Csaba Toth (CSUN)

Tuesday, January 15, 2019, 10:45 – 11:45, -101

Please Note the Unusual Time!

Abstract:

Given a planar straight-line graph $G=(V,E)$ in $\mathbb{R}^2$, a circumscribing polygon of $G$ is a simple polygon $P$ whose vertex set is $V$, and every edge in $E$ is either an edge or an internal diagonal of $P$. A circumscribing polygon is a \emph{polygonization} for $G$ if every edge in $E$ is an edge of $P$.

We prove that every arrangement of $n$ disjoint line segments in the plane (i.e., a geometric perfect matching) has a subset of size $\Omega(\sqrt{n})$ that admits a circumscribing polygon, which is the first improvement on this bound in 20 years. We explore relations between circumscribing polygons and other problems in combinatorial geometry, and generalizations to $\mathbb{R}^3$.

We show that it is NP-complete to decide whether a given graph $G$ admits a circumscribing polygon, even if $G$ is 2-regular. Settling a 30-year old conjecture by Rappaport, we also show that it is NP-complete to determine whether a geometric matching admits a polygonization. (Joint work with Hugo A. Akitaya, Matias Korman, Mikhail Rudoy, and Diane L. Souvaine.)