# Differential Calculus for EE

### Course topics

- Real numbers. Supremum and Infimum of a set. 2. Convergent sequences, subsequences, Cauchy sequences. The Bolzano-Weierstrass theorem. Limit superior and limit inferior. 3. Series. Partial sums, convergent and divergent series, Cauchy criterion. Series of non-negative terms. The root and the ratio tests. Conditional and absolute convergence. The Leibnitz test for series with alternating signs. Rearrangements of series (without proof) 4. The limit of a function. Continuous functions. Continuity of the elementary functions. Properties of functions continuous on a closed interval: boundedness and attainment of extrema. Uniform continuity, Cantor?s theorem. 5. The derivative of a function. Mean value theorems. Derivatives of higher order. L’Hospital’s rule. Taylor’s theorem. Lagrange remainder formula.

### Course Information

- University course catalogue:
- 201.1.9671
- Level:
- Service
- Credits:
- 5.0

##### Recently Given

- 2022–23–B (Prof. Arkady Leiderman)
- 2022–23–A (Dr. Michael Brandenbursky)
- 2021–22–B
- 2021–22–A (Dr. Michael Brandenbursky)
- 2020–21–B
- 2020–21–A (Dr. Michael Brandenbursky)
- 2019–20–B
- 2019–20–A
- 2018–19–B
- 2018–19–A (Dr. Michael Brandenbursky)

###### Departments

- Physics
- Faculty - Engineering
- Faculty - Natural sciences
- Brain and Cognitive Sciences
- Biomedical engineering
- Electrical engineering
- Communication systems engineering