אוק 27, 2019—ינו 24, 2020

קורסים

אקסיומות של המספרים הממשיים, סדרות: מושג הגבול, סדרות מונוטוניות משפט בולצנו ויירשטראס, תנאי קושי, המספר e. גבולות של פונקציות. פונקציות רציפות: הגדרות שקולות של רציפות, תכונות הפונקציות האלמנטריות, פונקציית האקספוננט, משפט ערך הביניים, קיום אקסטרמום בקבוצה סגורה וחסומה, רציפות במידה שווה ומשפט קנטור. מבוא לנגזרות: הגדרת הנגזרת וכללי גזירה, נגזרת של פונקציה הפוכה, נגזרות של פונקציות אלמנטריות, משפטי פרמה ורול, משפט הערך הממוצע של לגרנז‘

  1. מבוא. קבוצות, תת-קבוצות, תמורות, פונקציות, חלוקות. איברים בלתי-ניכרים (זהים), מולטי-קבוצות, אלגברה בינרית של תת-קבוצות. כללי סכום וכפל, קונוולוציות, ספירת זוגות. מקדמים בינומיאליים ומולטינומיאליים. מספרי סטירלינג מהסוג השני (הגדרה ומשואת נסיגה).
  2. גרפים. מושג כללי של גרף, דוגמאות, איזומורפיזם. קשירות. גרפי אוילר. עצים. משפט קיילי. גרפים דו-חלקיים, משפט קניג. משפט הול.
  3. שיטת ההכלה ודחיה. נוסחה אנליטית למספרי סטירלינג. ספירת תמורות תחת אילוצים. פולינום הצריח.
  4. פונקציות יוצרות. מושג כללי של פ“י. משמעות קומבינטורית של פ“י. תורת משואות הנסיגה עם מקדמים קבועים: הפתרון הכללי למשוואה הומוגנית, המקרה הכללי למשואה הומוגנית, המקרה הכללי ומקרה פרטי של אי הומוגניות. מספרי קטלן. פירוקי מספרים, לוחות פרה. פ“י אקספוננציאליות, ספירת מילים, חלוקות וכד‘.

מטרת הסדנה ללוות את תלמידי מתמטיקה בשנה א ולשפר את המיומנויות שלהם בכל הנוגע לכתיבת הוכחות פורמאליות. במסגרת הסדנה, התלמידים יעבדו בקבוצות קטנות על כתיבת הוכחות, עם דגש על נושאים שמתקשרים לקורסי היסוד של שנה א.

  1. שדות סדורים: הבעיה ה-17 של הילברט, סדרים וקדם-סדרים, סכומי ריבועים, שדות סגורים ממשית, תורת ארטין-שרייר
  2. תורת גלואה האינסופית: חבורות פרוסופיות, התאמת גלואה במקרה האינסופי
  3. מבוא לקוהומולוגיית גלואה
  • חבורה כסמטריה. דוגמאות: חבורות ציקליות, דיהדרלית, סמטריות. חבורות מטריצות.
  • הומומורפיזם. תת חבורות ותת חבורות נורמליות. חבורות מנה. משפט לגרנז‘. משפטי האיזומורפיזם. מכפלה ישרה של חבורות.
  • פעולה של חבורה על קבוצה. משפט קיילי.
  • אוטומורפיזמים של חבורות.
  • משפטי סילו ומיון חבורות מסדר נמוך.
  • סדרת הרכב ומשפט ז‘ורדן-הולדר. חבורות פתירות.
  • מיון חבורות חילופיות נוצרות סופית.
  • חבורה סימטרית וסידרת הרכב שלה.
  • חוגים. אידאלים ראשוניים ומקסימליים. תחום שלמות. חוג מנה. משפטי הומומורפיזם.
  • אלגברה מולטילינארית: מרחבי מנה. מכפלה טנזורית של מרחבים וקטוריים. פעולה על חבורה סמטרית על חזקות טנזוריות. אלגברה סימטרית ואלגברה חיצונית. תבניות מולטילינאריות ודטרמיננטה.
  • נושאי רשות: חבורות סימטריות של פאונים משוכללים. חבורות חופשיות. מכפלה חצי-ישרה. תורת ההצגות של חבורות סופיות.

סיגמא-אלגבראות, משפט הרחבת המידה ומידת לבג על הישר, מרחבי מידה כלליים, פונקציות מדידות, תורת האינטגרציה, משפטי התכנסות (משפט אגורוב, התכנסות במידה, כמעט תמיד ובנורמות $L_p$), משפט לוזין, מרחבי $L_p$, מידות במרחבי מכפלה ומשפט פוביני, מידות מסומנות ומרוכבות ופירוק האן, משפט רדון ניקודים ושימושים, גזירה, נושאים נוספים ככל שיתיר הזמן.

מערכת אקסיומות לתחשיב הפרדיקטים. משפט השלמות ומשפט הקומפקטיות. מבוא לתורת המודלים: משפטי סקולם-לוונהים ותתי מבנים אלמנטריים. כריעות ואי-כריעות של תורות. משפט אי השלמות הראשון של גדל.

גרפים ותת גרפים, עצים, קשירות, מסלולי אוילר, מעגלים המילטוניים, זיווגים, צביעות של גרפים, גרפים מישוריים, מבוא לתורת רמזי, גרפים מכוונים, שיטות הסתברותיות ואלגבריות בתורת הגרפים.

  • חלוקה ופריקות יחידה ב-$\mathbb{Z}$.
  • מספרים ראשוניים.
  • קונגרואציה.
  • שאריות רבועיות.
  • שרשים פרמיטיביים.
  • שברים משולבים.
  • מספרים אלגבריים וקרובים דיאופנטיים
  • יסודות תורת המספרים האלגברית

מרחבים מטריים ונורמיים. שקילות הנורמות במרחבים סוף מימדיים. קומפקטיות ומשפט היינה-בורל. התכנסות של סדרות וטורים של פונקציות נקודתית, במידה שווה ובנורמות אחרות. גזירה ואינטגרציה איבר-איבר של טורי פונקציות, שימושים לטורי חזקות. שלמות: שלמות של מרחב הפונקציות הרציפות בקטע סגור ובמרחב מטרי קומפקטי, בוחן $M$ של ויירשטראס. משפט הקטגוריה של בייר, פונקציונלים לינאריים חסומים ומשפט בנך-שטיינהאוס. קומפקטיות במרחבי פונקציות ומשפט ארצלה אסקולי. מבוא לטורי פורייה: סכימת צ‘זרו, קונבולוציות ומשפט פייר. משפט הקירוב של ויירשטראס. התכנסות ב-$L^2$. התכנסות נקודתית, גרעין דיריכלה וקריטריון דיני.

קבוצות פתוחות, סגורות, קומפקטיות במרחב האוקלידי. נורמות מטרציאליות ושקילות הנורמות. גבולות ורציפות בכמה משתנים. מסילות וקשירות מסילתית. נזגרות חלקיות וכווניות, הגרדיינט ומושג הדיפרנציאביליות. משפטי הפונקציה הסתומה, הפתוחה וההפוכה. כופלי לגרנז‘. אופטימיזציה, מטריצת ההסיאן ונקודות קריטיות. אינטגרל רימן הרב-מימדי: משפט פוביני, משפט שינוי המשתנה.

  • יריעות טופולוגיות. חבורה יסודית ומרחבי כיסוי. שימושים.
  • הומולוגיה סינגולרית ושימושים.
  • יריעות גזירות. תבניות דיפרנציאליות ומשפט Stokes. הגדרת קוהומולגית de Rham
  • נושאים נוספים אם ישאר זמן
  • משפטים בסיסיים והגדרות: קבוצות קמורות, למת ההפרדה, משפט הלי, משפט רדון, משפט קרתאודורי, נקודת מרכז, משפט טברברג, גרפים מישוריים, משפט קבה,
  • גרפים גאומטריים: למת החיתוכים. שימושים לבעיות ארדס: בעיות חילה בין נקודות ועקומים, בעיית המרחקים הזהים, בעיית ספירת מרחקים שונים, למת בחירה של נק בתוך עיגולים. נק בתוך סימפלקסים. ספירת חציות של קבוצת נקודות ע“י על-מישורים. שימוש בחילות לבעיות בתורת המספרים האדיטיבית.
  • בעיות צביעה וטרנסברסלים להיפר גרפים גאומטריים: מימד וי סי, רשתות אפסילון ורשתות אפסילון חלשות לקבוצות קמורות. צביעות חסרות קונפליקטים.
  • מערכים: סדרות דבנפורט שינצל ושימושיהן לתתי מבנים במערכים.
  • תורת רמזי גאומטרית: משפט ארדס סקרס לקבוצות קמורות. שימושים של משפט דילוורס, גרפים קווזי מישוריים.

באופן כללי הגיאומטריה האלגברית עוסקת בחקר עצמים גיאומטריים המוגדרים ע“י נוסחאות אלגבריות, כלומר פולינומים במספר משתנים. התחום המתמטי הזה משיק לגיאומטריה דיפרנציאלית, לתורת המספרים, לטופולוגיה ולאלגברה, ויש לו שימושים גם בקומבינטוריקה, תורת האופרטורים, פיזיקה תיאורטית ועוד. הקורס הנוכחי ישמש מבוא לתחום קשה אך מרתק זה. הקורס מיועד לתלמידי מתמטיקה לתואר שני. קצב ההתקדמות והיקף החומר תלויים ברמת הידע של התלמידים וברצונם ללמוד באופן עצמאי חלק מהנושאים. תלמידים שירצו ללמוד עוד (אגדים וקטוריים, אלומות, קוהומולוגיה, תורת החיתוך וכו‘) יוכלו להמשיך בקורסי קריאה מודרכת.

רשימת נושאים
  1. נושאים מאלגברה קומוטטיבית: אידאלים ראשוניים ולוקאליזציה, מכפלות טנזוריות, חוגים נתריאניים ומשפט הבסיס של הילברט, מעלת טרנסצדנטיות של הרחבת שדות, משפט המימד.
  2. יריעות אלגבריות מעל שדה סגור אלגברית: יריעות אפיניות ופרויקטיביות, מורפיזמים, שדה הפונקציות הרציונליות, החוג המקומי בנקודה, יריעות חלקות.
  3. עקומים: השקילות הקטיגורית בין עקומים חלקים שלמים מעל שדה סגור אלגברית לבין שדות פונקציות ממעלת טרנסצדנטיות אחת.
  4. תורת החיתוך במישור הפרוייקטיבי (משפט בזו).
  5. חבורת פיקאר, אלומות הפיכות, שיכונים פרויקטיים ואוטומורפיזמים של מרחבים פרויקטיביים.
  6. שיטות דיפרינציאליות: תבניות דיפרנציאליות, השלמות של חוגים מקומיים, כיסויים לא מסועפים.

הקורס עוסק בתופעה הפיזיקלית של מעברי-פזה, דרך הפרספקטיבה של מודל החלחול או ”פרקולציה“.

נעבור על התוצאות המרכזיות בפרקולציה ובקרובי המשפחה כגון מודלי Ising, Potts, ו-FK, החל מעבודותיהם של Ising ו-Pierels בתחילת המאה ה-20 ועד לעבודות המודרניות של Smirnov (עבורן קיבל מדלית פילדס).

נושאי הקורס:
  1. פרקלוציה על גרפים, הגדרות ותכונות בסיסיות
  2. אי-שוויון Harris
  3. אי שוויון van den Berg-Kesten (אי שוויון Reimer)
  4. נוסחת Russo
  5. משפט Burton-Keane
  6. דעיכה אקספוננצילית של קורלציות בתחום התת-קריטי
  7. פרקולציה במישור: התורה של Russo-Seymor-Welsh
  8. פרקולציה במישור: משפט Harris-Kesten
  9. אינוורינטיות קונפורמית: נוסחת Cardy-Smirnov
  10. פרקולציה בחבורות
  11. פרקולציה קריטית בחבורות לא אמנביליות: BLPS
רשימת נושאים
  1. מודולים: מודולים חופשיים, סדרות מדוייקות, מכפלה טנזורית, מודולי הום, שטיחות.
  2. אידיאלים ראשוניים ולוקליזציה: חוגים מקומיים, הלמה של נאקיאמה, הספקטרום של חוג, מימד וקשירות.
  3. חוגים נתריאניים: משפט הבסיס של הילברט, הלמה של ארטין-ריס, השלמה, דירוג.
  4. תורת המימד: משפט האפסים של הילברט, משפט הנירמול של נתר, מעלת טרנסצנדנטיות של שדות.

סילבוס אינו מוגדר בתקופה המתבקשת

מרחבי בנך ומרחבי הילברט. תכונות בסיסיות של מרחבי הילברט. מרחבים וקטורים טופולוגיים. משפט בנך-שטיינהאוס (עקרון החסימות במידה שווה), משפט ההעתקה הפתוחה ומשפט הגרף הסגור. משפט האן-בנך. דואליות. מידות על מרחבים קומפקטיים מקומית, המרחב הדואלי של $C(X)$. טופולוגיות חלשות וחלשות-$*$, משפט בנך-אלאוגלו. קמירות ומשפט קריין-מילמן. משפט סטון-ויירשטראס. אופרטורים קומפקטיים על מרחב הילברט. מבוא לאלגבראות בנך ולתורת גלפנד. נושאים נוספים ככל שיתיר הזמן.

. מספרים מרוכבים: הצגה קרטזית והצגה קוטבית. פונקציות מרוכבות, תכונות יסודיות של פונקציות אנליטיות, הפונקציה המעריכית, פונקציות טריגונומטריות. הגדרת אינטגרל קווי, נוסחת קושי. רזידואוס וקוטב. שימושים ברזידואוס לחישוב של אינטגרלים לא אמיתיים. 2. מרחבי מכפלה פנימית של פונקציות. מערכות אורתוגונליות ומערכות אורתונורמליות. טורי פורייה מוכללים. משפט היטל אורתוגונלי. אי-שוויון בסל, שוויון פרסבל. 3. טורי פורייה טריגונומטריים. טור פורייה מרוכב. טורי פורייה בקטעים שונים. התכנסות נקודתית והתכנסות במידה שווה של טור פורייה. שלמות של מערכת טריגונומטרית ושוויון פרסבל. גזירה ואינטגרציה של טור פורייה. 4. אינטגרל פורייה כגבול של טור פורייה. התמרת פורייה: הגדרה ותכונות יסודיות. התמרת פורייה הפוכה. משפט הקונבולוציה, שוויון פרסבל עבור התמרת פורייה. הקשר בין התמרת פורייה והתמרת לפלס. שימושים למשוואות דיפרנציאליות חלקיות, שימושים לעיבוד אותות. 5. תורת ההתפלגויות (דיסטריבוציות). פונקציית הביסייד, פונקצית דלטה. גזירת התפלגויות. סדרות מתכנסות של התפלגויות. התמרת פורייה במרחב התפלגויות.

1) מרחב הסתברות 2) נוסחת ההסתברות השלימה 3) הסתברות מותנה, אי תלות מאורעות 4) נוסחת בייס 5) משתנה מקרי בדיד. התפלגויות בדידות: אחידה, ברנולי, בינומי, גיאומטרי, פואסון 6) משתנה מקרי רציף. התפלגויות רציפות: אחידה, מעריכית, נורמלית 7) משתנה מקרי דו ממדי בדיד 8) אי תלות של משתנים מקריים 9) תוחלת 10) שונות, שונות משותפת, מקדם מתאם

  1. מרחב מדגם, מרחבי הסתברות סימטריים, מרחבי הסתברות בדידים.
  2. מרחבי הסתברות כלליים; הסתברויות על הישר בעזרת צפיפויות.
  3. דוגמאות הקשורות לאלגוריתמים המכילים מרכיב של אקראיות.
  4. הסתברות מותנית ומאורעות בלתי תלויים.
  5. משתנים מקריים ופונקציות ההתפלגות שלהם.
  6. תוחלת, שונות ומומנטים של משתנים מקריים בדידים, רציפים ובעלי התפלגויות כלליות.
  7. פונקציות של משתנים מקריים והתוחלת שלהן.
  8. משתנים מקריים בלתי תלויים, אי שוויון צ‘בישב וחוק המספרים הגדולים.
  9. משפט הגבול המרכזי
  10. וקטורים מקריים, צפיפות משותפת (בדידה ורציפה), התפלגויות שוליות, חישוב מקדם המתאם.

מושגי יסוד, משוואות מסדר ראשון, משוואות ליניאריות מסדר שני, התמרת לפלס, קונוולוציה, מערכות משוואות, משואות מסדר n, פתרונות על ידי טורים, משוואות אוילר.

1) מרחב ההסתברות2) הסתברות מותנית, אי-תלות מאורעות, נוסחת ההסתברות השלמה, נוסחת בייס.3) משתנה מקרי בדיד. התפלגויות בדידות: אחידה, בינומית, גיאומטרית, היפרגאומטרית, בינומית שלילית, פואסון.4) משתנה מקרי רציף. התפלגויות רציפות: אחידה, מעריכית, נורמלית.5) משתנה מקרי דו-מימדי בדיד, אי-תלות של משתנים מקריים.6) תוחלת, שונות, מקדם המתאם.7) אי-שייון צ‘בישב, חוק המספרים הגדולים.8) משפט הגבול המרכזי, קירוב נורמלי.

  1. וקטורים במישור ובמרחב. מכפלה סקלרית ומכפלה ווקטורית. ישרים, מישורים ושטחים במרחב.
  2. פונקציות ווקטורית. מהירות, תאוצה, וקטור משיק, אורך עקומה, עקמומיות.
  3. פונקציות של מספר משתנים. נגזרות חלקיות, דיפרנציאביליות ודיפרנציאל, כלל השרשרת, נגזרת מכוונת, גרדינט, מישור משיק, פולינום טיילור, מקסימום ומינימום.
  4. אינטגרל מרובה. אינטגרל כפול ומשולש, שטח פנים.
  5. שדות ווקטורים. אינטגרל קווי ואינטגרל משטחי. משפט גרין, משפט הדיברגנס ומשפט סטוקס.
  6. טורי מספרים. מבחני התכנסות לטורים חיובים, התכנסות בהחלט, התכנסות טורים עם סימנים מתחלפים.
  7. טורי חזקות. רדיוס התכנסות, התכנסות בקצוות, גזירה ואינטגרציה של טורי חזקות.
  1. משוואות דיפרנציאליות רגילות: פתרונות מפורשים למשוואות דיפרנציאליות מסדר ראשון. משוואות דיפרנציאליות מסדר שני. משוואות דיפרנציאליות מסדר גבוה, מערכות של משוואות דיפרנציאליות רגילות.
  2. טורי פורייה ושימושיהם: חזרה על טורי פונקציות. פיתוחי פורייה ותכונות של טורי פורייה, התכנסות של טורי פורייה, תופעת גיבס. שימושים למשוואת החום.
  3. שימושים נוספים ככל שיתיר הזמן.
  1. משוואות דיפרנציאליות רגילות: פתרונות מפורשים למשוואות דיפרנציאליות מסדר ראשון. משוואות דיפרנציאליות מסדר שני. משוואות דיפרנציאליות מסדר גבוה, מערכות של משוואות דיפרנציאליות רגילות.
  2. טורי פורייה: חזרה על טורי פונקציות. פיתוחי פורייה ותכונות של טורי פורייה, התכנסות של טורי פורייה, תופעת גיבס. שימושים למשוואות דיפרנציאליות רגילות מחזורית.
  3. טרנספורם לפלס, שימושים למשוואות דיפרנציאליות רגילות.

מושגי יסוד, שדות כוונים. משוואות דיפרנציאליות מסדר ראשון, משוואות ספרביליות ומדויקות, גורם אינטגרציה. שיטות ישירות לפתרון משוואות דיפרנציאליות מסדר ראשון, משוואות ברנולי. קירובי אוילר. דוגמאות, גידול אוכלוסיה. משוואות דיפרנציאליות מסדר שני. משוואות עם מקדמים קבועים, מרחב הפתרונות, הורונסקיאן. משוואות לא הומוגניות, וריאציה של הפרמטרים. מערכות של שתי משוואות מסדר ראשון עם מקדמים קבועים. דוגמאות ושימושים.

. מבוא: מושגים יסוד מתורת הפונקציות:שדות מספריים (רציונליים, ממשיים).שדה המספרים המרוכבים), הצגה אלגברית, הצגה קוטבית (טריגונומטרית), נוסחת אוילר, מציגות שרשרם הגדרת שדה. שדות סופיים Zp.2. מערכת משוואות ליניאריות מעל השדות הנ“ל:הגדרת מושגים בסיסיים. מערכות שקולות, פעולות יסודיות, פתרון על ידי שיטת האלימינציה של גאוס, מערכת משוואות ליניאריות ומטריצות, הצגה מטריצאלית של מערכת ופתרון של מערכת בעזרת ההצגה. דרגת מטריצה, דרגות חופש. צורה קנונית, מערכות הומוגניות. פתרון כללי למערכות לא הומוגניות בעזרת פתרון כללי להומוגנית המתאימה.3. מרחבים ווקטוריים מעל שדה:הגדרה ודוגמאות (מרחב שורות, מרחב מטריצות, מרחב פולינומים, מרחב פונקציות). תת-מרחבים. דוגמאות, קריטריון של תת-מרחב. חיתוך וחיבור תת מרחבים. קומבינציה ליניארית של וקטורים. פרישה ליניארית. תלות ואי תלות ליניארית. בסיס וממד. משפט המימד עבור סכום תתי-מרחבים. מרחב השורה ומרחב העמודה של מטריצה, דרגה של מטריצה, משוואות ליניאריות ומרחבים וקטוריים, קואורדינטות.4. מטריצות:כפל מטריצות, מטריצות ריבועיות, חזקות ופולינומים של מטריצות, אלכסון ועקבה, סוגים של מטריצות, מטריצות הפיכות, חישוב של מטריצה הופכית, שינוי בסיס.5. דטרמיננטות:מקרים פרטיים (n=2,3), הגדרה רקורסיבית, פיתוח לפי שורה ועמודה, תכונות (תשובות dif=0, כפליות,מולטילינאריות), חישוב דטרמיננטות שרירותיות, יישומים: כלל קרמר, מטריצה צמודה וחישוב של מטריצה הופכית.6. פולינומים מעל שדה: התחלקות, פירוק לגורמים ((adjoint, מחלק משותף גדול ביותר.7. טרנספורמציות ליניאריות:הגדרות, דוגמאות (כולל הגדרת אופרטור ליניארי, איזומורפיזם), גרעין ותמונה של טרנספורמציות ליניאריות, משפט המימד, הצגה מטריציונית, החלפת בסיס ודמיון מטריצות.8. ערכים עצמיים ווקטורים עצמיים:לכסון של אופרטורים ליניאריים. הפולינום האופייני, חישוב ערכים עצמיים ווקטורים עצמיים של מטריצה, לכסון מטריצות. 9. מרחבי מכפלה פנימית:הגדרות, אי שוויון קושי שוורץ, אי שוויון בסל, בסיסים אורטוגונליים ואורטונורמליים, תהליך האורטוגונליזציה של גראם שמידט.

  1. מבוא: שדות המספרים הממשיים והמרוכבים, פולינומים. מערכות משואות ליניאריות ופתרונן בשיטת האלימינציה של גאוס. 2. מרחבים וקטוריים: דוגמאות, מושגים בסיסיים, בסיס ומימד של מרחב וקטורי. ישום מרחבים ווקטוריים בפתרונות של מערכות משואות ליניאריות. 3. מטריצה הופכית, דטרמיננטות. 4. מכפלה סקלרית, אורתוגונליות ותהליך גראם שמידט.5. טרנספורמציות ליניאריות: גרעין ותמונה, מטריצה של טרנספורמציה, החלפת בסיס.6. ערכים עצמיים, מציאת וקטורים עצמיים ולכסון מטריצות.

. מד‘’ח לינאריות מסדר 2: מיון, צורה קנונית.2. טורי פוריה (הגדרה, משפט פוריה, המשכיות זוגית ואי-זוגית, נגזרת, התכנסות במידה שווה).3. דוגמאות: משוואת החום (בעיות דיריכלה וניומן), משוואת הגלים (mixed type problem), משוואת הפוטנציאל על מלבן.4. סופרפוזיציה של פתרונות; משוואות אי-הומוגניות.5. משוואת החום האי-סופית והחצי אי-סופית: אינטגרל פוריה, פונקציית גרין, עקרון דוהמל.6. משוואת הגלים האיסופית והחצי אי-סופית: פתרון דלמבר.7. משוואת הפוטנציאל על העיגול: נוסחת פואסון, פתרון כטור.

  1. מרחבים נורמיים ומרחבי מכפלה פנימית, הקירוב הטוב ביותר והטלות אורתוגונליות, מערכות אורתונורמליות. התכנסות במרחבים נורמיים. מערכות אורתונורמליות אינסופיות, שוויון פרסבל ומערכות אורתונורמליות שלמות.

  2. פולינומים אורתוגונליים. משפט הקירוב של ויירשטראס. שלמות של פולינומים אורתוגונליים בקטע סופי.

  3. טורי פורייה. שלמות, התכנסות נקודתית ותנאים להתכנסות במידה שווה.

  4. טרנספורם פורייה. משפט פלנשרל. נוסחת ההיפוך של פורייה. קונבולוציות. פולינומי הרמיט.

  5. משוואות שטורם-ליוביל בקטע סופי. אורתוגונליות של פונקציות עצמיות. קיום ושלמות של מערכת פונקציות עצמיות עבור בעיית שטורם-ליוביל רגולארית (עם הוכחה חלקית).

ביבליוגרפיה:
  1. Hartman, Philip. Ordinary differential equations. Corrected reprint of the second (1982) edition. With a foreword by Peter Bates. Classics in Applied Mathematics, 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.

  2. Jackson, Dunham. Fourier series and orthogonal polynomials. Reprint of the 1941 original. Dover Publications, Inc., Mineola, NY, 2004.

  3. K?rner, T. W. Fourier analysis. Second edition. Cambridge University Press, Cambridge, 1989.

שדות ומטריצות, מרחבים וקטוריים מעל שדה, משוואות ליניאריות מעל שדה, דטרמיננטות, מרחבים דואליים, טרנספורמציות ליניאריות.

  1. מרחבי מכפלה פנימית ומרחבים נורמיים. משפט על קיום היטל לתת- מרחב בעל מימד סופי. מערכות אורתונורמליות ואורתוגונליות במרחבים ממימד אינסופי. אי שיויון בסל ושיויון פרסבל, מערכות אורתונורמליות סגורות. מערכת האר.
  2. טור פורייה (הצורה הממשית והצורה המרוכבת).קירובי יחידה, שלמות של המערכת הטריגונומטרית\האקספוננציאלית. התכנסות במידה שווה של טורי פורייה של פונקציות גזירות ברציפות למקוטעין בקטעים סגורים של רציפות. תופעת גיבס. גזירה ואינטגרציה איבר-איבר.
  3. התמרת פורייה. משפט הקונבולוציה. שיויון פלנשרל. שימושים לפונקציות חסומות בתדר ומשפט הדגימה של שנון.
  4. התמרת לפלס. נוסחאות בסיסיות והקשר להתמרת פורייה. טבלת התמרות לפלס. קונבולוציות. שימושים של התמרת לפלס לפתרון של משוואות דיפרנציאליות רגילות.
  5. מבוא לפילוגים (דיסטריבוציות). גזירה של פילוג, דלתא של דיראק ונגזרותיה. טורי פורייה, התמרת פורייה והתמרת לפלס של פילוגים.
סילבוס:
  1. קבוצות: שייכות, איחוד, חיתוך, הפרש.

  2. מכפלה קרטזית, מושג היחס, יחסי שקילות, יחס סדר חלקי, יחס סדר קווי. הגדרת פונקציה כקבוצת סדורים.

  3. תחשיב הפסוקים: ו/או גרירה, שקילות וטבלאות האמת שלהם, ערך האמת של פסוקים בהשמה, שקילות לוגית וגרירה לוגית, טאוטולוגיות ופסוקים שקריים, הטאוטולוגיות החשובות: למשל, חוקי הפילוג, ונוסחאות דה-מורגן.

  4. תחשיב הפרדיקטים: הגדרת שפת תחשיב הפרדיקטים ומשמעותה; הגדרת מבנים; נוסחאות ופסוקים; הסתפקות במבנה ובהשמה, אמיתיות לוגית, גרירה לוגית, שקילות לוגית; השקילויות החשובות, סדר הכמתים, הכנסת השלילה פנימה.

  5. תורת הקבוצות: התאמות חד-חד-ערכיות, הרכבת פונקציות והפונקציה ההפוכה; יחסי שקילות; הגדרת העוצמה, שיוויון עוצמות ואי-שיוויון עוצמות; משפט קנטור ברנשטיין (ללא הוכחה), המשפט שכל שתי עוצמות נתנות להשוואה (ללא הוכחה); משפט קנטור על עוצמת קבוצות החזקה $|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|$, $|\mathbb{Q}|=|\mathbb{N}\times\mathbb{N}|=|\mathbb{N}|$.

מספרים ממשיים (ללא חתכי דדקינד). סופרמום כאקסיומה. סדרות מתכנסות, תתי סדרות, סדרה מונוטונית וחסומה, גבולות עליונים ותחתונים. טורים: סכומים חלקיים, מתכנסים ומתבדרים, דוגמאות, טורים אי שלילייים, מבחני שורש, מנה, טורים כלליים, דיריכלה, לייבנייץ (סימנים מתחלפים), התכנסות בהחלט גוררת התכנסות (ללא הוכחה). גבול של פונקציה, רציפות, רציפות הפונקציות האלמנטריות, אקסטרמום בקטע סגור. הנגזרת של פונקציה, משפט הערך הממוצע של לגרנג‘, נגזרות מספר גבוה, לופיטל, משפט טיילור, הערכות שגיאה, הרבה דוגמאות. אינטגרל רימן: רק עם פונקציות רציפות למקוטעין (מספר נקודות אי-רציפות סופי). סכומי רימן והגדרת האינטגרל, המשפט היסודי של החשבון הדיפרנציאלי והאינטגרלי, וקיום פונקציות קדומות. שיטות אינטגרציה: אינטגרציה בחלקים, חילוף משתנים, שברים חלקיים (ללא הוכחה מלאה), אינטגרלים לא אמיתיים, שימושים של אינטגרציה, הערכה של טורים באמצעות אינטגרלים מושג ה- O, ה-o ו- ? (למשל: ??“dx“ /“x“ ” עם ידי השוואה ע“ ל ?”k=1“ ^“N“ ?“1“ /“k“ ” =?“ (”logN“ )). חישובים מקורבים למומנטים ?”n=1“ ^“N“ ?“n“ ^“?“ , נוסחת Stirling.

  1. מושג הגבול, גבול של פונקציה.2. רציפות, רציפות חד-צדדית. 3. הנגזרת וכללי הגזירה היסודיים, נגזרות הפונקציות הטריגונומטריות. 4. גזירת פונקציות הפוכות ופונקציות סתומות. 5. מקסימום ומינימום. הערך הגדול ביותר של פונקציה רציפה בקטע. 6. משפט הערך הממוצע וחקירת הפונקציה. 7. נגזרת שנייה ושימושיה. קמירות וקעירות, שירטוט גרפים. 8. חישוב גבולות לביטויים לא מוגדרים. משפט לופיטל. 9. הדיפרנציאל וקרוב מסדר ראשון. משפט טיילור וקרובים מסדר גבוה. 10. אינטגרציה: הגדרה. כל פונקציה רציפה היא נגזרת. 11. שיטות אינטגרציה. הצבה, חלקים. 12. משוואה דיפרנציאלית ותנאי התחלה, פתרון על ידי הפרדת המשתנים. 13. האינטגרל המסויים. שטחים, האינטגרל כפונקציה של הגבול העליון. 14. אינטגרציית פונקציות רציונליות על-ידי שברים חלקיים. 15. אינטגרציה על-ידי הצבות טריגונומטריות. 16. אינטגרלים לא-אמיתיים. 17. נפח גוף סיבוב. 18. אורך עקומה. 19. קואורדינטות קטביות. 20. גרפים בקואורדינטות קטביות. 21. אורך עקומה ושטח בקואורדינטות קטביות.

פונקציות אלמנטריות בסיסיות. פונקציות חד-חד ערכיות, הפוכות, מונוטוניות, זוגיות ואי זוגיות. פונקציה מורכבת. גבול של פונקציה. המספר e. גבולות חד-צדדיים. רציפות של פונקציה. תכונות של פונקציה רציפה. 2. מושג הנגזרת. כללי גזירה. נגזרת מסדר גבוה. נגזרת של פונקציה מורכבת. כלל לופיטל. חישוב גבולות. דיפרנציאל. 3. חקירת פונקציה. תחומי עליה וירידה, קמירות וקעירות. נקודות פיתול. מקסימום ומינימום מקומיים. אסימפטוטות. חקירה מלאה של פונקציה. גמישות. שימושים בכלכלה.4. פונקציה קדומה ואינטגרל לא מסויים. כללי אינטגרציה. אינטגרלים מידיים. האינטגרל המסוים. חישוב שטחים. שימושי האינטגרל בכלכלה. אינטגרלים לא אמיתיים. 5. מושג הפונקציה של כמה משתנים. עקומות שוות ערך. נגזרות חלקיות מסדר שני. דיפרנציאל שלם. כלל השרשרת. פונקציות סתומות ונגזרתן. פונקציות הומוגניות ותכונותיהן. 6. אקסטרמום של פונקציה של שני משתנים. מקסימום ומינימים מקומי. תנאי הכרחי לקיום אקסטרמום מקומי. תנאי מספיק. אקסטרמום בתנאי. שיטת כופלי לגרנז‘. 7. מטריצות. מושגים יסודיים על מטריצות. פעולות אלמנטריות במטריצות. מטריצה הפוכה. פתרון מערכת של משוואות ליניאריות בעזרת מטריצה הפוכה.

  1. מבוא: שדות המספרים הממשיים והמרוכבים, פולינומים.
  2. מערכת משואות ליניאריות ופתרונן בשיטת האלימינציה של גאוס.
  3. מרחבים וקטוריים: דוגמאות (מרחב אוקלידי דו- ממדי ותלת- ממדי, מרחבי פונקציות, מרחבי מטריצות),מושגים בסיסיים, בסיס ומימד של מרחב וקטורי. ישום מרחבים וקטוריים בפתרונות של מערכות משואות ליניאריות.
  4. מטריצה הופכית, דטרמיננטה, מכפלה סקלרית.
  5. טרנספורמציות ליניאריות: גרעין ותמונה, מטריצה של טרנספורמציה, החלפת בסיס.
  6. ערכים עצמיים, מציאת וקטורים עצמיים ולכסון מטריצות.
  1. מערכת המספרים הממשיים, אי שיויונים במספרים ממשיים, מערכת המספרים המרוכבים, ההצגות הקרטזית, הפולרית והמעריכית, משפט ד‘מואבר, חישוב שורשים.
  2. מערכות משוואות לינאריות מעל המספרים הממשיים או המרוכבים, קבוצת הפתרון והצגתה הפרמטרית, מטריצות מדורגות, ומטריצות מדורגות מצומצמות, הצבה לאחור והצבה לפנים וסיבוכיות התהליכים, אלגוריתם הדירוג של גאוס וסיבוכיותו, אלגוריתם הצימצום וסיבוכיותו
  3. המרחב הוקטורי, תת-מרחבים וקטוריים, צירופים לינאריים, המרחב הנפרש ע“י קבוצת וקטורים, תלות ואי-תלות לינאריים, המימד של מרחב וקטורי, מרחבי שורה ומרחבי עמודה של מטריצות, הדרגה של מטריצה.
  4. העתקות לינאריות בין מרחבים וקטוריים, העתקות הפיכות ואיזומורפיזמים, הצגה מטריצית של העתקות לינאריות סוף מימדיות, היפוך מטריצות ריבועיות, הרכבת העתקות, כפל מטריצות, האלגברה של מטריצות, הגרעין והתמונה של העתקה לינארית וחישוב בסיסים עבורם, מעבר בין בסיסים, משפט המימד עבור העתקות לינאריות המשלים האורתוגונלי ,Cauchy-Schwarz 5. מרחבי מכפלה פנימית, נורמה, קבוצות אורתונורמליות, אי שיויון טרנספורמציות אורתוגונליות ומטריצות ,Gram-Schmidt של תת-מרחב, סדרות אותוגונליות, האלגוריתם של אורתוגונליות. , Laplace המטריצה הנילוית ונוסחת , Laplace 6. הדטרמיננט של מטריצה ריבועית, מינורים וקופקטורים, פיתוחי טרנספורמציות דימיון ואינוריאנטות שלהן ( הדטרמיננט והעכבה). ,P ע“י מטריצה הפיכה A הצמדה של מטריצה
  5. ערכים עצמיים, וקטורים עצמיים ומרחבים עצמיים, ליכסון ודימיון, הפולינום האופייני, הריבוי האלגברי והריבוי הגיאומטרי של ערך עצמי, משפט הספקטרלי עבור מטריצות הרמיטיות. Syllabus

גבולות ורציפות של פונקציות, יישומים פונקציות גזירות, יישומים כללי גזירה, גזירה של פונקציות סתומות, יישומים חקירת פונקציות, פונקציות מרובות משתנים, נגזרות חלקיות, יישומים האינטגרל המסוים, האינטגרל הלא מסוים, יישומים של אינטגרלים, טכניקות אינטגרציה, פולינומי טיילור, משוואות דיפרנציאליות פשוטות

  1. ישרים ומישורים. המכפלה הווקטורית. פונקציות וקטוריות ממשיות, מסילות במישור, משיקים, תנועה על מסילה 2. פונקציות של כמה משתנים: קבוצות פתוחות וסגורות, גבולות, רציפות, גזירות, הנגזרת הכוונית, נגזרות חלקיות, גרדיינט, שדות סקלריים ושדות וקטוריים, כלל השרשרת, היקוביאן. נגזרות סתומות ומשפט הפונקציות הסתומות. בעיות אקסטרמום במישור ובמרחב: ההסיאן ומבחן הנגזרת השניה, כופלי לגרנז‘. 3. אינטגרלים קווים במישור ובמרחב, הגדרה בסיסית ותכונות יסוד, עבודה, אי תלות במסלול, הקשר עם הגרדיינט, בניית פונקציות פוטנציאל. שימושים למשוואות דיפרנציאליות רגילות: משוואות דיפרנציאליות מדויקות וגורם אינטגרציה. אינטגרליים מסילתיים מהסוג השני ואורך מסילה. 4. אינטגרלים כפולים ומשולשים - הגדרות ותכונות בסיסיות, משפט פוביני, החלפת משתנה והיקוביאן, קואורדינאטות פולריות במישור וגליליות וכדוריות במרחב. משפט גרין במישור. 5. הצגות משטחים במרחב - הצגה פרמטרית, נורמל למשטח, שטח של משטח פרמטרי, אינטגרל משטחי ורפרמטריזציה. 6. רוטור ודיברגנץ של שדות וקטוריים. משפטי גאוס וסטוקס.

תורת הקבוצות. קבוצה, תת-קבוצות. קבוצת חזקה. מכפלה קרטזית של קבוצות. עקרון החיבור ועקרון הכפל . חליפות, תמורות וצירופים . בינום של ניוטון. עקרון האינדוקציה. עקרון ההכלה וההפרדה. עקרון שובץ ויוניםנוסחאות רקורסיה. פונקציה יוצרת.יחסים ופונקציות. תכונות של יחסים .יחס שקילות. מחלקת השקילות . קבוצת המנה. יחסי סדר. תכונות של פונקציות. פונקציות על ופונקציות חח‘’ע. הרכבת פונקציות .פונקציה הפיכה. פונקציה הפוכה.גרפים, תת גרפים, משלים. איזומורפיים של גרפים. נוסחת אוילר. גרפים מישורים. מעגלי ומסלולי אוילר.עציםתחשיב הפסוקים. פעולות על פסוקים. נוסחאות לוגיות. טאוטולוגיות וסתירות. שקילות לוגית. גרירות לוגית. צורה הדיסיונקטיבית הנורמלית של פסוק. דואליות. מערכות שלמות של קשרים.תחשיב היחסים . כמתים. שפת תחשיב הפרדיקטים. נוסחאות. מבנים. שקילות של נוסחאות. פעולות על נוסחאות עם כמתים. צורה פרנכסית נורמלית.מבנים אלגבריים. חבורות, חוגים. ושדות. חוג השלמים מדולו n. אלגברה בוליאנית.

  1. המספרים הממשיים. סופרימום ואינפימום של קבוצה. 2. סדרות מתכנסות. תת-סדרות. סדרות קושי. משפט בולצנו-ויירשטראס. גבולות עליונים ותחתונים. 3. טורים. סכומים חלקיים. טורים מתכנסים ומתבדרים. תנאי קושי. טורים של מספרים אי-שליליים. מבחני השורש והמנה. טורים כלליים. מבחן לייבניץ לטורים עם סימנים מתחלפים. שינוי סדר הסכימה (ללא הוכחה). 4. גבול של פונקציה. פונקציות רציפות. רציפות של פונקציות אלמנטאריות. תכונות של פונקציות רציפות בקטע סגור: חסימות וקיום האקסטרמום. רציפות במידה שווה, משפט קנטור. 5. הנגזרת של פונקציה. משפט הערך הממוצע. נגזרות מסדר גבוה. כלל לופיטל. משפט טיילור. שארית לגרנז‘.
  1. פונקציות. תחום הגדרה וטווח. גרף. מונוטוניות, זוגיות, מחזוריות. הרכבת פונקציות. פונקציה הפוכה.
  2. סדרות. גבולות של סדרות.
  3. גבול של פונקציה בנקודה. רציפות.
  4. נגזרת. משמעות גאומטרית ופיסיקלית. כללי שרשרת. נגזרות מסדר גבוה.
  5. משפט לגרנז‘ (משפט הערך הממוצע לפונקציות גזירות). כללי לופיטל.
  6. בעיות קיצון. אקסטרמומים של פונקציה רציפה בקטע סגור.
  7. חקירת פונקציות ובניית גרפים.
  8. דיפרנציאל. קירוב ליניארי. נוסחאות טיילור ומקלורן.
  9. אינטגרל בלתי מסוים. הגדרה ותכונות. אינטגרלים מידיים.
  10. הצבה ואינטגרציה לפי חלקים.
  11. אינטגרל מסוים. נוסחת ניוטון - ליבניץ. משפט הערך הממוצע לפונקציות רציפות. אינטגרל לא אמיתי.
  12. חישוב שטחים, אורכי עקומה ונפחי גופי סיבוב. חישוב מסה ומרכז כובד.
  13. קאורדינטות קוטביות. חישוב שטחים ואורכי עקומה בקואורדינטות קוטביות.
ספרות:
  1. G.B. Thomas and L.R. Finney, Calculus and Analytic Geometry, 9th Ed, Addison-Wesley (World Student Series), 1996.

  2. ה.אנטון, חשבון דיפרינציאלי ואינטגרלי א‘, האוניברסיטה הפתוחה, רמת אביב, תל-אביב, תשנ“ט, 1999.

. מרחב הסתברות: מרחב מדגם, פונקציה הסתברות, מרחב הסתברות סימטרי סופי, קומבינטוריקה. הסתברות גיאומטרית. הסתברות מותנית, אי-תלות של מאורעות, נוסחת ההסתברות השלמה, נוסחת בייס.2. משתנה מקרי בדיד, התפלגויות מיוחדות: אחידה, בינומית, גיאומטרית, בינומית שלילית, היפרגיאומטרית ופואסונית, תהליכי פואסון. 3. משתנה מקרי רציף, פונקצית צפיפות, פונקצית התפלגות מצטברת. התפלגויות מיוחדות: אחידה, מעריכית, גמה ונורמלית. טרנספורמציה של משתנה מקרי מעורב.4. התפלגות של מקסימום ומינימום. משתנה מקרי מעורב.5. מומנטים של משתנה מקרי. תוחלת ושונות, אי-שוויון צ‘בישב.6. וקטור מקרי, פונקציית הסתברות משותפת, צפיפות משותפת, התפלגויות שוליות.7. משפט הגבול המרכזי. קירוב נורמלי. חוק המספרים הגדולים.

  1. פעולות על קבוצות, סימון לוגי, יחסים.

  2. מניה בסדר של אובייקטים קומבינטוריים: מספרים שלמים, פונקציות, עיקרונות ראשונים של פירוט.

  3. קומבינטוריקה אלמנטרית: קבוצות, רב-קבוצות וסידוריהן; מקדמים בינומיאליים ומולטינומיאליים.

  4. עקרון ההכלה ודחייה, פונקצית אוילר.

  5. גרפים: הצגת גרפים ואיזומורפיזם.

  6. רקורסיה ופונקציות יוצרות: הגדרות רקורסיביות, פונקציות יוצרות רגילות ואקספוננציאליות, רקורסיה לינארית עם מקדמים קבועים.

  7. אריתמטיקה מודולרית: קונגרואנטיות של מספרים שלמים, $\mathbb{Z}_m$, האיברים ההפיכים ב-$\mathbb{Z}_m$.

  8. מבנים אלגבריים: אקסיומות ודוגמאות של חבורות, חבורות ותתי חבורות ציקליות, מחלקות ומשפט לגרנז‘. חוגים ושדות סופיים.

  1. טורים מספריים חיוביים וכלליים. התכנסות בהחלט ובתנאי. מבחני שורש והמנה. מבחן ליבניץ

  2. טורי חזקות.

  3. משוואות דיפרנציאליות מסדר ראשון: משוואות ניתנות להפרדת משתנים, משוואות מדויקות, משוואות לינאריות ומשוואות ברנולי. קיום ויחידות.

  4. משוואות דיפרנציאליות מסדר שני: שיטות להורדת סדר, משוואות לינאריות, ורונסקיאן, וריאציה של פרמטרים, משוואות לינאריות עם מקדמים קבועים ושיטת השוואת מקדמים. משוואות דיפרנציאליות מסדר $n$. משוואות אוילר.
  5. מערכות של משוואות דיפרנציאליות: שיטת חילוץ, שימוש באלגברה לינארית.
  1. שדות: הגדרת שדה, מספרים מרוכבים.

  2. משוואות לינאריות: פעולות אלמנטריות, דירוג, מערכות הומוגניות ולא הומוגניות, הצגת פתרונות.

  3. מרחבים ווקטוריים: דוגמאות, תת-מרחבים,תלות ליניארית, בסיסים, מימד.

  4. חשבון מטריצות: חיבור וכפל מטריצות, פעולות אלמנטריות, מטריצה הופכית, דטרמיננטה, כלל קרמר.טרנספורמציות לינאריות: דוגמאות, גרעין ותמונה, הצגה מטריציאלית.

הערות

  • קורסים המסומנים ב-(*) מהווים דרישת קדם לרישום לתאר מוסמך
  • קורסים המסומנים ב-(#) הינם קורסי חובה אפשריים למוסמך, בתחומים המתאימים, כמתואר בתכנית הלימודים למוסמך. לפחות שניים כאלה, מתחומים שונים, נדרשים לעמידה בדרישות התואר.
  • קורסים לתארים מתקדמים פתוחים גם בפני תלמידי בוגר חזקים, להם ציון ממוצע של 85 ומעלה, ואשר ניתן להם אישור של המרצים בקורם ושל ראש ועדת ההוראה
  • אנא עיינו בתכניות הלימודים המלאות לתואר בוגר ולתארים מתקדמים למידע על הדרישות והאפשרויות המלאות.