17–2016–א

מבנים אלגבריים
Pdf 201.1.7031 4.0 נק"ז

ד"ר ישי דן-כהן

יום ב 13:00 - 11:00 בקרייטמן-זלוטובסקי(חדש) [34] חדר 14
יום ה 12:00 - 10:00 בבנין 90 (מקיף ז‘) [90] חדר 134

  • חבורה כסמטריה. דוגמאות: חבורות ציקליות, דיהדרלית, סמטריות. חבורות מטריצות.
  • הומומורפיזם. תת חבורות ותת חבורות נורמליות. חבורות מנה. משפט לגרנז‘. משפטי האיזומורפיזם. מכפלה ישרה של חבורות.
  • פעולה של חבורה על קבוצה. משפט קיילי.
  • אוטומורפיזמים של חבורות.
  • משפטי סילו ומיון חבורות מסדר נמוך.
  • סדרת הרכב ומשפט ז‘ורדן-הולדר. חבורות פתירות.
  • מיון חבורות חילופיות נוצרות סופית.
  • חבורה סימטרית וסידרת הרכב שלה.
  • חוגים. אידאלים ראשוניים ומקסימליים. תחום שלמות. חוג מנה. משפטי הומומורפיזם.
  • אלגברה מולטילינארית: מרחבי מנה. מכפלה טנזורית של מרחבים וקטוריים. פעולה על חבורה סמטרית על חזקות טנזוריות. אלגברה סימטרית ואלגברה חיצונית. תבניות מולטילינאריות ודטרמיננטה.
  • נושאי רשות: חבורות סימטריות של פאונים משוכללים. חבורות חופשיות. מכפלה חצי-ישרה. תורת ההצגות של חבורות סופיות.

חשבון אינפיניטסימלי 3(!)
Pdf 201.1.0031 6.0 נק"ז

יום ד 13:00 - 11:00 בגוטמן [32] חדר 114
יום א 11:00 - 09:00 בגוטמן [32] חדר 114
יום ב 14:00 - 13:00 בגוטמן [32] חדר 206

  • מושגי יסוד בטופולוגיה של מרחבים מטריים: קבוצות סגורות ופתוחות, קשירות, קומפקטיות, שלמות.
  • מרחבים נורמיים ומרחבי מכפלה פנימית. כל הנורמות על $\mathbb{R}^n$ שקולות.
  • משפט על קיום ויחידות של נקודת שבת להעתקת כווץ במרחב מטרי שלם.
  • העתקות בין מרחבים אוקלידיים. נגזרת חלקית. גרדיאנט. כלל השרשרת. פיתוח טיילור בכמה משתנים.
  • משפט ההעתקה הפתוחה ומשפט הפונקציות הסתומות. כופלי לגרנז‘. בעיות מינימום ומקסימום.
  • אינטגרל רימן. קבוצות בעלות מידה אפס. תנאי האינטגרביליות של לבג. תכולה לפי ז‘ורדאן.
  • משפט פוביני. היעקוביאן ונוסחת חילוף המשתנה.
  • אינטרגלים מסילתיים. תבניות סגורות ומדויקות. משפט גרין.
  • אם יתיר הזמן, אינטרגלים משטחיים ומשפטי סטוקס וגאוס.

משוואות דיפרנציאליות רגילות(!)
Pdf 201.1.0061 5.0 נק"ז

פרופ' ויקטור ויניקוב

יום א 16:00 - 14:00 בגוטמן [32] חדר 114
יום ג 14:00 - 12:00 בצוקר, גולדשטיין-גורן [72] חדר 123

משוואות דיפרנציאליות רגילות מסדר ראשון, משפטי קיום ויחידות, משוואות ליניאריות מסדר N, ורונסקיאן, שדות וקטוריים, משוואות אוטונומיות, מערכות משוואות ליניאריות מסדר ראשון, מערכות משוואות לא-ליניאריות ויציבות.משוואות דיפרנציאליות רגילות מסדר ראשון, משפטי קיום ויחידות, משוואות ליניאריות מסדר N, ורונסקיאן, שדות וקטוריים, משוואות אוטונומיות, מערכות משוואות ליניאריות מסדר ראשון, מערכות משוואות לא-ליניאריות ויציבות.

יסודות תורת המידה(*)
Pdf 201.1.0081 4.0 נק"ז

פרופ' תם מאירוביץ

יום א 14:00 - 12:00 בבנין 90 (מקיף ז‘) [90] חדר 237
יום ה 14:00 - 12:00 בבנין 90 (מקיף ז‘) [90] חדר 243

סיגמא-אלגבראות, משפט הרחבת המידה ומידת לבג על הישר, מרחבי מידה כלליים, פונקציות מדידות, תורת האינטגרציה, משפטי התכנסות (משפט אגורוב, התכנסות במידה, כמעט תמיד ובנורמות $L_p$), משפט לוזין, מרחבי $L_p$, מידות במרחבי מכפלה ומשפט פוביני, מידות מסומנות ומרוכבות ופירוק האן, משפט רדון ניקודים ושימושים, גזירה, נושאים נוספים ככל שיתיר הזמן.

לוגיקה
Pdf 201.1.6061 4.0 נק"ז

פרופ' אסף חסון

יום ב 16:00 - 14:00 בבנין 90 (מקיף ז‘) [90] חדר 136
יום ג 12:00 - 10:00 בגוטמן [32] חדר 114

מערכת אקסיומות לתחשיב הפרדיקטים. משפט השלמות ומשפט הקומפקטיות. מבוא לתורת המודלים: משפטי סקולם-לוונהים ותתי מבנים אלמנטריים. כריעות ואי-כריעות של תורות. משפט אי השלמות הראשון של גדל.

תורת הגרפים
Pdf 201.1.6081 4.0 נק"ז

פרופ' שחר סמורודינסקי

יום ב 16:00 - 14:00 בצוקר, גולדשטיין-גורן [72] חדר 115
יום ג 12:00 - 10:00 בגולדברגר [28] חדר 301

גרפים ותת גרפים, עצים, קשירות, מסלולי אוילר, מעגלים המילטוניים, זיווגים, צביעות של גרפים, גרפים מישוריים, מבוא לתורת רמזי, גרפים מכוונים, שיטות הסתברותיות ואלגבריות בתורת הגרפים.

הסתברות
Pdf 201.1.8001 4.0 נק"ז

פרופ' אריאל ידין

יום ב 11:00 - 09:00 ב- [90] חדר 238
יום ד 11:00 - 09:00 בגולדברגר [28] חדר 203

מבוא למושגים הבסיסיים של תורת ההסתברות:

מרחבי הסתברות גבולות של מאורעות ורציפות של הסתברות הסתברות מותנה אי-תלות של מאורעות סיגמה-אלגבראות, מרחבים רציפים, ומידת לבג משתנים מקריים והתפלגויות אי-תלות התפלגויות משותפות והתפלגויות מותנות תוחלת שונות ושונות משותפת התכנסות של משתנים מקריים: כמעט-תמיד, Lp, בהסתברות חוק המספרים הגדולים התכנסות בהתפלגות משפט הגבול המרכזי

תורת המספרים
Pdf 201.1.6031 4.0 נק"ז

פרופ' איתן סייג

יום ב 18:00 - 16:00 בגוטמן [32] חדר 108
יום ד 18:00 - 16:00 בבנין 90 (מקיף ז‘) [90] חדר 239

  • חלוקה ופריקות יחידה ב-$\mathbb{Z}$.
  • מספרים ראשוניים.
  • קונגרואציה.
  • שאריות רבועיות.
  • שרשים פרמיטיביים.
  • שברים משולבים.
  • מספרים אלגבריים וקרובים דיאופנטיים
  • יסודות תורת המספרים האלגברית
  • יריעות טופולוגיות. חבורה יסודית ומרחבי כיסוי. שימושים.
  • הומולוגיה סינגולרית ושימושים.
  • יריעות גזירות. תבניות דיפרנציאליות ומשפט Stokes. הגדרת קוהומולגית de Rham
  • נושאים נוספים אם ישאר זמן

חבורות לי

יום ב 18:00 - 15:00 בגרוסמן/ דייכמן [58] חדר 101

  1. חזרה על יריעות גזירות, הגדרה של חבורות לי. מנות בקטיגוריה של חבורות לי, מרחבים הומוגניים, מידת האר, רכיבי קשירות.

  2. חבורות אלגבריות, חבורות מטריצות, החבורות הקלאסיות.

  3. אלגבראות לי והקשר לחבורות לי.

  4. חבורות לי ואלגבראות לי נילפוטנטיות, פתירות ופשוטות למחצה. משפט לי, משפט אנגל, פירוק לוי.

  5. תבנית קילינג קרטן.

  6. הצגות של אלגברת לי מעל המספרים המרוכבים.

  7. משקלות ושורשים, מערכות שורשים, דיאגרמות דינקין, מיון של אלגבראות לי פשוטות למחצה מרוכבות.

אנליזה P אדית

פרופ' איתן סייג

Mon 14:00–16:00
Wed 12:00–13:00
Wed 14:00–15:00

  1. אריתמטיקה של $\mathbb{Q}_p$: סכומים ומכפלות, שורשים רבועיים, שורשים של פולינומים.
  2. תורת מספרים אלגברית של $\mathbb{Q}_p$: הרחבות סופיות, סגור אלגברי, השלמה של סגור אלגברי, ניסוח של תורת שדות המחלקות.
  3. טופולגיה של $\mathbb{Q}_p$: תכונות טופולוגיות אלמנטריות, מודלים אוקלידיים של $\mathbb{Z}_p$.
  4. אנליזה על $\mathbb{Q}_p$: התכנסות של סדרות וטורים, רדיוס התכנסות, מרחב הפונקציות הקבועות מקומית.
  5. אנליזה הרמונית על $\mathbb{Q}_p$: קרקטרים, מידת האר, אינטגרציה, טרנספורם פורייה.
  6. חוג האדלים כאובייקט המאחד את השדות $\mathbb{Q}_p$ לכל $p$: תכונות טופולוגיות, אינטגרציה וטרנספורם פורייה, נוסחת הסכימה של פואסון.
  7. התזה של טייט.

רשימת הנושאים:

  1. חזרה על החומר משני הסמסטרים הקודמים (הקורסים קטגוריות נגזרות I ו- II).

  2. קטגוריות נגזרות באלגברה קומוטטיבית: קומפלקסים דואליזנטיים, הדואליות המקומית של גרותנדיק, שקילות MGM, קומפלקסים דואליזנטיית קשיחים.

  3. קטגוריות נגזרות בגיאומטריה אלגברית: פונקטורי התמונה הישרה וההפוכה,דואליות גרותנדיק גלובלית, שימושים לגיאומטריה בירציונלית (סקירה), קוהומולגיה $l$-אדית ודואליות פואנקרה-ו‘רדייה (סקירה), אלומות פרו‘רטיות (סקירה).

  4. קטגוריות נגזרות בתורת החוגים הלא-קומוטטיביים: קומפלקסים דואליזנטיים, קומפלקסים מסיטים, תורת מוריטה נגזרת.

  5. גיאומטריה אלגברית נגזרת: קטגוריות נגזרות לא-אבליות (סקירה), אינסוף-קטגוריות (סקירה), ערמות אלגבריות נגזרות (סקירה), שימושים (סקירה).

מרחבי בנך ומרחבי הילברט. תכונות בסיסיות של מרחבי הילברט. מרחבים וקטורים טופולוגיים. משפט בנך-שטיינהאוס (עקרון החסימות במידה שווה), משפט ההעתקה הפתוחה ומשפט הגרף הסגור. משפט האן-בנך. דואליות. מידות על מרחבים קומפקטיים מקומית, המרחב הדואלי של $C(X)$. טופולוגיות חלשות וחלשות-$*$, משפט בנך-אלאוגלו. קמירות ומשפט קריין-מילמן. משפט סטון-ויירשטראס. אופרטורים קומפקטיים על מרחב הילברט. מבוא לאלגבראות בנך ולתורת גלפנד. נושאים נוספים ככל שיתיר הזמן.

17–2016–ב

  • ממוצעי צ‘זרו: קונבוליציות, גרעיני סומביליות חיוביים ומשפט פייר.
  • שימושים של משפט פייר: משפט הקירוב של ויירשטראס עבור פולינומים, משפט ההתפלגות במידה אחידה של וייל, בניה של פונקציה רציפה שאיננה גזירה בשום מקום (ככל שיתיר הזמן).
  • התכנסות והתבדרות נקודתית ובמידה שווה של הסכומים החלקיים: גרעין דיריכלה ותכונותיו, בניה של פונקציה רציפה עם טור פורייה מתבדר, בוחן דיני.
  • קירובים בנורמת המכפלה הפנימית. נוסחת פרסבל. התכנסות בהחלט של טורי פורייה של פונקציות גזירות ברציפות. ככל שיתיר הזמן, הבעיה האיזופרימטרית או שימושים שונים.
  • שימושים למשוואות דיפרנציאליות חלקיות. משוואות החום והגלים במעגל ובקטע. גרעיו פואסון ומשוואת לפלס במעגל.
  • טורי פורייה של פוקציונלים לינאריים על מרחב הפונקציות הגזירות ברציפות כמה פעמים. מושג הדיסטריבוציה על המעגל.
  • אם יתיר הזמן, סדרות מוגדרות חיובית ומשפט הרגלוץ.
  • טרנספורם פורייה על הישר: קונבולוציות, נוסחת ההיפוך, משפט פלנשרל, פונקציות הרמיט. אם יתיר הזמן, דיסטריבוציות על הישר, ושימושים למשוואות דיפרנציאליות חלקיות.
  • אנליזת פורייה על חבורות ציקליות סופיות, ואלגוריתם טרנספורם פורייה מהיר.
  • שדות: עובדות בסיסיות ודוגמאות, אפיון (קרקטריסטיקה), שדות ראשוניים
  • פולינומים: פריקות, מבחן איזנשטיין, למת גאוס
  • הרחבות של שדות: תכונת המגדל, הרחבות אלגבריות וטרנסצנדנטיות, צרוף אבר לשדה
  • בניות בסרגל ומחוגה
  • סגורים אלגבריים: קיום ויחידות
  • שדות פיצול
  • הרחבות גלואה: אוטומורפיזמים, נורמליות, ספרביליות, שדות שבת, חבורות גלואה, המשפט היסודי של תורת גלואה
  • הרחבות ציקליות
  • פתרון משואות פולינומיאליות על-ידי רדיקלים: חבורת גלואה של פולינום, הדיסקרמיננטה, נוסחאת קרנדו-טרטגליאה, חבורות פתירות, משפט גלואה אודות פתירות על-ידי רדיקלים
  • שרשי יחידה: הרחבות ציקלוטומיות, הפולינומים הציקלוטומיים ואי-פריקותם
  • שדות סופיים: קיום ויחידות, חבורות גלואה מעל שדות סופיים, אברים פרמיטיביים

מבוא לטופולוגיה
Pdf 201.1.0091 4.0 נק"ז

ד"ר יזהר אופנהיים

יום א 11:00 - 09:00 בבנין 90 (מקיף ז‘) [90] חדר 223
יום ה 16:00 - 14:00 בבנין 90 (מקיף ז‘) [90] חדר 141

מרחבים טופולוגיים ופונקציות רציפות (מרחבי מכפלה, מרחבי מנה ומרחבים מטריים). קשירות וקומפקטיות. תנאי מניה והפרדה (הלמה של אוריסון, משפט המטריזציה של אוריסון, חלוקת קטע היחידה). משפט טיכונוף וקומפקטיפיקציית סטון-צ‘ך. משפטי מטריזציה ופרה-קומפקטיות.

תורת הפונקציות המרוכבות
Pdf 201.1.0251 4.0 נק"ז

פרופ' ארקדי פוליאקובסקי

יום א 16:00 - 14:00 בבנין 90 (מקיף ז‘) [90] חדר 224
יום ד 10:00 - 08:00 בבנין 90 (מקיף ז‘) [90] חדר 224

  • מספרים מרוכבים. פונצקיות אנליטיות, משוואות קושי-רימן.
  • העתקות קונפורמיות, טרנספורמציות מוביוס.
  • אינטגרציה. משפט קושי. נוסחת קושי. אפסים, קטבים, פיתוח טיילור, פיתוח לורן. חשבון השאריות.
  • משפט ויירשטרס ומשפט מיטג-לפלר. פונקציות שלמות. משפחות נורמליות.
  • משפט ההעתקה של רימן. פונקציות הרמוניות, בעיית דיריכלה.

גיאומטריה דיפרנציאלית
Pdf 201.1.0051 4.0 נק"ז

ד"ר מיכאל ברנדנבורסקי

יום א 14:00 - 12:00 בקרייטמן-זלוטובסקי(חדש) [34] חדר 2
יום ג 12:00 - 10:00 בבנין 90 (מקיף ז‘) [90] חדר 234

  1. גיאומטריה של עקומים: פרמטריזציות, אורך קשת, עקמומיות ופיתול, משואות פרנה, תכונות גלובליות של עקומים במישור.
  2. גיאומטריה חיצונית של משטחים: פרמטריזציות, המישור המשיק, דיפרנציאלים, התבנית היסודית הראשונה והשנייה, עקומים על משטחים, עקמומיות גיאודזית ונורמלית.
  3. משואות דיפרנציאליות ללא קוארדינטות: שדות כיוונים,שדות וקטוריים, זרימות, שדות מסגרות, ומשפט פרובניוס. נקודות שבת ונקודות סינגולריות במד“ר.
  4. גיאומטריה פנימות וחיצונית של משטחים: מסגרות, נגזרות קווורינטיות, קישורים, עקמומיות גאוסית, משוואות גאוס וקודזי-מינרדי.
  5. גיאומטריה של גיאודזים: ההעתקה האקספוננציאלית, גיאודזים בקוארדינוטות קטביות, תכיונת של גיאדזים, שדות יעקובי, סביבות קמורות.
  6. תכונות גלובליות של משטחים: משפט גאוס-בונה ו- משפט הופף-פואנקרה

תורת הסינגולריות

פרופ' דמיטרי קרנר

יום א 12:00 - 10:00 בגוטמן [32] חדר 113
יום ה 17:00 - 16:00 בקרייטמן-זלוטובסקי(חדש) [34] חדר 16

  1. סקירת מבוא ודוגמאות בסיסיות. נקודות קיצון מנוונות של פונקציות. נקודות סינגולריות של עקומות.
  2. פונקציות הולומורפיות ומשפט הכנה של ויירשטרס. חוג מקומי ונבט של קבוצה/פונקציה.
  3. נקודת קיצון של פונקציה. דפורמציה ומורסיפיקציה. נבטים ה“מוגדרים-סופית“.
  4. מיון של סינגולריות פשוטות. אינווריאנטים בסיסיים של נקודה סינגולרית. סינגולריות של עקום מישורי. פיצול לענפים ופיתוח של פיויזו.
  5. לפי הזמן שיישאר ורצון של הקבוצה נתמקד באחד הנושאים הבאים: א. התרת סינגולריות של עקום מישורי; ב. אינווריאנטים טופולוגיים של סינגולריות של עקום מישורי ופיברצית מילנור; ג. דפורמציה וורסאלית ודיסקרימיננט.

תורת קבוצות קלאסית

פרופ' מנחם קוג'מן

יום ג 14:00 - 12:00 בגוטמן [32] חדר 114
יום ד 16:00 - 14:00 בצוקר, גולדשטיין-גורן [72] חדר 119

הקורס יכסה רעיונות מרכזיים בשיטות מרכזיות בתורת הקבוצות הקלאסית, ללא הפיתוח אקסיומטי הדרוש להוכחת משפטי אי-תלות. הקורס מיועד לתלמידי שנים ב-ג ומטרתו להכשיר את שומעיו להשתמש במגוון העשיר של שיטות תורת קבוצתיות בענפים שונים של מתמטיקה.

סילבוס
  • דיון במושג העצמה וחישוב עצמות של קבוצות שונות.
  • קבוצות של מספרים ממשיים. נגזרת קנטור-בנדיקסון. המבנה של קבוצות סגורות.
  • מהי השערת הרצף.
  • סודרים. מהם הסודרים הניתנים לשיכון בישר. משפטי קיום של סודרים.
  • רקורסיה טרנספיניטית
  • אקסיומת הבחירה וניסוחיה השונים. שימושים באלגברה וגאומטריה.
  • מונים כסודרים פותחים. פונקציית הקופינליות. מונים סדירים ומונים חריגים.
  • נוסחת האוסדורף, הלמה של קניג. האילוצים על חשבון מונים.
  • אידאלים ומסננים. על-מסננים ושימושיהם.
  • מסנן הקבוצות הסגורות ולא חסומות של מונה סדיר. נורמליות. למת פודור. שימושים.
  • משפטי חלוקה של מונים וסודרים. משפט רמזי. משפט ארדש-ראדו. משפט דושניק-מילר. שימושים.
  • קומבינטוריקה של מונים חריגים. משפט סילבר.
  • משפטי חלוקה שליליים. משפט טודורצ‘ביץ.
  • נושאים נוספים.

מבוא לאלגבראות פון-נוימן

ד"ר דניאל מרקייביץ'

יום א 16:00 - 14:00 בבנין 90 (מקיף ז‘) [90] חדר 225
יום ג 18:00 - 16:00 בבנין 90 (מקיף ז‘) [90] חדר 134

המשפט הספקטרלי לאופרטורים נורמאליים בגרסת התחשיב הפונקציונאלי. מושגים בסיסיים באלגבראות בורל. יסודות תורת אלגבראות פון-נוימן. משפטי צפיפות, טופולוגיות והעתקות נורמליות, עקבות, השוואה בין הטלות, מיון לטיפוסים, דוגמאות של פקטורים. נושאים נוספים, כגון דינמיקה לא קומוטטיבית, תת-פקטורים, פעולות של חבורות והסתברות חופשית.

אלגברה לא קומוטטיבית(#)
Pdf 201.2.5121 4.0 נק"ז

ד"ר משה קמנסקי

יום ד 08:00-10:00 בניין 34 חדר 7
יום ה 12:00-14:00 בניין 32 חדר 209

  1. מבנים אלגבריים יסודיים: חוגים, מודולים, אלגבראות, המרכז, אימפוטנטים, חוגי חבורה.

  2. חוגים עם חילוק: הקוטרניונים של המילטון, אלגבראות קוטרניונים מוכללות, אלגבראות חילוק מעל $\mathbb{F}_q$, $\mathbb{C}$, $\mathbb{R}$, $\mathbb{Q}$ (משפטי Frobenius ו-Wedderburn), אלגבראות ציקליות, משפט Brauer-Cartan-Hua.

  3. פשטות ופשטות למחצה: פשטות של מבנים אלגבריים, מודולים פשוטים למחצה, חוגים פשוטים למחצה, משפט Maschke

  4. תורת Wedderburn-Artin: הומומורפיזמים וסכומים ישרים, הלמה של Schur, משפט המבנה של Wedderburn-Artin, חוגים ארטיניים

  5. מבוא להצגות של חבורות: הצגות ואפיינים, הצגות ותורת Wedderburn-Artin , יחסי האורתוגונליות, מימדי הצגות אי-פריקות, משפט Burnside.

  6. מכפלות טנזוריות: מכפלות טנזוריות של מודולים ואלגבראות, הרחבות סקלריות, אינדקס Schur, פשטות ומרכז של מכפלות טנזוריות, חבורת Brauer, משפט Skolem-Noether, משפט הממרכז הכפול, שדות מירביים באלגבריות, נורמה ועקבה מצומצמות, מכפלות משולבות.

רשימת הנושאים:

  1. קשיחות, שאריות ודואליות מעל חוגים קומוטטיביים.

  2. קטגוריות נגזרות בגיאומטריה.

  3. קשיחות, שאריות ודואליות מעל סכמות.

  4. קטגוריות נגזרות בתורת החוגים הלא-קומוטטיביים.

הערות

  • קורסים המסומנים ב-(*) מהווים דרישת קדם לרישום לתאר מוסמך
  • קורסים המסומנים ב-(#) הינם קורסי חובה אפשריים למוסמך, בתחומים המתאימים, כמתואר בתכנית הלימודים למוסמך. לפחות שניים כאלה, מתחומים שונים, נדרשים לעמידה בדרישות התואר.
  • קורסים לתארים מתקדמים פתוחים גם בפני תלמידי בוגר חזקים, להם ציון ממוצע של 85 ומעלה, ואשר ניתן להם אישור של המרצים בקורם ושל ראש ועדת ההוראה
  • אנא עיינו בתכניות הלימודים המלאות לתואר בוגר ולתארים מתקדמים למידע על הדרישות והאפשרויות המלאות.