23–2022–ב
פרופ' בוריס זלצמן
שעה ומקום:
יום ד 16:00 - 14:00 in בנין 90 (מקיף ז‘) [90] חדר 326
נושאי לימוד
- משוואות לינאריות מסדר שני בשני משתנים: מיון במקרה של מקדמים קבועים ומשתנים, קווים אופייניים, צורות קאנוניות.
- תורת שטורם-ליוביל.
- משוואת הגלים. תנאי התחלה ותנאי שפה (קצוות קבועים וחופשיים). שיטת ד‘אלמבר למיתר אינסופי. קווים אופייניים. בעיות גלים למיתר חצי-אינסופי וסופי. פתרון בעייה של מיתר באורך סופי עם תנאי שפה לקצוות קבועים וחופשיים בשיטת הפרדת המשתנים. הוכחת יחידות בשיטת האנרגיה. מוצגות היטב של משוואת הגלים
- משוואות לפלס ופואסון. עקרון המקסימום. מוצגות הטיב של בעיית דיריכלה. משוואת לפלס במלבן. משוואות לפלס במעגל ונוסחת פואסון. בעיה שאיננה מוצגת היטב: בעיית קושי. יחידות של הפתרון של בעיית דיריכלה. נוסחת גרין במישור ושימוש לבעיות נוימן.
- משוואת החום. שיטת הפרדת המשתנים לבעית החום החד-מימדית. עקרון המקסימום. יחידות עבור בעיית החום החד-מימדית. בעיית קושי למשוואת החום. פונקציית גרין במימד אחד. אם יתיר הזמן: פונקציית גרין בשני משתנים.
- משוואת החום הלא הומוגנית, משוואת פואסון במעגל ומשוואת הגלים הלא הומוגנית.
- אם יתיר הזמן: ויברציות חופשיות בממברנות מעגליות. משוואות בסל.