Ariel Weiss (BGU)

Wednesday, November 3, 2021, 16:00 – 17:15, -101

Abstract:

Very little is known about the Tate-Shafarevich groups of abelian varieties. On the one hand, the BSD conjecture predicts that they are finite. On the other hand, heuristics suggest that, for each prime $p$, a positive proportion of elliptic curves $E/\mathbb{Q}$ have $\Sha(E)[p] \ne 0$, and one expects something similar for higher dimensional abelian varieties as well. Yet, despite these expectations, it seems to be an open question whether, for each prime $p$, there exists even a single elliptic curve over $\mathbb{Q}$ with $\Sha(E)[p] \ne 0$. In this talk, I will show that, for each prime $p$, there exists a geometrically simple abelian variety $A/\mathbb{Q}$ with $\Sha(A)[p]\ne 0$. Our examples arise from modular forms with Eisenstein congruences. This is joint work with Ari Shnidman.