such that two other partitions are given by

X \XG = g1A1 t . . . t gnAn, X \XG = h1B1 t . . . t hmBm

for some gi, hj ∈ G. The equivalence with property (F) follows readily from Tarski’s
theorem, see [25, 3.15 p. 120].

4.I. Finally we propose a problem: What can be said about amenable actions of
the Hilbert modular group Γ = SL2(Z[

√
2]) ? In particular, does Γ belong to any

of the classes considered in this note?
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More generally, let Γ be a lattice in a product G = G1 × G2 of locally compact
groups and assume that both projections Γ → Gi have dense image. Are there
natural conditions on the groups Gi that imply Γ ∈ A or Γ /∈ A ? (Not desired
here are conditions so coarse as to apply to any lattice in G, such as a product of
lattices Γi < Gi.)

In another direction, are there interesting amenable actions of lattices in SO(n, 1)
or in SU(n, 1) ?

To remain closer to the present note, one could ask when free products with
amalgamations and HNN-extensions belong to A. The very interesting examples
of amalgamated products of free groups constructed in [5], [6] arise as lattices
Γ < G1 ×G2 as above.
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