The seminar meets on Tuesdays, 11:00-12:00, in 201

This Week

Idan Perl (BGU)

Harmonic functions on locally compact groups

Spaces of harmonic functions on a given group have a strong relationship with its large-scale geometry. Classically, mostly bounded harmonic functions have been studied. We review some results about bounded harmonic functions and present the recent research on spaces of unbounded harmonic functions.

Spring 2018 meetings

Upcoming Meetings

May 22 Harmonic functions on locally compact groups Idan Perl (BGU)

Spaces of harmonic functions on a given group have a strong relationship with its large-scale geometry. Classically, mostly bounded harmonic functions have been studied. We review some results about bounded harmonic functions and present the recent research on spaces of unbounded harmonic functions.

Jun 5 Equidistribution of Iwasawa components of lattices and asymptotic properties of primitive points Tal Horesh (IHES)

I will discuss the equidistribution of certain parameters of primitive integral points in Euclidean space, as their norms tend to infinity. These parameters include directions of integral points on the unit sphere, the integral grids in their orthogonal hyperplanes, and the shortest solutions to their associated gcd equations. These equidistribution statements follow from counting lattice points in the real Special Linear group.

Jun 12 TBA Yotam Smilansky

Past Meetings

Mar 20 On pointwise periodicity and expansiveness Tom Meyerovitch (BGU)

Following Kaul, a discrete (topological) group G of transformations of set X is pointwise periodic if the stabilizer of every point is of finite index (co-compact) in G. Equivalently, all G-orbits are finite (compact). Generalizing a result of Montgomery, Kaul showed in the early 70’s that a pointwise periodic transformation group is always compact when the group acts (faithfully) on a connected manifold without boundary. I will discuss implications of expansiveness and pointwise periodicity of certain groups and semigroups of transformations. In particular I’ll state implications for cellular automata and for planner tilings. Based on joint work with Ville Salo.

Mar 27, 11:10–12:00 Derivative Algebras and Topological Conjugacies Between Cellular Automata Jeremias Epperlein (BGU)

Topologial conjugacy is most probably the most natural notion of isomorphism for topological dynamical systems. Classifying subshifts of finite type up to topological conjugacy is a notoriously hard problem with a long history of results. Much less is known about the corresponding problem for endomorphisms of subshifts of finite type (aka cellular automata). I will discuss necessary and sufficient criteria under which periodic cellular automata are topologically conjugate. The main tool will be derivative algebras in the sense of Tarski and McKinsey, an algebraic structure based on the Cantor-Bendixson derivative.

Apr 10 Discontinuity of the phase transition for the planar random-cluster and Potts models with q > 4 Matan Harel (Tel Aviv University)

The random-cluster model is a dependent percolation model where the weight of a configuration is proportional to q to the power of the number of connected components. It is highly related to the ferromagnetic q-Potts model, where every vertex is assigned one of q colors, and monochromatic neighbors are encouraged. Through non-rigorous means, Baxter showed that the phase transition is first-order whenever q > 4 - i.e. there are multiple Gibbs measures at criticality. We provide a rigorous proof of this claim. Like Baxter, our proof uses the correspondence between the above models and the six-vertex model, which we analyze using the Bethe ansatz and transfer matrix techniques. We also prove Baxter’s formula for the correlation length of the models at criticality. This is joint work with Hugo Duminil-Copin, Maxime Gangebin, Ioan Manolescu, and Vincent Tassion.

Apr 17 Irreducibility of random polynomials Gady Kozma (Weizmann Institute)

Examine a polynomial with random, independent coefficients, uniform between 1 and 210. We show that it is irreducible over the integers with probability going to one as the degree goes to infinity. Joint work with Lior Bary-Soroker.

Apr 24 A power-law upper bound on the decay of correlations in the two-dimensional random-field Ising model Ron Peled (Tel Aviv University)

The random-field Ising model (RFIM) is a standard model for a disordered magnetic system, obtained by placing the standard ferromagnetic Ising model in a random external magnetic field. Imry-Ma (1975) predicted, and Aizenman-Wehr (1989) proved, that the two-dimensional RFIM has a unique Gibbs state at any positive intensity of the random field and at all temperatures. Thus, the addition of an arbitrarily weak random field suffices to destroy the famed phase transition of the two-dimensional Ising model. We study quantitative features of this phenomenon, bounding the decay rate of the effect of boundary conditions on the magnetization in fi nite systems. This is known to decay exponentially fast for a strong random fi eld. The main new result is a power-law upper bound which is valid at all field strengths and at all temperatures, including zero. Our analysis proceeds through a streamlined and quantified version of the Aizenman-Wehr proof. Several open problems will be mentioned. Joint work with Michael Aizenman.

Mon, Apr 30, In -101 Good lower bounds for multiple recurrence Sebastián Donoso (Universidad de O’Higgins)

In 2005, Bergelson, Host and Kra showed that if $(X,\mu,T)$ is an ergodic measure preserving system and $A\subset X$, then for every $\epsilon>0$ there exists a syndetic set of $n\in\mathbb{N}$ such that $\mu(A\cap T^{-n}A\cap\dots\cap T^{-kn}A)>\mu^{k+1}(A)-\epsilon$ for $k\leq3$, extending Khintchine’s theorem. This phenomenon is called multiple recurrence with good lower bounds. Good lower bounds for certain polynomial expressions was studied by Frantzikinakis but several questions remain open. In this talk I will survey this topic, and present some progress regarding polynomial expressions, commuting transformations, and configurations involving the prime numbers. This is work in progress with Joel Moreira, Ahn Le and Wenbo Sun.

May 1 Limit theorems for a counting process with extendable dead time (Type II counter) Chen Dubi (BGU)

Measuring occurrence times of random events, aimed to determine the statistical properties of the governing stochastic process, is a basic topic in science and engineering, and has been the topic of numerous mathematical modeling techniques. Often, the true statistical properties of the random process deviate from the measured properties due to the so called “dead time” phenomenon, defined as a time period after a reaction in which the detection system is not operational. From a mathematical point of view, the dead time can be interpreted as a rarefied series of the original time series, obtained by removing all events which are within the dead time period inflicted by previous events.

When the waiting times between consecutive events form a series of independent identically distributed random variables, a natural setting for analyzing the distribution of the number of event- or the event counter- is a renewal process. In particular, for high rate measurements (or, equivalently, large measurement time), the limit distribution of the counter is well understood, and can be described directly through the first two moments of the waiting time between consecutive events.

In the talk we will discuss limit theorems for counters with paralyzing dead time (type II counter), expressed directly through the probability density function of the waiting time between consecutive events. This is done by writing explicit formulas for the for the first and second moments of a waiting time distribution between consecutive events in the rarefied process, in terms of the probability density function of the waiting of the original process.

May 8 The t-adic Littlewood conjecture is false Erez Nesharim (University of York)

The Littlewood and the p-adic Littlewood conjectures are famous open problems on the border between number theory and dynamics. In a joint work with Faustin Adiceam and Fred Lunnon we show that the analogue of the p-adic Littlewood conjecture over $F_3((1/t))$ is false. The counterexample is given by the Laurent series whose coefficients are the regular paper folding sequence, and the method of proof is by reduction to the non vanishing of certain Hankel determinants. The proof is computer assisted and it uses substitution tilings of $Z^2$ and a generalisation of Dodson’s condensation algorithm for computing the determinant of any Hankel matrix.