אוק 30, 2016-ינו 27, 2017 מבחנים מסתיימים: 10 במרץ, 2017

קורסים

חשבון אינפיניטסימלי 3(!)Pdf 201.1.0031

פרופ' אורי און 6.0 נק"ז

יום ד 13:00 - 11:00 בגוטמן [32] חדר 114
יום א 11:00 - 09:00 בגוטמן [32] חדר 114
יום ב 14:00 - 13:00 בגוטמן [32] חדר 206

  • מושגי יסוד בטופולוגיה של מרחבים מטריים: קבוצות סגורות ופתוחות, קשירות, קומפקטיות, שלמות.
  • מרחבים נורמיים ומרחבי מכפלה פנימית. כל הנורמות על שקולות.
  • משפט על קיום ויחידות של נקודת שבת להעתקת כווץ במרחב מטרי שלם.
  • העתקות בין מרחבים אוקלידיים. נגזרת חלקית. גרדיאנט. כלל השרשרת. פיתוח טיילור בכמה משתנים.
  • משפט ההעתקה הפתוחה ומשפט הפונקציות הסתומות. כופלי לגרנז’. בעיות מינימום ומקסימום.
  • אינטגרל רימן. קבוצות בעלות מידה אפס. תנאי האינטגרביליות של לבג. תכולה לפי ז’ורדאן.
  • משפט פוביני. היעקוביאן ונוסחת חילוף המשתנה.
  • אינטרגלים מסילתיים. תבניות סגורות ומדויקות. משפט גרין.
  • אם יתיר הזמן, אינטרגלים משטחיים ומשפטי סטוקס וגאוס.

משוואות דיפרנציאליות רגילות(!)Pdf 201.1.0061

פרופ' ויקטור ויניקוב 5.0 נק"ז

יום א 16:00 - 14:00 בגוטמן [32] חדר 114
יום ג 14:00 - 12:00 בצוקר, גולדשטיין-גורן [72] חדר 123

משוואות דיפרנציאליות רגילות מסדר ראשון, משפטי קיום ויחידות, משוואות ליניאריות מסדר N, ורונסקיאן, שדות וקטוריים, משוואות אוטונומיות, מערכות משוואות ליניאריות מסדר ראשון, מערכות משוואות לא-ליניאריות ויציבות.משוואות דיפרנציאליות רגילות מסדר ראשון, משפטי קיום ויחידות, משוואות ליניאריות מסדר N, ורונסקיאן, שדות וקטוריים, משוואות אוטונומיות, מערכות משוואות ליניאריות מסדר ראשון, מערכות משוואות לא-ליניאריות ויציבות.

יסודות תורת המידה(*)Pdf 201.1.0081

פרופ' תם מאירוביץ 4.0 נק"ז

יום א 14:00 - 12:00 בבנין 90 (מקיף ז’) [90] חדר 237
יום ה 14:00 - 12:00 בבנין 90 (מקיף ז’) [90] חדר 243

סיגמא-אלגבראות, משפט הרחבת המידה ומידת לבג על הישר, מרחבי מידה כלליים, פונקציות מדידות, תורת האינטגרציה, משפטי התכנסות (משפט אגורוב, התכנסות במידה, כמעט תמיד ובנורמות ), משפט לוזין, מרחבי , מידות במרחבי מכפלה ומשפט פוביני, מידות מסומנות ומרוכבות ופירוק האן, משפט רדון ניקודים ושימושים, גזירה, נושאים נוספים ככל שיתיר הזמן.

תורת המספריםPdf 201.1.6031

פרופ' איתן סייג 4.0 נק"ז

יום ב 18:00 - 16:00 בגוטמן [32] חדר 108
יום ד 18:00 - 16:00 בבנין 90 (מקיף ז’) [90] חדר 239

  • חלוקה ופריקות יחידה ב-.
  • מספרים ראשוניים.
  • קונגרואציה.
  • שאריות רבועיות.
  • שרשים פרמיטיביים.
  • שברים משולבים.
  • מספרים אלגבריים וקרובים דיאופנטיים
  • יסודות תורת המספרים האלגברית

לוגיקהPdf 201.1.6061

ד"ר אסף חסון 4.0 נק"ז

יום ב 16:00 - 14:00 בבנין 90 (מקיף ז’) [90] חדר 136
יום ג 12:00 - 10:00 בגוטמן [32] חדר 114

מערכת אקסיומות לתחשיב הפרדיקטים. משפט השלמות ומשפט הקומפקטיות. מבוא לתורת המודלים: משפטי סקולם-לוונהים ותתי מבנים אלמנטריים. כריעות ואי-כריעות של תורות. משפט אי השלמות הראשון של גדל.

תורת הגרפיםPdf 201.1.6081

פרופ' שחר סמורודינסקי 4.0 נק"ז

יום ב 16:00 - 14:00 בצוקר, גולדשטיין-גורן [72] חדר 115
יום ג 12:00 - 10:00 בגולדברגר [28] חדר 301

גרפים ותת גרפים, עצים, קשירות, מסלולי אוילר, מעגלים המילטוניים, זיווגים, צביעות של גרפים, גרפים מישוריים, מבוא לתורת רמזי, גרפים מכוונים, שיטות הסתברותיות ואלגבריות בתורת הגרפים.

מבנים אלגברייםPdf 201.1.7031

ד"ר ישי דן-כהן 4.0 נק"ז

יום ב 13:00 - 11:00 בקרייטמן-זלוטובסקי(חדש) [34] חדר 14
יום ה 12:00 - 10:00 בבנין 90 (מקיף ז’) [90] חדר 134

  • חבורות, חבורת המנה ומשפטי איזומורפיזם. משפטי סילוב ופעולות של חבורות.
  • חוגים, תחומי שלמות ושדות. אידיאלים מקסימליים וראשוניים. תחום פריקות יחידה, תחום ראשי, תחום אוקלידי.
  • מודולים, משפטי פירוק של מודולים נוצרים סופית על תחום ראשי. יישום לחבורות קומוטטיביות נוצרות-סופית.

הסתברותPdf 201.1.8001

פרופ' אריאל ידין 4.0 נק"ז

יום ב 11:00 - 09:00 ב- [90] חדר 238
יום ד 11:00 - 09:00 בגולדברגר [28] חדר 203

מבוא למושגים הבסיסיים של תורת ההסתברות:

מרחבי הסתברות גבולות של מאורעות ורציפות של הסתברות הסתברות מותנה אי-תלות של מאורעות סיגמה-אלגבראות, מרחבים רציפים, ומידת לבג משתנים מקריים והתפלגויות אי-תלות התפלגויות משותפות והתפלגויות מותנות תוחלת שונות ושונות משותפת התכנסות של משתנים מקריים: כמעט-תמיד, Lp, בהסתברות חוק המספרים הגדולים התכנסות בהתפלגות משפט הגבול המרכזי

  • יריעות טופולוגיות. חבורה יסודית ומרחבי כיסוי. שימושים.
  • הומולוגיה סינגולרית ושימושים.
  • יריעות גזירות. תבניות דיפרנציאליות ומשפט Stokes. הגדרת קוהומולגית de Rham
  • נושאים נוספים אם ישאר זמן

חבורות ליPdf 201.2.4141

פרופ' אורי און

יום ב 18:00 - 15:00 בגרוסמן/ דייכמן [58] חדר 101

  1. חזרה על יריעות גזירות, הגדרה של חבורות לי. מנות בקטיגוריה של חבורות לי, מרחבים הומוגניים, מידת האר, רכיבי קשירות.

  2. חבורות אלגבריות, חבורות מטריצות, החבורות הקלאסיות.

  3. אלגבראות לי והקשר לחבורות לי.

  4. חבורות לי ואלגבראות לי נילפוטנטיות, פתירות ופשוטות למחצה. משפט לי, משפט אנגל, פירוק לוי.

  5. תבנית קילינג קרטן.

  6. הצגות של אלגברת לי מעל המספרים המרוכבים.

  7. משקלות ושורשים, מערכות שורשים, דיאגרמות דינקין, מיון של אלגבראות לי פשוטות למחצה מרוכבות.

אנליזה P אדיתPdf 201.2.0131

פרופ' איתן סייג

Mon 14:00–16:00
Wed 12:00–13:00
Wed 14:00–15:00

ראה באנגלית

רשימת הנושאים:

  1. חזרה על החומר משני הסמסטרים הקודמים (הקורסים קטגוריות נגזרות I ו- II).

  2. קטגוריות נגזרות באלגברה קומוטטיבית: קומפלקסים דואליזנטיים, הדואליות המקומית של גרותנדיק, שקילות MGM, קומפלקסים דואליזנטיית קשיחים.

  3. קטגוריות נגזרות בגיאומטריה אלגברית: פונקטורי התמונה הישרה וההפוכה,דואליות גרותנדיק גלובלית, שימושים לגיאומטריה בירציונלית (סקירה), קוהומולגיה -אדית ודואליות פואנקרה-ו’רדייה (סקירה), אלומות פרו’רטיות (סקירה).

  4. קטגוריות נגזרות בתורת החוגים הלא-קומוטטיביים: קומפלקסים דואליזנטיים, קומפלקסים מסיטים, תורת מוריטה נגזרת.

  5. גיאומטריה אלגברית נגזרת: קטגוריות נגזרות לא-אבליות (סקירה), אינסוף-קטגוריות (סקירה), ערמות אלגבריות נגזרות (סקירה), שימושים (סקירה).

מרחבי בנך ומרחבי הילברט. תכונות בסיסיות של מרחבי הילברט. מרחבים וקטורים טופולוגיים. משפט בנך-שטיינהאוס (עקרון החסימות במידה שווה), משפט ההעתקה הפתוחה ומשפט הגרף הסגור. משפט האן-בנך. דואליות. מידות על מרחבים קומפקטיים מקומית, המרחב הדואלי של . טופולוגיות חלשות וחלשות-, משפט בנך-אלאוגלו. קמירות ומשפט קריין-מילמן. משפט סטון-ויירשטראס. אופרטורים קומפקטיים על מרחב הילברט. מבוא לאלגבראות בנך ולתורת גלפנד. נושאים נוספים ככל שיתיר הזמן.

הערות

  • קורסים המסומנים ב-(*) מהווים דרישת קדם לרישום לתאר מוסמך
  • קורסים המסומנים ב-(#) הינם קורסי חובה אפשריים למוסמך, בתחומים המתאימים, כמתואר בתכנית הלימודים למוסמך. לפחות שניים כאלה, מתחומים שונים, נדרשים לעמידה בדרישות התואר.
  • קורסים לתארים מתקדמים פתוחים גם בפני תלמידי בוגר חזקים, להם ציון ממוצע של 85 ומעלה, ואשר ניתן להם אישור של המרצים בקורם ושל ראש ועדת ההוראה
  • אנא עיינו בתכניות הלימודים המלאות לתואר בוגר ולתארים מתקדמים למידע על הדרישות והאפשרויות המלאות.