24 בפבר-21 ביוני, 2019 מבחנים מסתיימים: 2 באוגוסט, 2019

קורסים

הפולינום האופייני והפולינום המינימלי של מטריצה ושל טרנספורמציה, מרחבי מכפלה פנימית, טרנספורמציות במרחבי מכפלה פנימית, תבניות ביליניאריות.

מרחבים טופולוגיים ופונקציות רציפות (מרחבי מכפלה, מרחבי מנה ומרחבים מטריים). קשירות וקומפקטיות. תנאי מניה והפרדה (הלמה של אוריסון, משפט המטריזציה של אוריסון, חלוקת קטע היחידה). משפט טיכונוף וקומפקטיפיקציית סטון-צ‘ך. משפטי מטריזציה ופרה-קומפקטיות.

  • ממוצעי צ‘זרו: קונבוליציות, גרעיני סומביליות חיוביים ומשפט פייר.
  • שימושים של משפט פייר: משפט הקירוב של ויירשטראס עבור פולינומים, משפט ההתפלגות במידה אחידה של וייל, בניה של פונקציה רציפה שאיננה גזירה בשום מקום (ככל שיתיר הזמן).
  • התכנסות והתבדרות נקודתית ובמידה שווה של הסכומים החלקיים: גרעין דיריכלה ותכונותיו, בניה של פונקציה רציפה עם טור פורייה מתבדר, בוחן דיני.
  • קירובים בנורמת המכפלה הפנימית. נוסחת פרסבל. התכנסות בהחלט של טורי פורייה של פונקציות גזירות ברציפות. ככל שיתיר הזמן, הבעיה האיזופרימטרית או שימושים שונים.
  • שימושים למשוואות דיפרנציאליות חלקיות. משוואות החום והגלים במעגל ובקטע. גרעיו פואסון ומשוואת לפלס במעגל.
  • טורי פורייה של פוקציונלים לינאריים על מרחב הפונקציות הגזירות ברציפות כמה פעמים. מושג הדיסטריבוציה על המעגל.
  • אם יתיר הזמן, סדרות מוגדרות חיובית ומשפט הרגלוץ.
  • טרנספורם פורייה על הישר: קונבולוציות, נוסחת ההיפוך, משפט פלנשרל, פונקציות הרמיט. אם יתיר הזמן, דיסטריבוציות על הישר, ושימושים למשוואות דיפרנציאליות חלקיות.
  • אנליזת פורייה על חבורות ציקליות סופיות, ואלגוריתם טרנספורם פורייה מהיר.
  • מספרים מרוכבים. פונצקיות אנליטיות, משוואות קושי-רימן.
  • העתקות קונפורמיות, טרנספורמציות מוביוס.
  • אינטגרציה. משפט קושי. נוסחת קושי. אפסים, קטבים, פיתוח טיילור, פיתוח לורן. חשבון השאריות.
  • משפט ויירשטרס ומשפט מיטג-לפלר. פונקציות שלמות. משפחות נורמליות.
  • משפט ההעתקה של רימן. פונקציות הרמוניות, בעיית דיריכלה.

גרפים ותת גרפים, עצים, קשירות, מסלולי אוילר, מעגלים המילטוניים, זיווגים, צביעות של גרפים, גרפים מישוריים, מבוא לתורת רמזי, גרפים מכוונים, שיטות הסתברותיות ואלגבריות בתורת הגרפים.

  • שדות: עובדות בסיסיות ודוגמאות, אפיון (קרקטריסטיקה), שדות ראשוניים
  • פולינומים: פריקות, מבחן איזנשטיין, למת גאוס
  • הרחבות של שדות: תכונת המגדל, הרחבות אלגבריות וטרנסצנדנטיות, צרוף אבר לשדה
  • בניות בסרגל ומחוגה
  • סגורים אלגבריים: קיום ויחידות
  • שדות פיצול
  • הרחבות גלואה: אוטומורפיזמים, נורמליות, ספרביליות, שדות שבת, חבורות גלואה, המשפט היסודי של תורת גלואה
  • הרחבות ציקליות
  • פתרון משואות פולינומיאליות על-ידי רדיקלים: חבורת גלואה של פולינום, הדיסקרמיננטה, נוסחאת קרנדו-טרטגליאה, חבורות פתירות, משפט גלואה אודות פתירות על-ידי רדיקלים
  • שרשי יחידה: הרחבות ציקלוטומיות, הפולינומים הציקלוטומיים ואי-פריקותם
  • שדות סופיים: קיום ויחידות, חבורות גלואה מעל שדות סופיים, אברים פרמיטיביים

חוגים ואידאלים. מודולים. סדרות מדוייקות. מכפלה טנזורית של מודולים. חוגים נטרים ומודולים מעליהם. משפט הבסיס של הילברט. מודולים נוצרים סופית מעל תחום אדאלים ראשיים. משפט האפסים של הלברט. יריעות אפיניות. אדאלים ראשונים ולוקליזציה. פרוק הפרימרי. חוגי הערכה בדידה.

הגדרות שונות לגרף מרחיב, אי שיוויון Cheeger-Buser, למת הערבוב, משפט אלון-בופנה, קיום של גרפים מרחיבים (הוכחה לא קונסטרוקטיבית), שימושים של גרפים מרחיבים לקודים מתקני שגיאות, חבורות – מושגי יסוד (פעולות, גרף קיילי, תת חבורה נורמלית, הצגות יוניטריות), הגרפים המרחיבים של מרגוליס, תכונת (T) של קשדן – הגדרה, תכונות הורשה, קשר לגרפים מרחיבים, בניות נוספות.

  • משפט השיקוף
  • משפט המיטוט של Mostowski
  • מוחלטות של נוסחאות
  • עולם הקבוצות הניתנות לבניה
  • כפיה
  • עקביות שלילת השערת הרצף
  • עקביות שלילת אכסיומת הבחירה
  1. מבנים אלגבריים יסודיים: חוגים, מודולים, אלגבראות, המרכז, אימפוטנטים, חוגי חבורה.

  2. חוגים עם חילוק: הקוטרניונים של המילטון, אלגבראות קוטרניונים מוכללות, אלגבראות חילוק מעל , , , (משפטי Frobenius ו-Wedderburn), אלגבראות ציקליות, משפט Brauer-Cartan-Hua.

  3. פשטות ופשטות למחצה: פשטות של מבנים אלגבריים, מודולים פשוטים למחצה, חוגים פשוטים למחצה, משפט Maschke

  4. תורת Wedderburn-Artin: הומומורפיזמים וסכומים ישרים, הלמה של Schur, משפט המבנה של Wedderburn-Artin, חוגים ארטיניים

  5. מבוא להצגות של חבורות: הצגות ואפיינים, הצגות ותורת Wedderburn-Artin , יחסי האורתוגונליות, מימדי הצגות אי-פריקות, משפט Burnside.

  6. מכפלות טנזוריות: מכפלות טנזוריות של מודולים ואלגבראות, הרחבות סקלריות, אינדקס Schur, פשטות ומרכז של מכפלות טנזוריות, חבורת Brauer, משפט Skolem-Noether, משפט הממרכז הכפול, שדות מירביים באלגבריות, נורמה ועקבה מצומצמות, מכפלות משולבות.

  1. משפחות פונקציות נורמליות והעתקות רציונליות.
  2. קבוצות ג‘וליה ופאטו.
  3. תכונות של קבוצת ג‘וליה.
  4. מבנה של קבוצת פאטו.
  5. נקודות מחזוריות.
  6. רכיבים שמורים.
  7. משפט סאליבן.
  8. פונקציות מתחלפות וצמודות למחצה.
  9. מבוא לדינמיקה אריתמטית.
  1. אלומות (sheaves) על מרחבים טופולוגיים.
  2. סכמות אפיניות (affine schemes).
  3. סכמות ומורפיזמים ביניהן.
  4. אלומות קוואזי-קוהרנטיות.
  5. מורפיזמים מופרדים (separated) ומורפיזמים נאותים (proper).
  6. אגדים וקטוריים (vector bundles) וחבורת פיקאר (Picard) של סכמה.
  7. פונקטור הנקודות (functor of points) ומרחבי מודולים (moduli spaces).
  8. מורפיזמים למרחב הפרוייקטיבי ופיצוצים (blow-ups).
  9. מורפיזמים חלקים (smooth morphisms) ותבניות דיפרנציאליות (differential forms).
  10. קוהומולוגיה של אלומות (sheaf cohomology).
  11. סכמות חבורה (group schemes).

הערות

  • קורסים המסומנים ב-(*) מהווים דרישת קדם לרישום לתאר מוסמך
  • קורסים המסומנים ב-(#) הינם קורסי חובה אפשריים למוסמך, בתחומים המתאימים, כמתואר בתכנית הלימודים למוסמך. לפחות שניים כאלה, מתחומים שונים, נדרשים לעמידה בדרישות התואר.
  • קורסים לתארים מתקדמים פתוחים גם בפני תלמידי בוגר חזקים, להם ציון ממוצע של 85 ומעלה, ואשר ניתן להם אישור של המרצים בקורם ושל ראש ועדת ההוראה
  • אנא עיינו בתכניות הלימודים המלאות לתואר בוגר ולתארים מתקדמים למידע על הדרישות והאפשרויות המלאות.