Integral Calculus and Ordinary Differential Equations for EE

Course topics

The Riemann integral: Riemann sums, the fundamental theorem of calculus and the indefinite integral. Methods for computing integrals: integration by parts, substitution, partial fractions. Improper integrals and application to series. 2. Uniform and pointwise convergence. Cauchy criterion and the Weierstrass M-test. Power series. Taylor series. 3. First order ODE’s: initial value problem, local uniqueness and existence theorem. Explicit solutions: linear, separable and homogeneous equations, Bernoulli equations. 4. Systems of ODE’s. Uniqueness and existence (without proof). Homogeneous systems of linear ODE’s with constant coefficients. 5. Higher order ODE’s: uniqueness and existence theorem (without proof), basic theory. The method of undetermined coefficients for inhomogeneous second order linear equations with constant coefficients. The harmonic oscillator and/or RLC circuits. If time permits: variation of parameters, Wronskian theory.