Boaz Slomka (Weizmann Institute)

Tuesday, December 4, 2018, 13:00 – 14:00, Math -101

Please Note the Unusual Time!


A long-standing open problem, known as Hadwiger’s covering problem, asks what is the smallest natural number N(n) such that every convex body in $R^n$ can be covered by a union of the interiors of at most N(n) of its translates. Despite continuous efforts, the best general upper bound known for this number remains as it was more than sixty years ago, of the order of $\binom{2n}{n}n\ln n$.

In this talk, I will discuss some history of this problem and present a new result in which we improve this bound by a sub-exponential factor. Our approach combines ideas from previous work, with tools from Asymptotic Geometric Analysis. Namely, we make use of measure concentration in the form of thin-shell estimates for isotropic log-concave measures.

If time permits we shall discuss some other methods and results concerning this problem and its relatives.

Joint work with H. Huang, B. Vritsiou, and T. Tkocz