Spring 2018 term
Mar 5Jun 22, 2018 Exam Period Ends: October 12, 2018
Courses
Undergraduate Courses
 Complex numbers. Analytic functions, Cauchy–Riemann equations.
 Conformal mappings, Mobius transformations.
 Integration. Cauchy Theorem. Cauchy integral formula. Zeroes, poles, Taylor series, Laurent series. Residue calculus.
 The theorems of Weierstrass and of MittagLeffler. Entire functions. Normal families.
 Riemann Mapping Theorem. Harmonic functions, Dirichlet problem.
Coding Theory investigates errordetection and errorcorrection. Such errors can occur in various communication channels: satellite communication, cellular telephones, CDs and DVDs, barcode reading at the supermarket, etc. A mathematical analysis of the notions of error detection and correction leads to deep combinatorial problems, which can be sometimes solved using techniques ranging from linear algebra and ring theory to algebraic geometry and number theory. These techniques are in fact used in the abovementioned communication technologies.
Topics
 The main problem of Coding Theory
 Bounds on codes
 Finite fields
 Linear codes
 Perfect codes
 Cyclic codes
 Sphere packing
 Asymptotic bounds
Bibliography:
R. Hill, A First Course in Coding Theory, Clarendon Press, Oxford 1986
Graphs and subgraphs, trees, connectivity, Euler tours, Hamilton cycles, matching, vertex and edge colorings, planar graphs, introduction to Ramsey theory, directed graphs, probabilistic methods and linear algebra tools in Graph Theory.
 Fields: basic properties and examples, the characteristic, prime fields
 Polynomials: irreducibility, the Eisenstein criterion, Gauss’s lemma
 Extensions of fields: the tower property, algebraic and transcendental extensions, adjoining an element to a field
 Ruler and compass constructions
 Algebraic closures: existence and uniqueness
 Splitting fields
 Galois extensions: automorphisms, normality, separability, fixed fields, Galois groups, the fundamental theorem of Galois theory.
 Cyclic extensions
 Solving polynomial equations by radicals: the Galois group of a polynomial, the discriminant, the CardanoTartaglia method, solvable groups, Galois theorem
 Roots of unity: cyclotomic fields, the cyclotomic polynomials and their irreducibility
 Finite fields: existence and uniqueness, Galois groups over finite fields, primitive elements
 Cesaro means: Convolutions, positive summability kernels and Fejer’s theorem.
 Applications of Fejer’s theorem: the Weierstrass approximation theorem for polynomials, Weyl’s equidistribution theorem, construction of a nowhere differentiable function (time permitting).
 Pointwise and uniform convergence and divergence of partial sums: the Dirichlet kernel and its properties, construction of a continuous function with divergent Fourier series, the Dini test.
 approximations. Parseval’s formula. Absolute convergence of Fourier series of functions. Time permitting, the isoperimetric problem or other applications.
 Applications to partial differential equations. The heat and wave equation on the circle and on the interval. The Poisson kernel and the Laplace equation on the disk.
 Fourier series of linear functionals on . The notion of a distribution on the circle.
 Time permitting: positive definite sequences and Herglotz’s theorem.
 The Fourier transform: convolutions, the inversion formula, Plancherel’s theorem, Hermite functions. Time permitting: tempered distributions, further applications to differential equations.
 Fourier analysis on finite cyclic groups, and the Fast Fourier Transform algorithm.
Topological spaces and continuous functions (product topology, quotient topology, metric topology). Connectedness and Compactness. Countabilty Axioms and Separation Axioms (the Urysohn lemma, the Urysohn metrization theorem, Partition of unity). The Tychonoff theorem and the StoneCech compactification. Metrization theorems and paracompactness.
Graduate Courses
The course is intended for 3rd year undergraduate as well as M.Sc and Ph.D. students both in computer science and mathematics. We will touch main topics in the area of discrete geometry. Some of the topics are motivated by the analysis of algorithms in computational geometry, wireless and sensor networks. Some other beautiful and elegant tools are proved to be powerful in seemingly nonrelated areas such as additive number theory or hard Erdos problems. The course does not require any special background except for basic linear algebra, and a little of probability and combinatorics. During the course many open research problems will be presented.
Detailed Syllabus:
 Fundamental theorems and basic definitions: Convex sets, convex combinations, separation , Helly’s theorem, fractional Helly, Radon’s theorem, Caratheodory’s theorem, centerpoint theorem. Tverberg’s theorem. Planar graphs. Koebe’s Theorem. A geometric proof of the LiptonTarjan separator theorem for planar graphs.
 Geometric graphs: the crossing lemma. Application of crossing lemma to Erdos problems: Incidences between points and lines and points and unit circles. Repeated distance problem, distinct distances problem. Selection lemmas for points inside discs, points inside simplexes. Counting ksets. An application of incidences to additive number theory.
 Coloring and hiting problems for geometric hypergraphs : VCdimension, Transversals and Epsilonnets. Weak epsnets for convex sets. Conflictfree colorings .
 Arrangements : Davenport Schinzel sequences and sub structures in arrangements. Geometric permutations.
 Geometric Ramsey and Turan type theorems: Application of Dilworth theorem, ErdosSzekeres theorem for convex sets, quasiplanar graphs.
Course Topics:
 Categories and functors: natural transformations, equivalence, adjoint functors, additive functors, exactness.
 Derived functors: projective, injective and flat modules; resolutions, the functors and ; examples and applications.
 Nonabelian cohomology and its applications.

Permutation representation and the Sylow theorems.

Representations of groups on groups, solvable groups, nilpotent groups, semidirect and central products.

Permutation groups, the symmetric and alternating groups.

The generalized Fitting subgroup of a finite group.

groups.

Extension of groups: The first and second cohomology and applications.
Vector Bundles in Geometry and Analysis Pdf 201.2.5051
Prof. Eitan Sayag Wed 17:0019:00, Math 201
 vector bundles and Kgroups of topological spaces
 Bott’s Periodicity theorem and applications to division algebras
 Index of Fredholm operators and Ktheory
 If time permits: smooth manifolds, DeRham cohomology, Chern classes, Elliptic operators, formulation of AtiyahSinger index theorem, relations to GaussBonnet theorem
 Affine algebraic sets and varieties.
 Local properties of plane curves.
 Projective varieties and projective plane curves.
 Riemann–Roch theorem.
This course deals with random walks, harmonic functions, the relations between these notions, and their applications to geometry and algebra (mainly to finitely generated groups).
The modern point of view will be presented, following recent texts by: Gromov, Kleiner, Ozawa, Shalom & Tao, among others.
Introduction to Model Theory Pdf 201.2.0091
Dr. Moshe Kamensky ימי רביעי, 8:00–10:00
We will present some basic notions and constructions from model theory, motivated by concrete questions about structures and their theories. Notions we expect to cover include:
 Types and spaces of types
 Homogeneous and saturated models
 Quantifier elimination and model companions
 Elimination of imaginaries
 Definable groups and fields
Prerequisites
Students should be familiar with the following concepts from logic: Languages, structures, formulas, theories, the compactness theorem. In addition, some familiarity with field theory, topology and probability will be beneficial.
Notes
 Courses marked with (*) are required for admission to the M.Sc. program in Mathematics.
 The M.Sc. degree requires the successful completion of at least 2 courses marked (#). See the graduate program for details
 The graduate courses are open to strong undergraduate students who have a grade average of 85 or above and who have obtained permission from the instructors and the head of the teaching committee.
 Please see the detailed undergraduate and graduate programs for the for details on the requirments and possibilities for complete the degree.