Title: Local Beilinson-Tate Operators

Speaker: Amnon Yekutieli (Ben Gurion Univ.)

Abstract: In 1968 Tate introduced a new approach to residues on algebraic curves, based on a certain ring of operators that acts on the completion at a point of the function field of the curve. This approach was generalized to higher dimensional algebraic varieties by Beilinson in 1980. However Beilinson's paper had very few details, and his operator-theoretic construction remained cryptic for many years. Currently there is a renewed interest in the Beilinson-Tate approach to residues in higher dimensions (by Braunling, Wolfson and others). This current work also involves n-dimensional Tate spaces and is related to chiral algebras.

In this talk I will discuss my recent paper arXiv:1406.6502, with same title as the talk. I introduce a variant of Beilinson's operator-theoretic construction. I consider an n-dimensional topological local field (TLF) K, and define a ring of operators E(K) that acts on K, which I call the ring of local Beilinson-Tate operators. My definition is of an analytic nature (as opposed to the original geometric definition of Beilinson). I study various properties of the ring E(K).

In particular I show that E(K) has an n-dimensional cubical decomposition, and this gives rise to a residue functional in the style of Beilinson-Tate. I conjecture that this residue functional coincides with the residue functional that I had constructed in 1992 (itself an improved version of the residue functional of Parshin-Lomadze).

Another conjecture is that when the TLF K arises as the Beilinson completion of an algebraic variety along a maximal chain of points, then the ring of operators E(K) that I construct, with its cubical decomposition (the depends only on the TLF structure of K), coincides with the cubically decomposed ring of operators that Beilinson constructed in his original paper (and depends on the geometric input).

In the talk I will recall the necessary background material on semi-topological rings, high dimensional TLFs, the TLF residue functional and the Beilinson completion operation (all taken from Asterisque 208).

Notes are available here


(Jan 2015)