נושאי לימוד

  1. פונקציות בעלות ערכים מרוכבים, האקספוננט המרוכב. טורי פורייה של פונקציות מחזוריות ורציפות למקוטעין. פעולות בסיסיות והשפעתן על מקדמי פורייה: הסטה, מודולוציה, קונבולוציה, נגזרת.
  2. התכנסות במידה שווה: ממוצעי צ‘זרו, גרעיני דיריכלה ופייר, משפט פייר. משפט הקירוב של ויירשטראס לפולינומים טריגונומטריים ולפולינומים. יחידות של מקדמי פורייה. הלמה של רימן-לבג. בעיית המומנטים של האוסדורף. התכנסות של סכומים חלקיים וטורי פורייה עבור פונקציות גזירות פעמיים ברציפות.
  3. התכנסות נקודתית: קריטריון דיני. התכנסות בנקודות קפיצה ותופעת גיבס.
  4. תורת $L^2$: סדרות אורתונורמליות ובסיסים אורתונורמליים. הקירוב הטוב ביותר, אי-שוויון בסל, שוויון פרסבל והתכנסות בנורמת $L^2$.
  5. שימושים למשוואות דיפרנציאליות חלקיות: משוואות החום והגלים בקטע עם תנאי שפה קבועים. בעיית דיריכלה עבור משוואת לפלס בדיסק, גרעין פואסון.

חובה להירשם במקביל לקורס 201.1.9631

פרטי קורס

גרף תלויות

ניתן לגרור את הקודקודים, לחיצה כפולה למידע נוסף