הסמינר מתכנס בימי שלישי, בשעות 14:30-15:30, באולם -101

השבוע


Yaron Ostrover (Tel Aviv University)

The Toda Lattice, Parallelohedra, and Symplectic Balls

In this talk, we explain how the classical Toda lattice model, one of the earliest examples of nonlinear completely integrable systems, can be used to demonstrate that certain configurations in the classical phase space are symplectic balls in disguise. No background in symplectic geometry is needed. The talk is based on joint work with Vinicius Ramos and Daniele Sepe.


מפגשים בסמסטר 24–2023–ב

המפגשים הבאים

תאריך
כותרת
מרצה
תקציר
28 במאי The Toda Lattice, Parallelohedra, and Symplectic Balls Yaron Ostrover (Tel Aviv University)

In this talk, we explain how the classical Toda lattice model, one of the earliest examples of nonlinear completely integrable systems, can be used to demonstrate that certain configurations in the classical phase space are symplectic balls in disguise. No background in symplectic geometry is needed. The talk is based on joint work with Vinicius Ramos and Daniele Sepe.

18 ביוני TBA Misha Verbitsky (IMPA)

TBA

25 ביוני TBA Nir Lazarovich (Technion)

TBA

המפגשים הקודמים

תאריך
כותרת
מרצה
תקציר
7 במאי תב“ה Faculty meeting
21 במאי Sign patterns of the Mobius function Tamar Ziegler (HUJI)

The Mobius function is one of the most important arithmetic functions. There is a vague yet well known principle regarding its randomness properties called the “Mobius randomness law“. It basically states that the Mobius function should be orthogonal to any ”structured“ sequence. P. Sarnak suggested a far reaching conjecture as a possible formalization of this principle. He conjectured that ”structured sequences“ should correspond to sequences arising from deterministic dynamical systems. I will describe progress in recent years towards these conjectures building on major advances in ergodic theory, additive combinatorics, and analytic number theory.

סמינר מאורגן על-ידי פרופ‘ מיכאל ברנדנבורסקי