2018–19–A

Ms. Tamar Pundik

Time and Place

יום א 12:00 - 09:00 במנדל [14] חדר 004

Course Content

  1. Classification of linear Partial Differential Equations of order 2, canonical form.
  2. Fourier series (definition, Fourier theorem, odd and even periodic extensions, derivative, uniform convergence).
  3. Examples: Heat equation (Dirichlet’s and Newman’s problems), Wave equation (mixed type problem), Potential equation on a rectangle.
  4. Superposition of solutions, non-homogeneous equation.
  5. Infinite and semi-infinite Heat equation: Fourier integral, Green’s function. Duhamel’s principle.
  6. Infinite and semi-infinite Wave equation: D’Alembert’s solution.
  7. Potential equation on the disc: Poisson’s formula and solution as series.

University course catalogue: 201.1.9591

Students' Issues

Class Representative
אושר גואטה
Aguda Representative
רכזת סיוע אקדמי - הנדסה ב’ ומכינות - נופר שלוש
Staff Observers