גל בן איון

יום שלישי, 22 באפריל, 2025, 18:00 – 19:30, אולם 101-, בניין מתמטיקה

תקציר:

נניח שיש לנו סדרת אופרטורים חיוביים $T_n$ על $C([0,1])$. האם אפשר להבטיח שהתכנסות במידה שווה לכל פונקציה רציפה נובעת רק מבדיקת מספר קטן של פונקציות ”מבחן“? בשנת 1953 הוכיח קורובקין תשובה מפתיעה—כן! מספיק לבדוק את ההתכנסות על שלוש פונקציות פשוטות כדי להשליך על כולן. בהמשך, ססקין הרחיב את הרעיון הזה למרחבים כלליים יותר, וחיבר אותו למבנה הגיאומטרי של שפת שוקה.

בהרצאה נצלול אל הרעיונות המרכזיים מאחורי המשפטים הללו, נראה כיצד הם מספקים הוכחות אלגנטיות למשפטי הקירוב של ויירשטראס ופייר, ונבין מדוע התוצאות האלה הרבה יותר חזקות ממה שנדמה במבט ראשון. אם הזמן יאפשר, נרחיב את הדיון להכללות מתקדמות ולכיווני מחקר עכשוויים, כולל הקשרים ל-hyperrigidity במצב הקומוטטיבי.

ההרצאה מתאימה לשנה ב‘ ומעלה.